Optimal Selection among Various Three-Phase Four-Wire Back-to-Back (BTB) Converters with Comparative Analysis for Wave Energy Converters
Abstract
:1. Introduction
2. Three-Phase Four-Leg Topology Configurations and Control Method
3. Four-Leg Topology Loss Analysis Model
4. Comparison of Simulations and Results
5. Conclusions
Funding
Conflicts of Interest
References
- Lopéz, I.; Andreu, J.; Ceballos, S.; de Alegría, I.M.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Reguero, B.; Losada, I.; Méndez, F. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, T. Marine renewable energy. Renew. Energy 2020, 150, 1160–1164. [Google Scholar] [CrossRef]
- Kalogeri, C.; Galanis, G.; Spyrou, C.; Diamantis, D.; Baladima, F.; Koukoula, M.; Kallos, G. Assessing the European offshore wind and wave energy resource for combined exploitation. Renew. Energy 2017, 101, 244–264. [Google Scholar] [CrossRef]
- Fusco, F.; Nolan, G.; Ringwood, J.V. Variability reduction through optimal combination of wind/wave resources–An Irish case study. Energy 2010, 35, 314–325. [Google Scholar] [CrossRef]
- Reikard, G.; Robertson, B.; Bidlot, J.-R. Combining wave energy with wind and solar: Short-term forecasting. Renew. Energy 2015, 81, 442–456. [Google Scholar] [CrossRef]
- Schweizer, M.; Lizama, I.; Friedli, T.; Kolar, J.W. Comparison of the chip area usage of 2-level and 3-level voltage source converter topologies. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 391–396. [Google Scholar]
- Teichmann, R.; Bernet, S. A comparison of three-level converters versus two-level converters for low-voltage drives, traction, and utility applications. IEEE Trans. Ind. Appl. 2005, 41, 855–865. [Google Scholar] [CrossRef]
- Schweizer, M.; Friedli, T.; Kolar, J.W. Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems. IEEE Trans. Ind. Electron. 2012, 60, 5515–5527. [Google Scholar] [CrossRef]
- Moreira, A.; Lipo, T.; Venkataramanan, G.; Bernet, S. High-frequency modeling for cable and induction motor overvoltage studies in long cable drives. IEEE Trans. Ind. Appl. 2002, 38, 1297–1306. [Google Scholar] [CrossRef]
- JStröm, P.; Korhonen, J.; Tyster, J.; Silventoinen, P. Active du/dt—New output-filtering approach for inverter-fed electric drives. IEEE Trans. Ind. Electron. 2011, 58, 3840–3847. [Google Scholar] [CrossRef]
- Bendjedia, M.; Tehrani, K.A.; Azzouz, Y. Design of RST and fractional order PID controllers for an induction motor drive for electric vehicle application. In Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 8–10 April 2014. [Google Scholar]
- Poblete, P.; Pereda, J.; Nuñez, F.; Aguilera, R.P. Distributed current control of cascaded multilevel inverters. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019; pp. 1509–1514. [Google Scholar]
- Chaturvedi, P.; Jain, S.; Agarwal, P. Carrier-based common mode voltage control techniques in three-level diode-clamped inverter. Adv. Power Electron. 2012, 2012, 327157. [Google Scholar] [CrossRef]
- Videt, A.; Le Moigne, P.; Idir, N.; Baudesson, P.; Cimetiere, X. A new carrier-based PWM providing common-mode-current reduction and DC-bus balancing for three-level inverters. IEEE Trans. Ind. Electron. 2007, 54, 3001–3011. [Google Scholar] [CrossRef]
