Sustainable Bioactive Composite of Glehnia littoralis Extracts for Osteoblast Differentiation and Bone Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Extract Preparation
2.3. Determination of Total Phenolic Content (TPC)
2.4. Determination of Total Flavonoid Content (TFC)
2.5. LC/UVD Quantitative Analysis of Coumarin-Based Compounds
2.6. Antioxidant Activity
2.6.1. Evaluating the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay
2.6.2. Evaluation of the 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Assay
2.7. Cell Culture
2.8. Cell Viability
2.9. Cytotoxicity
2.10. ALP Activity
2.11. Collagen Synthesis Rate
2.12. Mineralization Content
2.13. Osteocalcin Content
2.14. mRNA Expression Rate
2.15. Statistical Processing
3. Results
3.1. The Total Phenolic Contents (TPCs) and Total Flavonoid Contents (TFCs)
3.2. LC/UVD Quantitative Analysis of Coumarin-Based Compounds
3.3. Antioxidant Activity
3.4. Cell Viability Test
3.5. ALP Activity
3.6. Collagen Synthesis Rate
3.7. GL Extracts Enhanced Osteoblast Mineralization
3.8. Osteocalcin Content
3.9. mRNA Expression Rate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: Now and the future. Lancet 2011, 377, 1276–1287. [Google Scholar] [CrossRef]
- Rodan, G.A.; Martin, T.J. Therapeutic approaches to bone diseases. Science 2000, 289, 1508–1514. [Google Scholar] [CrossRef]
- Kung, A. Management of osteoporosis in Hong Kong. Clin. Calcium 2004, 14, 108–111. [Google Scholar]
- Kanis, J.A. WHO Technical Report; University of Sheffield: Sheffield, UK, 2007; p. 66. [Google Scholar]
- IOF (International Osteoporosis Foundation). Facts and Statistics. International Osteoporosis Foundation Website. Available online: http://www.iofbonehealth.org/factsstatistics (accessed on 18 January 2014).
- Udagawa, N.; Takahashi, N.; Jimi, E.; Matsuzaki, K.; Tsurukai, T.; Itoh, K.; Nakagawa, N.; Yasuda, H.; Goto, M.; Tsuda, E.; et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor. Bone 1999, 25, 517–523. [Google Scholar] [CrossRef]
- Suda, T.; Ueno, Y.; Fujii, K.; Shinki, T. Vitamin D and bone. J. Cell. Biochem. 2003, 88, 259–266. [Google Scholar] [CrossRef]
- Meghji, S.; Sandy, J.R.; Scutt, A.M.; Harvey, W.; Harris, M. Stimulation of bone resorption by lipoxygenase metabolites of arachidonic acid. Prostaglandins 1988, 36, 139–149. [Google Scholar] [CrossRef]
- Garcia, C.; Boyce, B.F.; Gilles, J.; Dallas, M.; Qiao, M.; Mundy, G.R.; Bonewald, L.F. Leukotriene B4 stimulates osteoclastic bone resorption both in vitro and in vivo. J. Bone Miner. Res. 1996, 11, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Gruber, H.E.; Ivey, J.L.; Baylink, D.L.; Mathews, M.; Nelp, W.B.; Sisom, B.; Chestnut, C.H. Long-term calcitonin therapy in post-menopausal osteoporosis. Metabolism 1984, 33, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Tasadduq, R.; Gordon, J.; AL-Ghanim, K.A.; Lian, J.B.; Wijnen, A.J.V.; Stein, J.L.; Stein, G.S.; Shakoori, A.R. Ethanol Extract of Cissus quadrangularis Enhances Osteoblast Differentiation and Mineralization of Murine Pre-Osteoblastic MC3T3-E1 Cells. J. Cell. Physiol. 2017, 232, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Hamadeh, I.S.; Ngwa, B.A.; Gong, Y. Drug induced osteonecrosis of the jaw. Cancer Treat. Rev. 2015, 41, 455–464. [Google Scholar] [CrossRef]
- Abrahamsen, B. Adverse effects of bisphosphonates. Calcif. Tissue Int. 2010, 86, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; et al. Writing group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the women’s health Initiative randomized controlled trial. J. Am. Med. Assoc. 2002, 288, 321–333. [Google Scholar]
