Evaluation of Adsorption Efficiency on Pb(II) Ions Removal Using Alkali-Modified Hydrochar from Paulownia Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Material Preparation
2.3. Preliminary Adsorption Test
2.4. Effect of Contact Time and Kinetics Studies
2.5. Effect of Initial Metal Concentration and Isotherm Studies
2.6. Thermodynamic Studies
2.7. FTIR Analysis
2.8. SEM/EDS
2.9. Ion-Exchange Study
2.10. The Point of Zero Charge of MPH-220 Surface
2.11. Stability and Reusability Studies
3. Results and Discussion
3.1. Preliminary Adsorption Test
3.2. Effect of Contact Time and Kinetics Studies
3.3. Sorption Isotherm Models
3.4. Adsorption Thermodynamic Studies
3.5. Functional Groups—FTIR Analysis
3.6. SEM/EDS of PH-220, MPH-220 and MPH-220Pb
3.7. Possible Pb(II) Adsorption Mechanisms
3.8. Stability and Reusability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallifuoco, A. A new approach to kinetic modeling of biomass hydrothermal carbonization. ACS Sustain. Chem. Eng. 2019, 7, 13073–13080. [Google Scholar] [CrossRef]
- Holliday, M.C.; Parsons, D.R.; Zein, S.H. Microwave-Assisted Hydrothermal Carbonisation of Waste Biomass: The Effect of Process Conditions on Hydrochar Properties. Processes 2022, 10, 1756. [Google Scholar] [CrossRef]
- Rasam, S.; Moraveji, M.K.; Soria-Verdugo, A.; Salimi, A. Synthesis, characterization and absorbability of Crocus sativus petals hydrothermal carbonized hydrochar and activated hydrochar. Chem. Eng. Process 2021, 159, 108236. [Google Scholar] [CrossRef]
- Malool, M.E.; Moraveji, M.K.; Shayegan, J. Hydrothermal carbonization of digested sewage sludge coupled with Alkali activation: Integrated approach for sludge handling, optimized production, characterization and Pb(II) adsorption. J. Taiwan Inst. Chem. E 2022, 133, 104203. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Nguyen, X.H.; Nguyen, N.D.K.; Van, H.T.; Thai, V.N.; Le, H.N.; Pham, V.D.; Nguyen, N.A.; Nguyen, T.P.; Nguyen, T.H. H2O2 modified-hydrochar derived from paper waste sludge for enriched surface functional groups and promoted adsorption to ammonium. J. Taiwan Inst. Chem. E 2021, 126, 119–133. [Google Scholar] [CrossRef]
- Lang, J.; Matějová, L.; Cuentas-Gallegos, A.K.; Lobato-Peralta, D.R.; Ainassaari, K.; Gómez, M.M.; Solís, J.L.; Mondal, D.; Keiski, R.L.; Cruz, G.J.F. Evaluation and selection of biochars and hydrochars derived from agricultural wastes for the use as adsorbent and energy storage materials. J. Environ. Chem. Eng. 2021, 9, 105979. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, W.; Han, S.; Wang, Y.; Zhang, Y. Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism. Colloids Surf. A 2019, 583, 123962. [Google Scholar] [CrossRef]
- Li, B.; Guo, J.-Z.; Liu, J.-L.; Fang, L.; Lv, J.-Q.; Lv, K. Removal of aqueous-phase lead ions by dithiocarbamate modified hydrochar. Sci. Total Environ. 2020, 714, 136897. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Truong, Q.-M.; Chen, C.-W.; Doong, R.; Chen, W.-H.; Dong, C.-D. Mesoporous and adsorption behavior of algal biochar prepared via sequential hydrothermal carbonization and ZnCl2 activation. Bioresour. Technol. 2022, 346, 126351. [Google Scholar] [CrossRef]