- Djeghloud, H.; Benalla, H. Space vector pulse width modulation applied to the three-level voltage inverter. IEEE Trans. Power Electron. 2004, 19, 732–738. [Google Scholar]
- Busquets-Monge, S.; Bordonau, J.; Boroyevich, D.; Somavilla, S. The nearest three virtual space vector PWM-a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter. IEEE Power Electron. Lett. 2004, 2, 11–15. [Google Scholar] [CrossRef]
- Mohapatra, S.R.; Agarwal, V. Model predictive controller with reduced complexity for grid-tied multilevel inverters. IEEE Trans. Ind. Electron. 2018, 66, 8851–8855. [Google Scholar] [CrossRef]
- Yaramasu, V.; Rivera, M.; Wu, B.; Rodriguez, J. Model predictive current control of two-level four-leg inverters—Part I: Concept, algorithm, and simulation analysis. IEEE Trans. Power Electron. 2012, 28, 3459–3468. [Google Scholar] [CrossRef]
- Kim, S.E.; Park, S.Y.; Kwak, S. Simplified model predictive control method for three-phase four-leg voltage source inverters. J. Power Electron. 2016, 16, 2231–2242. [Google Scholar] [CrossRef]
- Roh, C.; Kim, K.H.; Park, J.Y.; Kwak, S.S. Simplified model predictive control with preselection technique for reduction of calculation burden in 3-level 4-leg NPC inverter. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 2291–2296. [Google Scholar]
- Roh, C.; Kwak, S.; Choi, S. Three-phase three-level four-leg NPC converters with advanced model predictive control. J. Power Electron. 2021, 21, 1574–1584. [Google Scholar] [CrossRef]
- Mohapatra, S.R.; Agarwal, V. An improved reduced complexity model predictive current controller for grid-connected four-leg multilevel inverter. IEEE Trans. Ind. Appl. 2019, 56, 498–506. [Google Scholar] [CrossRef]
- Nabae, A.; Takahashi, I.; Akagi, H. A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 1981, IA-17, 518–523. [Google Scholar] [CrossRef]
- Poorfakhraei, A.; Narimani, M.; Emadi, A. A review of multilevel inverter topologies in electric vehicles: Current status and future trends. IEEE Open J. Power Electron. 2021, 2, 155–170. [Google Scholar] [CrossRef]
- Nazer, A.; Driss, S.; Haddadi, A.M.; Farhangi, S. Optimal photovoltaic multi-string inverter topology selection based on reliability and cost analysis. IEEE Trans. Sustain. Energy 2020, 12, 1186–1195. [Google Scholar] [CrossRef]
- Kim, J.C.; Kim, D.; Kwak, S.S. Direct Power-Based Three-Phase Matrix Rectifier Control with Input Power Factor Adjustment. Electronics 2019, 8, 1427. [Google Scholar] [CrossRef]
- Kwak, S.; Park, J.C. Predictive control method with future zero-sequence voltage to reduce switching losses in three-phase voltage source inverters. IEEE Trans. Power Electron. 2014, 30, 1558–1566. [Google Scholar] [CrossRef]
- Roh, C. Performance Comparisons of Three-Phase/Four-Wire Model Predictive Control-Based DC/AC Inverters Capable of Asymmetric Operation for Wave Energy Converters. Energies 2022, 15, 2839. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Jaeger, U.; Munk-Nielsen, S. Power losses in PWM-VSI inverter using NPT or PT IGBT devices. IEEE Trans. Power Electron. 1995, 10, 358–367. [Google Scholar] [CrossRef]
- Havrlík, M.; Libra, M.; Poulek, V.; Kouřím, P. Analysis of Output Signal Distortion of Galvanic Isolation Circuits for Monitoring the Mains Voltage Waveform. Sensors 2022, 22, 7769. [Google Scholar] [CrossRef]
