A Case Study on Strong Strata Behaviors Mechanism of Mining Reserved Roadway and Its Prevention Techniques
Abstract
:1. Introduction
2. Project Profile
2.1. Panel Profile
2.2. Strong Strata Behaviors Survey
3. Mechanism and Treatment Principle of Strong Strata Behaviors
3.1. Main Controlling Factors of Strong Strata Behaviors
3.2. Technical Principle of Disaster Prevention and Control of Strong Strata Behaviors
3.3. Technical Basis for Controlling Strong Strata Behaviors
4. Hydraulic Fracturing Technology and Scheme
4.1. Design Basis of Hydraulic Fracturing Program
4.2. Parameter Design of Implementation Scheme
5. On-Site Industrial Test Monitoring
5.1. Monitoring of Roadway Deformation
5.2. Monitoring of Periodic Weighting Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Luo, J. Study on the shadow effect of the stress field around a deep-hole hydraulic-fracturing top-cutting borehole and process optimization. Processes 2023, 11, 367. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, G.; Zhang, K.; Wang, Y. Research on short wall continuous mining technology with full roof falling and roof control measures. Geotech. Geol. Eng. 2021, 39, 4877–4886. [Google Scholar] [CrossRef]
- Cai, M. Key theories and technonogies for surrounding rock stability and ground control in deep mining. J. Min. Strat. Control Eng. 2020, 2, 5–13. [Google Scholar] [CrossRef]
- Yu, X.; Bian, J.; Liu, C. Determination of energy release parameters of hydraulic fracturing roof neargoaf based on surrounding rock control of dynamic pressure roadway. J. Min. Strat. Control Eng. 2022, 4, 25–34. [Google Scholar]
- Liao, Z.; Feng, T. Mechanism and application of layered grouting reinforcement for fractured coal and rock roadway. Appl. Sci. 2023, 13, 724. [Google Scholar] [CrossRef]
- Wang, Y.G.; Guo, W.B.; Bai, E.H.; Zhang, Z.Y.; Kang, Y.P.; Chai, H.B.; Chen, J.J. Characteristics and mechanism of overlying strata movement due to high-intensity mining. J. China Coal Soc. 2018, 43, 28–35. [Google Scholar] [CrossRef]
- Hu, Q.; Cui, X.; Liu, W.; Ma, T.; Geng, H. Law of overburden and surface movement and deformation due to mining super thick coal seam. J. Min. Strat. Control Eng. 2020, 2, 31–39. [Google Scholar] [CrossRef]
- Li, C.; Wu, Z.; Zhang, W.; Sun, Y.; Zhu, C.; Zhang, X. A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques. Geomech. Eng. 2020, 22, 449–460. [Google Scholar] [CrossRef]
- Li, J.; Ren, J.; Li, C.; Zhang, W.; Tong, F. Failure mechanism and stability control of soft roof in advance support section of mining face. Minerals 2023, 13, 178. [Google Scholar] [CrossRef]
- Kang, H.; Xu, G.; Wang, B.; Wu, Y.; Jiang, P.; Pan, J.; Ren, H.; Zhang, Y.; Pang, Y. Forty years development and prospects of underground coal mining and strata control technologies in China. J. Min. Strat. Control Eng. 2019, 1, 7–39. [Google Scholar] [CrossRef]
- Liu, W.; Qian, D.; Yang, X.; Wang, S.; Deng, J.; Cui, Q.; Li, Z. Stress relief and support for stability of deep mining roadway with thick top coal in Hujiahe Coal Mine with the risk of rock burst. Shock Vib. 2021, 2021, 3822336. [Google Scholar] [CrossRef]
- Zhang, N.; Han, C.; Xie, Z. Theory of continuous beam control and high efficiency supporting technology in coal roadway. J. Min. Strat. Control Eng. 2019, 1, 48–55. [Google Scholar] [CrossRef]
- Du, F.; Wang, K.; Zhang, X. Experimental study of coal-gas outburst: Insights from coal-rock structure, gas pressure and adsorptivity. Nat. Resour. Res. 2020, 29, 2481–2493. [Google Scholar] [CrossRef]
- Kang, H. Spatial scale analysis on coalmining and strata control technologies. J. Min. Strat. Control Eng. 2020, 2, 5–30. [Google Scholar] [CrossRef]