- Adluri, R.S.; Zhan, L.; Bagchi, M.; Maulik, N.; Maulik, G. Comparative effects of a novel plant-based calcium supplement with two common calcium salts on proliferation and mineralization in human osteoblast cells. Mol. Cell. Biochem. 2010, 340, 73–80. [Google Scholar] [CrossRef]
- Kodama, H.; Amagai, Y.; Sudo, H.; Kasai, S.; Yamamoto, S. Establishment of a clonal osteogenic cell line from newborn mouse calvaria. Jpn. J. Oral Biol. 1981, 23, 899–901. [Google Scholar] [CrossRef]
- Quarles, L.D.; Yohay, D.L.; Lever, L.W.; Caton, R.; Wenstrup, R.J. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. J. Bone Miner. Res. 1992, 7, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Golub, E.E.; Boesze-Battaglia, K. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 2007, 18, 444–448. [Google Scholar] [CrossRef]
- Jeong, J.C.; Lee, J.W.; Yoon, C.H.; Lee, Y.C.; Chung, K.H.; Kim, M.G.; Cheorl-Ho Kim, C.H. Stimulative effects of Drynariae Rhizoma extracts on the proliferation and differentiation of osteoblastic MC3T3-E1 Cells. J. Ethnopharmacol. 2005, 96, 489–495. [Google Scholar] [CrossRef]
- Lian, J.B.; Stein, G.S. Concepts of osteoblast growth and differentiation: Basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral Biol. Med. 1992, 3, 269–305. [Google Scholar] [CrossRef]
- Ammon, H.P.T.; Mack, T.; Singh, G.B.; Safayhi, H. Inhibition of Leukotriene B4 Formation in Rat Peritoneal Neutrophils by an Ethanolic Extract of the Gum Resin Exudate of Boswellia serrata. Planta Med. 1991, 57, 203–207. [Google Scholar] [CrossRef]
- Jun, A.Y.; Kim, H.J.; Park, K.K.; Son, K.H.; Lee, D.H.; Woo, M.H.; Kim, Y.S.; Lee, S.K.; Chung, W.Y. Extract of Magnoliae Flos inhibits ovariectomy-induced osteoporosis by blocking osteoclastogenesis and reducing osteoclast-mediated bone resorption. Fitoterapia 2012, 83, 1523–1531. [Google Scholar] [CrossRef]
- Mohan, S.; Kutilek, S.; Zhang, C.; Shen, H.G.; Kodama, Y.; Srivastava, A.K.; Wergedal, J.E.; Beamer, W.G.; Baylink, D.J. Comparison of bone formation responses to parathyroid hormone (1–34), (1–31), and (2–34) in mice. Bone 2000, 27, 471–478. [Google Scholar] [CrossRef]
- Anderson, J.; Garner, S. Phytoestrogens and bone Bailieres. Clin. Endocrinol. Metab. 1998, 12, 543–557. [Google Scholar]
- Fitzpatrick, L. Selective estrogen receptor modulators and phytoestrogens: New therapies for the postmenopausal women. Mayo Clin. Proc. 1999, 74, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Li, J.; Zhang, Y.; Zhang, R.; Zheng, Y.; Hu, B.; Wu, L.; Zhang, D. Structural characterization and biological activities of a novel polysaccharide from Glehnia littoralis and its application in preparation of nano-silver. Int. J. Biol. Macromol. 2021, 183, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Rozema, J.; Bijwaard, P.; Prast, G.; Broekman, R. Ecophysiological adaptation of coastal halophytes from foredunes and salt marshes. Vegetatio 1985, 62, 499–521. [Google Scholar] [CrossRef]
- Cassileth, B.R.; Rizvi, N.; Deng, G.; Yeung, K.S.; Vickers, A.; Guillen, S.; Woo, D.; Coleton, M.; Kris, M.G. Safety and pharmacokinetic trial of docetaxel plus an Astragalus-based herbal formula for non-small cell lung cancer patients. Cancer Chemother. Pharmacol. 2009, 65, 67–71. [Google Scholar] [CrossRef]
- Ng, T.B.; Liu, F.; Wang, H.X. The antioxidant effects of aqueous and organic extracts of Panax quinquefolium, Panax notoginseng, Codonopsis pilosula, Pseudostellaria heterophylla, and Glehnia littoralis. J. Ethnopharmacol. 2004, 93, 285–288. [Google Scholar] [CrossRef]
- Chiang Su New Medicinal College (de.). Dictionary of Chinese Crude Drug’; Shanghai Scientific Technologic Publisher: Shanghai, China, 1977; p. 644. [Google Scholar]