Voltage Vectors | Switching State | Voltage | Voltage Vectors | Switching State | Voltage | ||||
---|---|---|---|---|---|---|---|---|---|
va | vb | vc | va | vb | vc | ||||
v1 | PPP | 1 | 1 | 1 | v5 | NPP | 0 | 1 | 1 |
v2 | NNN | 0 | 0 | 0 | v6 | PNN | 1 | 0 | 0 |
v3 | NNP | 0 | 0 | 1 | v7 | PNP | 1 | 0 | 1 |
v4 | NPN | 0 | 1 | 0 | v8 | PPN | 1 | 1 | 0 |
Voltage Vectors | Switching State | Voltage | Voltage Vectors | Switching State | Voltage | ||||
---|---|---|---|---|---|---|---|---|---|
va | vb | vc | va | vb | vc | ||||
v1 | PPPP | 0 | 0 | 0 | v9 | PPPN | 1 | 1 | 1 |
v2 | NNNP | −1 | −1 | −1 | v10 | NNNN | 0 | 0 | 0 |
v3 | PNNP | 0 | −1 | −1 | v11 | PNNN | 1 | 0 | 0 |
v4 | PPNP | 0 | 0 | −1 | v12 | PPNN | 1 | 1 | 0 |
v5 | NPNP | −1 | 0 | −1 | v13 | NPNN | 0 | 1 | 0 |
v6 | NPPP | −1 | 0 | 0 | v14 | NPPN | 0 | 1 | 1 |
v7 | NNPP | −1 | −1 | 0 | v15 | NNPN | 0 | 0 | 1 |
v8 | PNPP | 0 | −1 | 0 | v16 | PNPN | 1 | 0 | 1 |
Voltage Vectors | Switching State | Voltage | Voltage Vectors | Switching State | Voltage | ||||
---|---|---|---|---|---|---|---|---|---|
va | vb | vc | va | vb | vc | ||||
v1 | PPP | 0.5 | 0.5 | 0.5 | v15 | ONO | 0 | −0.5 | 0 |
v2 | NNN | −0.5 | −0.5 | −0.5 | v16 | PON | 0.5 | 0 | −0.5 |
v3 | OOO | 0 | 0 | 0 | v17 | OPN | 0 | 0.5 | −0.5 |
v4 | POO | 0.5 | 0 | 0 | v18 | NPO | −0.5 | 0.5 | 0 |
v5 | ONN | 0 | −0.5 | −0.5 | v19 | NOP | −0.5 | 0 | 0.5 |
v6 | PPO | 0.5 | 0.5 | 0 | v20 | ONP | 0 | −0.5 | 0.5 |
v7 | OON | 0 | 0 | −0.5 | v21 | PNO | 0.5 | −0.5 | 0 |
v8 | OPO | 0 | 0.5 | 0 | v22 | PNN | 0.5 | −0.5 | −0.5 |
v9 | NON | −0.5 | 0 | −0.5 | v23 | PPN | 0.5 | 0.5 | −0.5 |
v10 | OPP | 0 | 0.5 | 0.5 | v24 | NPN | −0.5 | 0.5 | −0.5 |
v11 | NOO | −0.5 | 0 | 0 | v25 | NPP | −0.5 | 0.5 | 0.5 |
v12 | OOP | 0 | 0 | 0.5 | v26 | NNP | −0.5 | −0.5 | 0.5 |
v13 | NNO | −0.5 | −0.5 | 0 | v27 | PNP | 0.5 | −0.5 | 0.5 |
v14 | POP | 0.5 | 0 | 0.5 |
Voltage Vectors | Switching State | Voltage | Voltage Vectors | Switching State | Voltage | ||||
---|---|---|---|---|---|---|---|---|---|
van | vbn | vcn | van | vbn | vcn | ||||
v1 | NNNN | 0 | 0 | 0 | v42 | OOOP | −0.5 | −0.5 | −0.5 |
v2 | NNNO | −0.5 | −0.5 | −0.5 | v43 | OOPN | 0.5 | 0.5 | 1 |
v3 | NNNP | −1 | −1 | −1 | v44 | OOPO | 0 | 0 | 0.5 |
v4 | NNON | 0 | 0 | 0.5 | v45 | OOPP | −0.5 | −0.5 | 0 |
v5 | NNOO | −0.5 | −0.5 | 0 | v46 | OPNN | 0.5 | 1 | 0 |
v6 | NNOP | −1 | −1 | −0.5 | v47 | OPNO | 0 | 0.5 | −0.5 |
v7 | NNPN | 0 | 0 | 1 | v48 | OPNP | −0.5 | 0 | −1 |
v8 | NNPO | −0.5 | −0.5 | 0.5 | v49 | OPON | 0.5 | 1 | 0.5 |
v9 | NNPP | −1 | −1 | 0 | v50 | OPOO | 0 | 0.5 | 0 |
v10 | NONN | 0 | 0.5 | 0 | v51 | OPOP | −0.5 | 0 | −0.5 |
v11 | NONO | −0.5 | 0 | −0.5 | v52 | OPPN | 0.5 | 1 | 1 |
v12 | NONP | −1 | −0.5 | −1 | v53 | OPPO | 0 | 0.5 | 0.5 |
v13 | NOON | 0 | 0.5 | 0.5 | v54 | OPPP | −0.5 | 0 | 0 |
v14 | NOOO | −0.5 | 0 | 0 | v55 | PNNN | 1 | 0 | 0 |
v15 | NOOP | −1 | −0.5 | −0.5 | v56 | PNNO | 0.5 | −0.5 | −0.5 |
v16 | NOPN | 0 | 0.5 | 1 | v57 | PNNP | 0 | −1 | −1 |
v17 | NOPO | −0.5 | 0 | 0.5 | v58 | PNON | 1 | 0 | 0.5 |
v18 | NOPP | −1 | −0.5 | 0 | v59 | PNOO | 0.5 | −0.5 | 0 |
v19 | NPNN | 0 | 1 | 0 | v60 | PNOP | 0 | −1 | −0.5 |
v20 | NPNO | −0.5 | 0.5 | −0.5 | v61 | PNPN | 1 | 0 | 1 |