- Du, F.; Wang, K.; Dong, X.; Wei, J. Numerical simulation of damage and failure of coal-rock combination based on CT three-dimensional reconstruction. J. China Coal Soc. 2021, 46, 253–262. [Google Scholar] [CrossRef]
- Yuan, C.; Fan, L.; Cui, J.; Wang, W. Numerical simulation of the supporting effect of anchor rods on layered and nonlayered roof rocks. Adv. Civ. Eng. 2020, 2020, 4841658. [Google Scholar] [CrossRef]
- Cai, W.; Dou, L.; Si, G.; Hu, Y. Fault-induced coal burst mechanism under mining-induced static and dynamic stresses. Engineering 2021, 7, 687–700. [Google Scholar] [CrossRef]
- Duan, C.; Zheng, Q.; Xue, J.; Yu, G.; Luo, Y. Experimental study on zonal failure discontinuous deformation of deep surrounding rock under different working conditions. J. Min. Strat. Control Eng. 2021, 3, 76–84. [Google Scholar] [CrossRef]
- Moradi, A.; Tokhmechi, B.; Rasouli, V.; Fatehi Marji, M. A Comprehensive numerical study of hydraulic fracturing process and its affecting parameters. Geotech. Geol. Eng. 2017, 35, 1035–1050. [Google Scholar] [CrossRef]
- Gao, F. Influence of hydraulic fracturing of strong roof on mining-induced stress-insight from numerical simulation. J. Min. Strat. Control Eng. 2021, 3, 5–13. [Google Scholar] [CrossRef]
- Jendryś, M.; Hadam, A.; Ćwiękała, M. Directional hydraulic fracturing (dhf) of the roof, as an element of rock burst prevention in the light of underground observations and numerical modelling. Energies 2021, 14, 562. [Google Scholar] [CrossRef]
- Nguyen, V.; Lian, H.; Rabczuk, T.; Bordas, S. Modelling hydraulic fractures in porous media using flow cohesive interface elements. Eng. Geol. 2017, 225, 68–82. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J. True tri-axial directional hydraulic fracturing test on sandstone with transverse grooves in coal mine. J. China Coal Soc. 2020, 45, 927–935. [Google Scholar] [CrossRef]
- Cheng, Q.; Huang, B.; Zhao, X. Numerical investigation on the mechanism of rock directional fracturing method controlled by hydraulic fracturing in dense linear mul-tiholes. Shock Vib. 2020, 2020, 6624047. [Google Scholar] [CrossRef]
- Whittles, D.; Lowndes, I.; Kingman, S. Influence of geotechnical factors on gas flow experienced in a UK longwall coal mine panel. Int. J. Rock Mech. Min. Sci. 2005, 43, 369–387. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, Y.; Wang, S.; Niu, C.; Chai, J. Analysis of the influence of hidden fault dip angle on ground pressure behavior in shallow seam roof. J. Min. Strat. Control Eng. 2020, 2, 72–82. [Google Scholar] [CrossRef]
- Dong, Y.; Yao, W.; Liu, Y. Strong mining pressure treatment in double lane layout working face with large mining depth and high ground stress. Coal Sci. Technol. 2018, 46, 103–107. [Google Scholar]
- Li, C.; Li, P.; Lu, S.Y.; Luo, M.; Liu, Y.L.; Zuo, M. Failure analysis and control of retained roadway at working face under protection coal pillar of the faults. J. Min. Sci. Technol. 2020, 5, 519–527. [Google Scholar] [CrossRef]
- Andrews, P.; Butcher, R.; Ekkerd, J. The geotechnical evolution of deep-level mechanized destress mining at South Deep mine. J. S. Afr. Inst. Min. Metall. 2020, 120, 33–40. [Google Scholar] [CrossRef]
- Du, F.; Wang, K.; Guo, Y.; Wang, G.; Wang, L.; Wang, Y. The mechanism of rock burst-outburst coupling disaster considering the coal-rock combination: An experiment study. Geomech. Eng. 2020, 22, 255–264. [Google Scholar] [CrossRef]