- Masuda, T.; Takasugi, M.; Anetai, M. Psoralen and other linear furanocoumarins as phytoalexins in Glehnia littoralis. Phytochemistry 1998, 47, 13–16. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Ha, H.; Kim, R.; Cho, C.W.; Song, Y.R.; Hong, H.D.; Kim, T. Anti-Osteoporotic Effects of Polysaccharides Isolated from Persimmon Leaves via Osteoclastogenesis Inhibition. Nutrients 2018, 10, 901. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Moreno, M.I.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.-M.; Chelliah, R.; Oh, D.-H.; Kim, S.-H.; Yu, C.Y.; Ghimire, B.K. Tupistra nutans wall. root extract, rich in phenolics, inhibits microbial growth and α-glucosidase activity, while demonstrating strong antioxidant potential. Braz. J. Bot. 2019, 42, 383–397. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.M.; Kim, G.T.; Kim, E.J.; Lim, E.G.; Kim, S.Y.; Kim, Y.M. Extract from Artemisia annua Linné induces apoptosis through the mitochondrial signaling pathway in HepG2 cells. J. Korean Soc. Food Sci. Nut. 2016, 45, 1708–1716. [Google Scholar] [CrossRef]
- Sewing, S.; Boess, F.; Moisan, A.; Bertinetti-Lapatki, C.; Minz, T.; Hedtjaern, M.; Tessier, Y.; Schuler, F.; Singer, T.; Roth, A.B. Establishment of a predictive in vitro assay for assessment of the hepatotoxic potential of oligonucleotide drugs. PLoS ONE 2016, 11, 159431. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Ma, B.; Zi, Y.; Xiang, L.B.; Han, T.Y. Effects of rutin on osteoblast MC3T3-E1 differentiation, ALP activity and Runx2 protein expression. Eur. J. Histochem. 2021, 65, 3195. [Google Scholar] [CrossRef]
- Park, E.K.; Jin, H.S.; Cho, D.Y.; Kim, J.H.; Kim, M.C.; Choi, C.W.; Jin, Y.L.; Lee, J.W.; Park, J.H.; Chung, Y.S.; et al. The effect of Lycii radicis cortex extract on bone formation in vitro and in vivo. Molecules 2014, 19, 19594–19609. [Google Scholar] [CrossRef]
- Zakłos-Szyda, M.; Nowak, A.; Pietrzyk, N.; Podsedek, A. Viburnum opulus L. juice phenolic compounds influence osteogenic differentiation in human osteosarcoma saos-2 cells. Int. J. Mol. Sci. 2020, 21, 4909. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Hussain, F.; Thu, H.E.; Hussain, Z. Synergistic effects of combined therapy of curcumin and Fructus Ligustri Lucidi for treatment of osteoporosis: Cellular and molecular evidence of enhanced bone formation. J. Integr. Med. 2019, 17, 38–45. [Google Scholar] [CrossRef]
- Techaniyom, P.; Tanurat, P.; Sirivisoot, S. Osteoblast differentiation and gene expression analysis on anodized titanium samples coated with graphene oxide. Applied Surface Science 2020, 526, 146646. [Google Scholar] [CrossRef]
- Matsubara, T.; Kida, K.; Yamaguchi, A.; Hata, K.; Ichida, F.; Meguro, H.; Aburatani, H.; Nishimura, R.; Yoneda, T. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J. Biol. Chem. 2008, 283, 29119–29144. [Google Scholar] [CrossRef] [PubMed]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Womeni, H.M.; Djikeng, F.T.; Tiencheu, B.; Linder, M. Antioxidant potential of methanolic extracts and powders of some Cameroonian spices during accelerated storage of soybean oil. Adv. Biol. Chem. 2013, 3, 304–313. [Google Scholar] [CrossRef]
- Naka, K.; Muraguchi, T.; Hoshii, T.; Hirao, A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid. Redox Signal 2008, 10, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.C.; Lu, D.; Liu, A.L.; Zhang, Z.M.; Li, X.M.; Zou, Z.P.; Zeng, W.S.; Cheng, B.L.; Luo, S.Q. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J. Biol. Chem. 2005, 280, 17497–17506. [Google Scholar] [CrossRef]
- Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.W.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005, 106, 852–859. [Google Scholar] [CrossRef]