- Qu, J.; Lin, X.; Liu, Z.; Liu, Y.; Wang, Z.; Liu, S.; Meng, Q.; Tao, Y.; Hu, Q.; Zhang, Y. One-pot synthesis of Ca-based magnetic hydrochar derived from consecutive hydrothermal and pyrolysis processing of bamboo for high-performance scavenging of Pb(II) and tetracycline from water. Bioresour. Technol. 2022, 343, 126046. [Google Scholar] [CrossRef]
- Elsayed, I.; Madduri, S.; El-Giar, E.M.; Hassan, E.B. Effective removal of anionic dyes from aqueous solutions by novel polyethylenimine-ozone oxidized hydrochar (PEI-OzHC) adsorbent. Arab. J. Chem. 2022, 15, 103757. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Cao, Y. Pb(II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation. Colloids Surf. A 2018, 556, 177–184. [Google Scholar] [CrossRef]
- Tu, W.; Liu, Y.; Xie, Z.; Chen, M.; Ma, L.; Du, G.; Zhu, M. A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. J. Colloid Interface Sci. 2021, 593, 390–407. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, T.; Xue, Q.; Zhou, Y.; Wang, H.; Bolan, N.S.; Jiang, R.; Tsang, D.C.W. Enhanced adsorption of Cu(II) and Zn(II) from aqueous solution by polyethyleneimine modified straw hydrochar. Sci. Total Environ. 2021, 778, 146116. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, J.; Yuan, Y.; Song, H.; Liu, Y.; Wang, S.; Tao, Y.; Zhao, Y.; Li, Z. Simultaneous scavenging of Cd(II) and Pb(II) from water by sulfide-modified magnetic pinecone-derived hydrochar. J. Clean. Prod. 2022, 341, 130758. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Naeth, M.A.; Chang, S.X. Lead(II) adsorption on microwave-pyrolyzed biochars and hydrochars depends on feedstock type and production temperature. J. Hazard. Mater. 2021, 412, 125255. [Google Scholar] [CrossRef]
- Petrović, J.; Stojanović, M.; Milojković, J.; Petrović, M.; Šoštarić, T.; Laušević, M.; Mihajlović, M. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb2+ from aqueous solution. J. Environ. Manag. 2016, 182, 292–300. [Google Scholar] [CrossRef]
- Koprivica, M.; Petrović, J.; Ercegović, M.; Simić, M.; Milojković, J.; Šoštarić, T.; Dimitrijević, J. Improvement of combustible characteristics of Paulownia leaves via hydrothermal carbonization. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Salama, R.S.; El-Hakam, S.A.; Khder, A.S. Synthesis of 12-tungestophosphoric acid supported on Zr/MCM-41 composite with excellent heterogeneous catalyst and promising adsorbent of methylene blue. Colloids Surf. 2021, 631, 127753. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.; Morris, J. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Langmuir, L. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1368. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 384–470. [Google Scholar] [CrossRef]
- Sips, R. On the structure of a catalyst surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Redlich, O.J.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Petrović, J.; Ercegović, M.; Simić, M.; Kalderis, D.; Koprivica, M.; Milojković, J.; Radulović, D. Novel Mg-doped pyro-hydrochars as methylene blue adsorbents: Adsorption behavior and mechanism. J. Mol. Liq. 2023, 376, 121424. [Google Scholar] [CrossRef]