v21 | NPNP | −1 | 0 | −1 | v62 | PNPO | 0.5 | −0.5 | 0.5 |
v22 | NPON | 0 | 1 | 0.5 | v63 | PNPP | 0 | −1 | 0 |
v23 | NPOO | −0.5 | 0.5 | 0 | v64 | PONN | 1 | 0.5 | 0 |
v24 | NPOP | −1 | 0 | −0.5 | v65 | PONO | 0.5 | 0 | −0.5 |
v25 | NPPN | 0 | 1 | 1 | v66 | PONP | 0 | −0.5 | −1 |
v26 | NPPO | −0.5 | 0.5 | 0.5 | v67 | POON | 1 | 0.5 | 0.5 |
v27 | NPPP | −1 | 0 | 0 | v68 | POOO | 0.5 | 0 | 0 |
v28 | ONNN | 0.5 | 0 | 0 | v69 | POOP | 0 | −0.5 | −0.5 |
v29 | ONNO | 0 | −0.5 | −0.5 | v70 | POPN | 1 | 0.5 | 1 |
v30 | ONNP | −0.5 | −1 | −1 | v71 | POPO | 0.5 | 0 | 0.5 |
v31 | ONON | 0.5 | 0 | 0.5 | v72 | POPP | 0 | −0.5 | 0 |
v32 | ONOO | 0 | −0.5 | 0 | v73 | PPNN | 1 | 1 | 0 |
v33 | ONOP | −0.5 | −1 | −0.5 | v74 | PPNO | 0.5 | 0.5 | −0.5 |
v34 | ONPN | 0.5 | 0 | 1 | v75 | PPNP | 0 | 0 | −1 |
v35 | ONPO | 0 | −0.5 | 0.5 | v76 | PPON | 1 | 1 | 0.5 |
v36 | ONPP | −0.5 | −1 | 0 | v77 | PPOO | 0.5 | 0.5 | 0 |
v37 | OONN | 0.5 | 0.5 | 0 | v78 | PPOP | 0 | 0 | −0.5 |
v38 | OONO | 0 | 0 | −0.5 | v79 | PPPN | 1 | 1 | 1 |
v39 | OONP | −0.5 | −0.5 | −1 | v80 | PPPO | 0.5 | 0.5 | 0.5 |
v40 | OOON | 0.5 | 0.5 | 0.5 | v81 | PPPP | 0 | 0 | 0 |
v41 | OOOO | 0 | 0 | 0 |
Parameters | Values |
---|---|
Vin (input voltage) | 432.56 V |
Rin (input restistance) | 0.233 Ω |
Lin (input inductance) | 2.0344 mH |
Cdc (DC capacitance) | 4400 µF |
Vdc (DC voltage) | 850 V |
Applied Topology | VDS | ID (25 °C) | RDS(ON) | |
---|---|---|---|---|
C3M0021120K (1200 V) | Two-Level Type | 1200 V | 100 A | 21 mΩ |
C3M0025065K (650 V) | Three-Level Type | 650 V | 97 A | 25 mΩ |
Parameters | Values |
---|---|
Rs (stator restistance) | 2 Ω |
Rr (rotor restistance) | 1.56 Ω |
Ls (stator inductance) | 54 mH |
Lr (rotor inductance) | 54 mH |
Lm (mutual inductance) | 51.5 mH |
Tsp (sampling period) | 200 µsec |
Two-Level Four-Wire | Two-Level Four-Leg | Three-Level Three-Leg Four-Wire | Three-Level Four-Leg | ||
---|---|---|---|---|---|
Losses [W] | Symmetric operation | 597.75 | 478.89 | 305.79 | 258.26 |
Asymmetric operation | 899.14 | 752.88 | 693.64 | 490.48 |
Two-Level Three-Leg Four-Wire | Two-Level Four-Leg | Three-Level Three-Leg Four-Wire | Three-Level Four-Leg | ||
---|---|---|---|---|---|
Total Efficiency [%] | Symmetric operation | 96.0 | 96.8 | 97.96 | 98.28 |
Asymmetric operation | 94.0 | 95.0 | 95.4 | 96.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, C. Optimal Selection among Various Three-Phase Four-Wire Back-to-Back (BTB) Converters with Comparative Analysis for Wave Energy Converters. Processes 2023, 11, 1463. https://doi.org/10.3390/pr11051463
Roh C. Optimal Selection among Various Three-Phase Four-Wire Back-to-Back (BTB) Converters with Comparative Analysis for Wave Energy Converters. Processes. 2023; 11(5):1463. https://doi.org/10.3390/pr11051463
Chicago/Turabian StyleRoh, Chan. 2023. "Optimal Selection among Various Three-Phase Four-Wire Back-to-Back (BTB) Converters with Comparative Analysis for Wave Energy Converters" Processes 11, no. 5: 1463. https://doi.org/10.3390/pr11051463
APA StyleRoh, C. (2023). Optimal Selection among Various Three-Phase Four-Wire Back-to-Back (BTB) Converters with Comparative Analysis for Wave Energy Converters. Processes, 11(5), 1463. https://doi.org/10.3390/pr11051463