- Pan, J.; Kang, H.; Yan, Y.; Ma, S.; Ma, W.; Lu, C.; Lv, D.; Xu, G.; Feng, M.; Xia, Y.; et al. The Method, Mechanism and Application of Preventing Rock Burst by Artificial Liberation Layer of Roof. J. China Coal Soc. 2023, 48, 636–648. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, K.; He, X.; Wei, Z.; Yang, Q. Characteristics of Strata Behavior and Differentiated Control of Fully Mechanized Mining Working Face with Abnormal Roof. Sustainability 2022, 14, 13354. [Google Scholar] [CrossRef]
- Yin, W.; Bin, Z.; Deng, Z.; Kun, L.; Wang, H. Research on behavior of underground pressure in shallow coal seam with three-face goaf working face. Front. Energy Res. 2022. [Google Scholar] [CrossRef]
- Rong, H.; Cheng, T. Research and Control of Underground Pressure Law of Coal Mining Face in Soft Rock Strata Based on Neural Network under the Background of Wireless Network Communication. Mob. Inf. Syst. 2021, 2021, 6560713. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.X.; Kang, T.; Sun, Q.; Li, W. Mining pressure monitoring and analysis in fully mechanized backfilling coal mining face-A case study in Zhai Zhen Coal Mine. J. Cent. South Univ. 2015, 22, 1965–1972. [Google Scholar] [CrossRef]
- Li, D.; Jiang, F.; Wang, C.; Tian, Z.; Wang, Y. Study on the mechanism and prevention technology of “square position” and “stress breakdown effect” inducing rock burst. J. Min. Safety Eng. 2018, 35, 1014–1021. [Google Scholar]
- Rong, H.; Yu, S.; Wang, Y.; Pan, L.; Guo, K.; Li, N. Analysis of structural instability movement of hard overburden and its influence mechanism on rockburst. J. Min. Strat. Control Eng. 2022, 4, 063026. [Google Scholar] [CrossRef]
- Hao, X.; Han, G.; Xie, J.; Zhang, Y.; Han, Z. Rock burst mechanism of roadway excavation along goaf with small coal pillar in Ordos mining area. J. Min. Strat. Control Eng. 2023, 5, 023017. [Google Scholar] [CrossRef]
- Jia, J.; Wang, D.; Li, B. Study on influencing factors of effective fracturing radius of hydraulic fracturing. J. Saf. Sci. Technol. 2022, 18, 58–64. [Google Scholar] [CrossRef]
- Li, Q.; Deng, Y.; Hu, Q.; Zhang, Y.; Song, M.; Liu, J.; Shi, J. Mesoscopic law of stress and fracture evolution of coal seams hydraulic fracturing. Coal Geol. Explor. 2022, 50, 32–40. [Google Scholar] [CrossRef]
Lithology | Burial Depth/m | Thickness/m | Cohesion/MPa | Compressive Strength/MPa | Notes |
---|---|---|---|---|---|
Sandy sandstone | 390.9 | 19.2 | 6.6 | 59 | |
Clip coal | 391.6 | 0.7 | 1.9 | 12 | |
Sandy sandstone | 406.8 | 15.2 | 5.4 | 43 | |
Siltstone | 428.4 | 22.6 | 6.6 | 54 | Subcritical stratum 2 |
Sandy sandstone | 436.1 | 5.7 | 4.2 | 39 | |
Fine Sandstone | 444.7 | 8.6 | 6.2 | 52 | Subcritical stratum 1 |
Sandy sandstone | 451.0 | 6.4 | 3.6 | 34 | |
4-2 Coal seam | 457.4 | 7.6 | 2.5 | 17 | |
Sandy sandstone | 465.0 | 6.1 | 3.5 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Xin, D.; Liu, Y.; Chen, T. A Case Study on Strong Strata Behaviors Mechanism of Mining Reserved Roadway and Its Prevention Techniques. Processes 2023, 11, 1341. https://doi.org/10.3390/pr11051341
Li C, Xin D, Liu Y, Chen T. A Case Study on Strong Strata Behaviors Mechanism of Mining Reserved Roadway and Its Prevention Techniques. Processes. 2023; 11(5):1341. https://doi.org/10.3390/pr11051341
Chicago/Turabian StyleLi, Chen, Delin Xin, Yan Liu, and Tuantuan Chen. 2023. "A Case Study on Strong Strata Behaviors Mechanism of Mining Reserved Roadway and Its Prevention Techniques" Processes 11, no. 5: 1341. https://doi.org/10.3390/pr11051341
APA StyleLi, C., Xin, D., Liu, Y., & Chen, T. (2023). A Case Study on Strong Strata Behaviors Mechanism of Mining Reserved Roadway and Its Prevention Techniques. Processes, 11(5), 1341. https://doi.org/10.3390/pr11051341