- Petrović, M.; Šoštarić, T.; Stojanović, M.; Milojković, J.; Mihajlović, M.; Stanojević, M.; Stanković, S. Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent. J. Taiwan Inst. Chem. Eng. 2016, 58, 407–416. [Google Scholar] [CrossRef]
- Milonjić, S. A consideration of the correct calculation of thermodynamic parameters of adsorption, short communication. J. Serb. Chem. Soc. 2007, 72, 1363–1367. [Google Scholar] [CrossRef]
- Chen, D.; Yu, X.; Song, C.; Pang, X.; Huang, J.; Li, Y. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar. Bioresour. Technol. 2016, 218, 1303–1306. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.S.; El-Hakam, S.A.; Samra, S.E.; El-Dafrawy, S.M.; Ibrahim, A.A.; Ahmed, A.I. Synthesis, characterization of titania supported on mesoporous MCM-41 and its application for the removal of methylene blue. Delta Univ. Sci. J. 2022, 5, 321–339. [Google Scholar] [CrossRef]
- Thamer, B.M.; Aldalbahi, A.; Moydeen, M.A.; Al-Enizi, A.; El-Hamshary, H.; El-Newehy, M. Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Sci. Rep. 2019, 9, 19467. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, Y.; Khan, M.A.; Xu, H.; Wang, F.; Xia, M. In-Depth Study of Heavy Metal Removal by an Etidronic Acid-Functionalized Layered Double Hydroxide. ACS Appl. Mater. Interfaces 2022, 14, 7450–7463. [Google Scholar] [CrossRef] [PubMed]
- Simić, M.; Petrović, J.; Šoštarić, T.; Ercegović, M.; Milojković, J.; Lopičić, Z.; Kojić, M. A Mechanism Assessment and Differences of Cadmium Adsorption on Raw and Alkali-Modified Agricultural Waste. Processes 2022, 10, 1957. [Google Scholar] [CrossRef]
- Amro, A.N.; Abhary, M.K.; Shaikh, M.M.; Ali, S. Removal of Lead and Cadmium Ions from Aqueous Solution by Adsorption on a Low-Cost Phragmites Biomass. Processes 2019, 7, 406. [Google Scholar] [CrossRef]
- Ali, I.H.; Mesfer, M.K.A.; Khan, M.I.; Danish, M.; Alghamidi, M.M. Exploring Adsorption Process of Lead (II) and Chromium (VI) Ions from Aqueous Solutions on Acid Activated Carbon Prepared from Juniperus procera Leaves. Processes 2019, 7, 217. [Google Scholar] [CrossRef]
- Elkhaleefa, A.; Ali, I.H.; Brima, E.I.; Shigidi, I.; Elhag, A.B.; Karama, B. Evaluation of the Adsorption Efficiency on the Removal of Lead(II) Ions from Aqueous Solutions Using Azadirachta indica Leaves as an Adsorbent. Processes 2021, 9, 559. [Google Scholar] [CrossRef]
- Mihajlović, M.; Petrović, J.; Kragović, M.; Stojanović, M.; Milojković, J.; Lopičić, Z.; Koprivica, M. Effect of KOH activation on hydrochar surface: FT-IR analyisis. Rad. Appl. 2017, 2, 65–67. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, Y.; Wang, D.; Shen, M.; Hu, D. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. J. Hazard. Mater. 2020, 398, 122977. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhu, X.; Wang, Q.; Wei, X.; Zhang, S. Microwave-assisted hydrothermal treatment of soybean residue and chitosan: Characterization of hydrochars and role of N and P transformation for Pb(II) removal. J. Anal. Appl. Pyrolysis 2021, 160, 105330. [Google Scholar] [CrossRef]
- Yu, J.; Tang, T.; Cheng, F.; Huang, D.; Martin, J.L.; Brewer, C.E.; Grimm, R.L.; Zhou, M.; Luo, H. Waste-to-wealth application of wastewater treatment algae-derived hydrochar for Pb(II) adsorption. MethodsX 2021, 8, 101263. [Google Scholar] [CrossRef] [PubMed]