- Kitajima, J.; Okamura, C.; Ishikawa, T.; Tanaka, Y. Coumarin glycosides of Glehnia lifforalis root and rhizoma. Chem. Pharm. Bull. 1998, 46, 1404–1407. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, C.; Jin, Q.; Yeon, E.T.; Lee, D.; Kim, S.Y.; Han, S.B.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Pyranocoumarins from Glehnia littoralis inhibit the LPS-induced NO production in macrophage RAW 264.7 cells. Bioorganic Med. Chem. Lett. 2014, 24, 2717–2719. [Google Scholar] [CrossRef]
- Malik, A.; Kushnoor, A.; Saini, V.; Singhal, S.; Kumar, S.; Yadav, Y.C. In vitro antioxidant properties of Scopolet in. J. Chem. Pharm. Res. 2011, 3, 659–665. [Google Scholar]
- Um, Y.R.; Lee, J.I.; Lee, J.L.; Kim, H.J.; Yea, S.S.; Seo, Y.W. Chemical constituents of the halophyte Glehnia littoralis. J. Korean Chem. Soc. 2010, 54, 701–706. [Google Scholar] [CrossRef]
- Nasser, M.I.; Zhu, S.; Hu, H.; Huang, H.; Guo, M.; Zhu, P. Effects of imperatorin in the cardiovascular system and cancer. Biomed. Pharmacother. 2019, 120, 109401. [Google Scholar] [CrossRef] [PubMed]
- Bertina, R.; Chena, Z.; Martínez-Vázquez, M.; García-Argaéz, A.; Froldi, G. Vasodilation and radical-scavenging activity of imperatorin and selected coumarinic and flavonoid compounds from genus Casimiroa. Phytomedicine 2014, 21, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.Y.; Chao, C.H.; Chan, H.H.; Huang, G.J.; Hwang, T.L.; Lai, C.Y.; Lee, K.H.; Thang, T.D.; Wu, T.S. Bioactive constituents of Clausena lansium and a method for discrimination of aldose enantiomers. Phytochemistry 2012, 82, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Adebajo, A.C.; Iwalewa, E.O.; Obuotor, E.M.; Ibikunle, G.F.; Omisore, N.O.; Adewunmi, C.O.; Obaparusi, O.O.; Klaes, M.; Adetogun, G.E.; Schmidt, T.J.; et al. Pharmacological properties of the extract and some isolated compounds of Clausena lansium stem bark: Anti-trichomonal, antidiabetic, antiinflammatory, hepatoprotective and antioxidant effects. J. Ethnopharmacol. 2009, 122, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Kassim, N.K.; Rahmanil, M.; Ismail, A.; Sukari, M.A.; Ee, G.C.L.; Nasir, N.M.; Awang, K. Antioxidant activity-guided separation of coumarins and lignan from Melicope glabra (Rutaceae). Food Chem. 2013, 139, 87–92. [Google Scholar] [CrossRef]
- Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone-An antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem. 2010, 120, 825–830. [Google Scholar] [CrossRef]
- Kanimozhi, G.; Prasad, N.R.; Ramachandran, S.; Pugalendi, K.V. Umbelliferone modulates gamma-radiation induced reactive oxygen species generation and subsequent oxidative damage in human blood lymphocytes. Eur. J. Pharmacol. 2011, 672, 20–29. [Google Scholar] [CrossRef]
- Luyen, B.T.L.; Tai, B.H.; Thao, N.P.; Lee, S.H.; Jang, H.D.; Lee, Y.M.; Kim, Y.H. Evaluation of the Anti-osteoporosis and Antioxidant Activities of Phenolic Compounds from Euphorbia maculate. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 573–579. [Google Scholar] [CrossRef]
- Zhang, J.K.; Yang, L.; Meng, G.L.; Yuan, Z.; Fan, J.; Li, D.; Chen, J.Z.; Shi, T.Y.; Hu, H.M.; Wei, B.Y.; et al. Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS ONE 2013, 8, e57251. [Google Scholar] [CrossRef]
- Lee, E.J.; Kang, Y.H. Coumarin Boosts Optimal Bone Remodeling Through Blocking AGE-RAGE Interaction in Diabetic Osteoblasts and Osteoclasts | Current Developments in Nutrition | Oxford Academic. Curr. Dev. Nutr. 2020, 4, 395. [Google Scholar]
- Yan, D.Y.; Tang, J.; Chen, L.; Wang, B.; Weng, S.; Xie, Z.; Wu, Z.Y.; Shen, Z.; Bai, B.; Yang, L. Imperatorin promotes osteogenesis and suppresses osteoclast by activating AKT/GSK3 β/β-catenin pathways. J. Cell. Mol. Med. 2020, 24, 2330–2341. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.X.; Zheng, G.Z.; Chang, B.O.; Chen, R.C.; Zhang, Q.H.; Xie, P.; Li, X.D. Connexin 43 modulates osteogenic differentiation of bone marrow stromal cells through GSK-3beta/Beta-catenin signaling pathways. Cell. Physiol. Biochem. 2018, 47, 161–175. [Google Scholar] [CrossRef]
- Galli, C.; Piemontese, M.; Lumetti, S.; Manfredi, E.; Macaluso, G.M.; Passeri, G. GSK3b-inhibitor lithium chloride enhances activation of Wnt canonical signaling and osteoblast differentiation on hydrophilic titanium surfaces. Clin. Oral Implant. Res. 2013, 24, 921–927. [Google Scholar] [CrossRef]
- Wang, J.; Guan, X.; Guo, F.; Zhou, J.; Chang, A.; Sun, B.; Cai, Y.; Ma, Z.; Dai, C.; Li, X.; et al. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 2013, 4, e845. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Zhuang, H.T.; Xin, M.Y.; Zhou, Y.L. MiR-214 inhibits human mesenchymal stem cells differentiating into osteoblasts through targeting β-catenin. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4777–4783. [Google Scholar]
- Wei, W.; Zeve, D.; Suh, J.M.; Wang, X.; Du, Y.; Zerwekh, J.E.; Dechow, P.C.; Graff, J.M.; Wan, Y. Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol. Cell. Biol. 2011, 31, 4706–4719. [Google Scholar] [CrossRef]
- Kwak, S.C.; Baek, J.M.; Lee, C.H.; Yoon, K.H.; Lee, M.S.; Kim, J.Y. Umbelliferone Prevents Lipopolysaccharide-Induced Bone Loss and Suppresses RANKL-Induced Osteoclastogenesis by Attenuating Akt-c-Fos-NFATc1 Signaling. Int. J. Biol. Sci. 2019, 15, 2427–2437. [Google Scholar] [CrossRef]
- Li, H.T.; He, L.; Qiu, J.B. Effects of the Chinese herb component phellopterin on the increase in cytosolic free calcium in PC12 cells. Drug Dev. Res. 2007, 68, 79–83. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Kim, J.C.; Kim, Y.S.; Kim, H.T.; Kim, S.K.; Chi, G.J.; Kim, J.S.; Lee, S.W.; Heor, J.H.; Cho, K.Y. Antifungal activities of coumarins isolated from Angelica gigas and Angelica dahurica against plant pathogenic fungi. Korean J. Pestic. Sci. 2001, 5, 26–35. [Google Scholar]
- Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and antiinflammatory activity of coumarin derivatives. J. Med. Chem. 2005, 48, 6400–6408. [Google Scholar] [CrossRef]
- Stein, G.S.; Lian, J.B.; Owen, T.A. Relationship of cell-growth to the regulation of tissue-specific gene-expression during osteoblast differentiation. FASEB J. 1990, 4, 3111–3123. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.B.; Bunning, R.A.D.; Russell, R.G.G. The effects of recombinant human interleukin-1 on cellular proliferation and the production of prostaglandin E2, plasminogen activator, osteocalcin and alkaline phosphatase by osteoblast-like cells derived from human bone. Biochem. Biophys. Res. Commun. 1990, 166, 208–216. [Google Scholar] [CrossRef]
- Nash, L.A.; Ward, W.E. Comparison of black, green and rooibos tea on osteoblast activity. Food Funct. 2016, 7, 1166–1175. [Google Scholar] [CrossRef]
- Ekeuku, S.O.; Pang, K.L.; Chin, K.Y. Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review. Drug Des. Dev. Ther. 2021, 15, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.P.; Lin, S.J.; Wan, W.B.; Zuo, H.L.; Yao, F.F.; Ruan, H.B.; Xu, J.; Song, W.; Zhou, Y.C.; Wen, S.Y.; et al. Chlorogenic Acid Prevents Osteoporosis by Shp2/PI3K/Akt Pathway in Ovariectomized Rats. PLoS ONE 2016, 11, e0166751. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. Int. J. Mol. Sci. 2020, 21, 6448. [Google Scholar] [CrossRef]