Pb (mg/L) | Cu (mg/L) | Zn (mg/L) | Cd (mg/L) | Ni (mg/L) | Fe (mg/L) | |
---|---|---|---|---|---|---|
AFWW | 5.71 | 8.22 | 4.27 | 1.35 | 4.72 | 7.85 |
AFWW-PH-220 | 5.02 | 7.85 | 3.87 | 1.11 | 3.96 | 7.21 |
AFWW-MPH-220 | 3.35 | 4.92 | 3.20 | 0.84 | 3.15 | 4.76 |
Adsorbent MPH-220 | |
---|---|
qeq,exp [mg/g] | 110.9 |
Pseudo-First-Order Model | |
qeq,cal [mg/g] | 82.18 |
k1 [1/min] | 0.0022 |
χ2 | 7.01 |
R2 | 0.9348 |
Pseudo-Second-Order Model | |
qeq,cal [mg/g] | 113.34 |
k2 [g/(mg min)] | 0.00008 |
χ2 | 5.27 |
R2 | 0.9978 |
Weber–Morris diffusion Model | |
Kid1 [mg/(g min1/2)] | 1.86 |
C1 [mg/g] | 35.64 |
R2 | 0.9694 |
Kid2 [mg/(g min1/2)] | 0.47 |
C2 [mg/g] | 87.82 |
R2 | 0.8869 |
Adsorbent MPH-220 | |
---|---|
Langmuir isotherm model | |
qm [mg/g] | 174.75 |
KL [L/mg] | 0.04 |
χ2 | 10.85 |
R2 | 0.9678 |
Freundlich isotherm model | |
KF [(mg/g) (L/mg)1/n] | 31.57 |
1/n | 0.30 |
χ2 | 37.93 |
R2 | 0.8801 |
Sips isotherm model | |
qm [mg/g] | 174.06 |
KS [L/mg] | 0.04 |
nS | 1.00 |
χ2 | 11.90 |
R2 | 0.9657 |
Redlich–Peterson isotherm model | |
KRP [L/g] | 6.22 |
aRP [L/mg] | 0.02 |
β | 1.07 |
χ2 | 12.65 |
R2 | 0.9665 |
Adsorbent | qm [mg/g] | Reference |
---|---|---|
Phragmites biomass | 5.46 | [36] |
Acid-activated Juniperus procera leaves carbon | 30.30 | [37] |
Azadirachta indica leaves powder | 39.7 | [38] |
Alkali-activated camphor leaves biochar | 98.33 | [12] |
Alkali-activated digested sewage sludge hydrochar | 109.30 | [4] |
Sulfide-modified magnetic pinecone-derived hydrochar | 149.33 | [15] |
Dithiocarbamate-modified bamboo hydrochar | 151.51 | [8] |
Microwave-pyrolyzed canola straw biochar produced at 500 °C | 165.00 | [16] |
MPH-220 | 174.75 | This study |
PEI-modified corn stover hydrochar | 214.00 | [7] |
H3PO4-modified corn stover hydrochar | 353.40 | [7] |
T [K] | ln Kc | ΔG° [kJ/mol] | ΔH° [kJ/mol] | ΔS° [J/(mol × K)] | R2 |
---|---|---|---|---|---|
298.15 | 10.60 | −25.54 | 149.47 | 586.92 | |
308.15 | 11.64 | −31.41 | 0.9263 | ||
318.15 | 14.41 | −37.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koprivica, M.; Simić, M.; Petrović, J.; Ercegović, M.; Dimitrijević, J. Evaluation of Adsorption Efficiency on Pb(II) Ions Removal Using Alkali-Modified Hydrochar from Paulownia Leaves. Processes 2023, 11, 1327. https://doi.org/10.3390/pr11051327
Koprivica M, Simić M, Petrović J, Ercegović M, Dimitrijević J. Evaluation of Adsorption Efficiency on Pb(II) Ions Removal Using Alkali-Modified Hydrochar from Paulownia Leaves. Processes. 2023; 11(5):1327. https://doi.org/10.3390/pr11051327
Chicago/Turabian StyleKoprivica, Marija, Marija Simić, Jelena Petrović, Marija Ercegović, and Jelena Dimitrijević. 2023. "Evaluation of Adsorption Efficiency on Pb(II) Ions Removal Using Alkali-Modified Hydrochar from Paulownia Leaves" Processes 11, no. 5: 1327. https://doi.org/10.3390/pr11051327
APA StyleKoprivica, M., Simić, M., Petrović, J., Ercegović, M., & Dimitrijević, J. (2023). Evaluation of Adsorption Efficiency on Pb(II) Ions Removal Using Alkali-Modified Hydrochar from Paulownia Leaves. Processes, 11(5), 1327. https://doi.org/10.3390/pr11051327