- Jang, S.A.; Hwang, Y.H.; Kim, T.; Yang, H.; Lee, J.; Seo, Y.H.; Park, J.I.; Ha, H. Water Extract of Agastache rugosa Prevents Ovariectomy-Induced Bone Loss by Inhibiting Osteoclastogenesis. Foods 2020, 9, 1181. [Google Scholar] [CrossRef]
- Goto, T.; Hagiwara, K.; Shirai, N.; Yoshida, K.; Hagiwara, H. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology 2015, 67, 357–365. [Google Scholar] [CrossRef]
- Kim, T.H.; Jung, J.W.; Ha, B.G.; Hong, J.M.; Park, E.K.; Kim, H.J.; Kim, S.Y. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy induced bone loss. J. Nutr. Biochem. 2011, 22, 8–15. [Google Scholar] [CrossRef]
- Nash, L.A.; Sullivan, P.J.; Peters, S.J.; Ward, W.E. Rooibos flavonoids, orientin and luteolin, stimulate mineralization in human osteoblasts through the Wnt pathway. Mol. Nutr. Food Res. 2015, 59, 443–453. [Google Scholar] [CrossRef]
- Wattel, A.; Kamel, S.; Mentaverri, R.; Lorget, F.; Prouillet, C.; Petit, J.P.; Brazier, M. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem. Pharmacol. 2003, 65, 35–42. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Manzano-Moreno, F.J.; De Luna-Bertos, E.; Rivas, A.; Ramos-Torrecillas, J.; Ruiz, C.; García-Martínez, O. Effect of olive oil phenolic compounds on osteoblast differentiation. Eur. J. Clin. Investig. 2018, 48, e12904. [Google Scholar] [CrossRef]
- Xu, B.; Wang, X.; Wu, C.; Zhu, L.; Chen, O.; Wang, X. Flavonoid compound icariin enhances BMP-2 induced differentiation and signalling by targeting to connective tissue growth factor (CTGF) in SAMP6 osteoblasts. PLoS ONE 2018, 13, e0200367. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Lin, M.; Li, X.; Li, C.; Gao, B.; Gan, H.; Yang, Z.; Lin, X.; Liao, L.; Yang, M. Icariin promotes bone formation via the BMP-2/Smad4 signal transduction pathway in the hFOB 1.19 human osteoblastic cell line. Int. J. Mol. Med. 2012, 30, 889–895. [Google Scholar] [CrossRef]
- Wu, J.-B.; Fong, Y.-C.; Tsai, H.-Y.; Chen, Y.-F.; Tsuzuki, M.; Tang, C.-H. Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. Eur. J. Pharmacol. 2008, 588, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Gaoli, X.; Yi, L.; Lili, W.; Qiutao, S.; Guang, H.; Zhiyuan, G. Effect of naringin combined with bone morphogenetic protein-2 on the proliferation and differentiation of MC3T3-E1 cells. Hua Xi Kou Qiang Yi Xue Za Zhi Huaxi Kouqiang Yixue Zazhi West China. J. Stomatol. 2017, 35, 275–280. [Google Scholar]
- Hofbauer, L.C.; Kuhne, C.A.; Viereck, V. The OPG/RANKL/RANK system in metabolic bone diseases. J. Musculoskelet. Neuronal Interact. 2004, 4, 268–275. [Google Scholar]
- Sugimoto, E.; Yamaguchi, M. Stimulatory effect of Daidzein in osteoblastic MC3T3-E1 cells. Biochem. Pharmacol. 2000, 59, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, E.F.; Colvard, D.S.; Berg, N.J.; Graham, M.L.; Mann, K.G.; Spelsberg, T.C.; Riggs, B.L. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1998, 241, 84–86. [Google Scholar] [CrossRef]
- Shin, C.S.; Cho, H.Y. Bone remodeling and mineralization. J. Korean Soc. Endocrinol. 2005, 20, 543–555. [Google Scholar] [CrossRef]
- Bonjour, J.P. Calcium and phosphate: A duet of ions playing for bone health. J. Am Coll. Nutr. 2011, 30, 438S–448S. [Google Scholar] [CrossRef]
- Mo, X.M.; Zeng, Y.; Hong, J. Biochemical characteristics of an ovariectomized female rat model of osteoporosis. J. Tradit. Complement Med. 1999, 526–528. [Google Scholar]
- Yun, J.H.; Hwang, E.S.; Kim, G.H. Effects of Chrysanthemum indicum L. extract on the growth and differentiation of osteoblastic MC3T3-E1 cells. J. Korean Soc. Food Sci. Nutr. 2011, 40, 1384–1390. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, J.W.; Kim, H.J.; Lee, I.S. Effects of Solidago virga-aurea var. gigantea Miq. root extracts on the activity and differentiation of MC3T3- E1 osteoblastic cell. J. Korean Soc. Food Sci. Nutr. 2005, 34, 929–936. [Google Scholar]
- Akiko, M.; Tomoyo, K.Y.; Masato, H. Osteocalcin and its endocrine functions. Biochem. Pharmacol. 2017, 132, 1–8. [Google Scholar]
- Manolagas, S.C. Osteocalcin promotes bone mineralization but is not a hormone. PLoS Genet. 2020, 16, e1008714. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Signaling networks in RUNX2-dependent bone development. J. Cell. Biochem. 2011, 112, 750–755. [Google Scholar] [CrossRef]
- Bronckers, A.L.; Sasaguri, K.; Engelse, M.A. Transcription and immunolocalization of Runx2/Cbfa1/Pebp2alphaA in developing rodent and human craniofacial tissues: Further evidence suggesting osteoclasts phagocytose osteocytes. Microsc. Res. Tech. 2003, 61, 540–548. [Google Scholar] [CrossRef]
- Lorenzo, J.A.; Teitelbaum, S.; Faccio, R.; Takayanagi, H.; Choi, Y.; Horowitz, M.; Takayanagi, H. (Eds.) Chapter 6: The Signaling Pathways Regulating Osteoclast Differentiation; Academic Press: London, UK, 2011. [Google Scholar]
- Bruderer, M.; Richards, R.G.; Alini, M.; Stoddart, M.J. Role and regulation of RUNX2 in osteogenesis. Eur. Cell Mater. 2014, 28, 269–286. [Google Scholar] [CrossRef]
- Franceschi, R.T.; Xiao, G.; Zh Jiang, D.; Gopalakrishnan, R.; Yang Sh, Y.; Reith, E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect. Tissue Res. 2003, 44, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E. Function of runx2 and osterix in osteogenesis and teeth. J. Korean Assoc. Oral Maxillofac. Surg. 2007, 33, 381–385. [Google Scholar]
- Wu, C.F.; Lin, Y.S.; Lee, S.C.; Chen, C.Y.; Wu, M.C.; Lin, J.S. Effects of Davallia formosana Hayata Water and Alcohol Extracts on Osteoblastic MC3T3-E1 Cells. Phytother. Res. 2017, 31, 1349–1356. [Google Scholar] [CrossRef]
- Hagiwara, K.; Goto, T.; Araki, M.; Miyazaki, H.; Hagiwara, H. Olive polyphenol hydroxytyrosol prevents bone loss. Eur. J. Pharmacol. 2011, 662, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Li, Y.; Quarles, L.D.; Song, T.; Pan, W.; Zhou, H.; Xiao, Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 2007, 14, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Satué, M.; del Mar Arriero, M.; Monjo, M.; Ramis, J.M. Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem. Pharmacol. 2013, 86, 1476–1486. [Google Scholar] [CrossRef]
- Srivastava, S.; Bankar, R.; Roy, P. Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine 2013, 20, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.H.; Gao, Q.G.; Zhang, Y.; Wong, K.C.; Dai, Y.; Yao, X.S.; Wong, M.S. Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ER signaling pathway. J. Steroid Biochem. Mol. Biol. 2014, 144 Pt B, 382–391. [Google Scholar] [CrossRef]
- Kim, M.B.; Song, Y.; Hwang, J.K. Kirenol stimulates osteoblast differentiation through activation of the BMP and Wnt/β-catenin signaling pathways in MC3T3-E1 cells. Fitoterapia 2014, 98, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.H.; Fung, C.Y.; Mok, S.K.; Wong, K.C.; Ho, M.X.; Wang, X.L.; Yao, X.S.; Wong, M.S. Flavonoids from Herba epimedii selectively activate estrogen receptor alpha (ERα) and stimulate ER-dependent osteoblastic functions in UMR-106 cells. J. Steroid Biochem. Mol. Biol. 2014, 143, 141–151. [Google Scholar] [CrossRef]
- Hu, B.; Yu, B.; Tang, D.; Li, S.; Wu, Y. Daidzein promotes osteoblast proliferation and differentiation in OCT1 cells through stimulating the activation of BMP-2/Smads pathway. Genet. Mol. Res. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- Isaac, J.; Erthal, J.; Gordon, J.; Gordon, J.; Duverger, O.; Sun, H.-W.; Lichtler, A.C.; Stein, G.S.; Lian, J.B.; Morasso, M.I. DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo. Cell Death Differ. 2014, 21, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- Khrimian, L.; Obri, A.; Karsenty, G. Modulation of cognition and anxiety-like behavior by bone remodeling. Mol. Metab. 2017, 6, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bai, Y.; He, Y.; Zhao, Y.; Chen, J.; Ma, L.; Pan, Y.; Hinten, M.; Zhang, J.; Karnes, R.J.; et al. PTEN Loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer. Clin Cancer Res. 2018, 24, 834–846. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequence | |
---|---|---|
Osterix | Forward | 5′-AGCGACCACTTGAGCAAACAT-3′ |
Reverse | 5′-GCGGCTGATTGGCTTCTTCT-3′ | |
RUNX2 | Forward | 5′-CGGCCCTCCCTGAACTCT-3′ |
Reverse | 5′-TGCCTGCCTRGGGATCTGTA-3′ |
Sample 1 | Scopoletin | Umbelliferone | Imperatorin | Phellopterin | Total |
---|---|---|---|---|---|
GLSE | 53.0 ± 0.2 d | 1.6 ± 0.0 d | 2.0 ± 0.0 a | N.D. 2 | 56.6 ± 0.2 d |
GLFE | 17.7 ± 0.0 b | 0.8 ± 0.0 a | 8.9 ± 0.1 b | 1.1 ± 0.4 b | 28.5 ± 0.5 a |
GLAE | 24.5 ± 1.1 c | 1.0 ± 0.0 b | 15.1 ± 0.6 c | 0.6 ± 0.1 a | 41.1 ± 1.8 b |
GLRE | 8.5 ± 0.0 a | 1.4 ± 0.1 c | 31.9 ± 0.1 d | 2.3 ± 0.0 c | 44.2 ± 0.1 c |
Sample | Concentration (μg/mL) | mRNA Expression Rate (Fold) | |
---|---|---|---|
Osterix 1 | RUNX2 | ||
P.C. | AA (50 μg/mL) + BGP (100 mM) | 1.820 ± 0.072 c | 2.531 ± 0.050 a |
Control | - | 1.000 ± 0.000 ki | 1.000 ± 0.000 k |
GLSE | 0.5 | 1.510 ± 0.046 ef | 2.327 ± 0.023 ab |
1 | 1.530 ± 0.041 de | 2.220 ± 0.090 b | |
2 | 1.620 ± 0.033 d | 2.190 ± 0.250 b | |
5 | 1.820 ± 0.053 c | 1.940 ± 0.150 c | |
10 | 1.520 ± 0.021 ef | 1.533 ± 0.029 fg | |
20 | 1.430 ± 0.003 f | 1.410 ± 0.017 gh | |
GLFE | 0.5 | 0.990 ± 0.020 ki | 1.920 ± 0.080 cd |
1 | 0.970 ± 0.070 lm | 1.830 ± 0.070 cde | |
2 | 0.960 ± 0.010 lm | 1.800 ± 0.090 cde | |
5 | 0.937 ± 0.055 lm | 1.700 ± 0.120 def | |
10 | 0.900 ± 0.070 lm | 1.310 ± 0.040 ghij | |
20 | 0.880 ± 0.050 m | 1.110 ± 0.050 jk | |
GLAE | 0.5 | 1.280 ± 0.020 gh | 1.280 ± 1.113 jk |
1 | 1.250 ± 0.070 gh | 1.250 ± 1.517 fg | |
2 | 1.240 ± 0.080 gh | 1.240 ± 1.660 ef | |
5 | 1.200 ± 0.080 hi | 1.200 ± 1.353 ghi | |
10 | 1.130 ± 0.060 ij | 1.130 ± 1.190 hijk | |
20 | 1.080 ± 0.020 jk | 1.080 ± 1.073 jk | |
GLRE | 0.5 | 1.080 ± 0.050 jk | 1.150 ± 0.030 jk |
1 | 1.320 ± 0.030 g | 1.060 ± 0.040 k | |
2 | 1.430 ± 0.080 f | 1.230 ± 0.120 hijk | |
5 | 1.850 ± 0.020 c | 1.190 ± 0.150 hijk | |
10 | 2.020 ± 0.120 b | 1.080 ± 0.070 jk | |
20 | 2.220 ± 0.050 a | 1.010 ± 0.030 k |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.J.; Ghimire, B.K.; Choi, S.K.; Yu, C.Y.; Lee, J.G. Sustainable Bioactive Composite of Glehnia littoralis Extracts for Osteoblast Differentiation and Bone Formation. Processes 2023, 11, 1491. https://doi.org/10.3390/pr11051491
Kim CJ, Ghimire BK, Choi SK, Yu CY, Lee JG. Sustainable Bioactive Composite of Glehnia littoralis Extracts for Osteoblast Differentiation and Bone Formation. Processes. 2023; 11(5):1491. https://doi.org/10.3390/pr11051491
Chicago/Turabian StyleKim, Chul Joong, Bimal Kumar Ghimire, Seon Kang Choi, Chang Yeon Yu, and Jae Geun Lee. 2023. "Sustainable Bioactive Composite of Glehnia littoralis Extracts for Osteoblast Differentiation and Bone Formation" Processes 11, no. 5: 1491. https://doi.org/10.3390/pr11051491
APA StyleKim, C. J., Ghimire, B. K., Choi, S. K., Yu, C. Y., & Lee, J. G. (2023). Sustainable Bioactive Composite of Glehnia littoralis Extracts for Osteoblast Differentiation and Bone Formation. Processes, 11(5), 1491. https://doi.org/10.3390/pr11051491