Using Direct Solar Energy Conversion in Distillation via Evacuated Solar Tube with and without Nanomaterials
Abstract
:1. Introduction
2. Methodology
2.1. Fabrication of Test-Rig
2.1.1. Setup Components
2.1.2. The Absorber Pipe (Evacuated Pipe) of PTSC
2.1.3. Sun Tractor System
2.1.4. Condensation Unit
2.1.5. Separation Unit
2.2. Used Measurable Instruments
3. Results and Discussions
3.1. Effect of Solar Radiation
3.2. Effect of Water Flow Rate
3.3. Effectiveness of the Distillate Process and Thermal Efficiency of the System
3.4. Effect of Using Graphite Nanoparticles
3.5. Distilled Water Cost Analysis
3.6. Comparison between the Findings of This Work and Other Related Works
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullah, A.S.; Essa, F.A.; Omara, Z.M. Effect of different wick materials on solar still performance—A review. Int. J. Ambient. Energy 2019, 42, 1055–1082. [Google Scholar] [CrossRef]
- Panchal, H.; Sadasivuni, K.K.; Essa, F.A.; Shanmugan, S.; Sathyamurthy, R. Enhancement of the yield of solar still with the use of solar pond: A review. Heat Transf. 2021, 50, 1392–1409. [Google Scholar] [CrossRef]
- Essa, F.A.; Elaziz, M.A.; Elsheikh, A.H. Prediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimization. Process Saf. Environ. Prot. 2020, 144, 322–329. [Google Scholar] [CrossRef]
- Elaziz, A.; Essa, F.; Elsheikh, A.H. Utilization of ensemble random vector functional link network for freshwater prediction of active solar stills with nanoparticles. Sustain. Energy Technol. Assess. 2021, 47, 101405. [Google Scholar] [CrossRef]
- Essa, F.A.; Elaziz, M.A.; Elsheikh, A.H. An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Appl. Therm. Eng. 2020, 170, 115020. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Omara, Z.; Bek, M.; Essa, F. An augmented productivity of solar distillers integrated to HDH unit: Experimental implementation. Appl. Therm. Eng. 2020, 167, 114723. [Google Scholar] [CrossRef]
- Essa, F.A.; Abdullah, A.; Omara, Z.; Kabeel, A.; El-Maghlany, W.M. On the different packing materials of humidification–dehumidification thermal desalination techniques—A review. J. Clean. Prod. 2020, 277, 123468. [Google Scholar] [CrossRef]
- Essa, F.A.; Elsheikh, A.H.; Sathyamurthy, R.; Manokar, A.M.; Kandeal, A.; Shanmugan, S.; Kabeel, A.; Sharshir, S.W.; Panchal, H.; Younes, M. Extracting water content from the ambient air in a double-slope half-cylindrical basin solar still using silica gel under Egyptian conditions. Sustain. Energy Technol. Assess. 2020, 39, 100712. [Google Scholar] [CrossRef]
- Essa, F.; Omara, Z.; Abdullah, A.; Kabeel, A.; Abdelaziz, G. Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid. Case Stud. Therm. Eng. 2021, 27, 101222. [Google Scholar] [CrossRef]
- Shanmugan, S.; Essa, F.; Gorjian, S.; Kabeel, A.; Sathyamurthy, R.; Manokar, A.M. Experimental study on single slope single basin solar still using TiO2 nano layer for natural clean water invention. J. Energy Storage 2020, 30, 101522. [Google Scholar] [CrossRef]
- El-Sebaey, S.; Ellman, A.; Hegazy, A.; Ghonim, T. Experimental Analysis and CFD Modeling for Conventional Basin-Type Solar Still. Energies 2020, 13, 5734. [Google Scholar] [CrossRef]
- El-Sebaey, M.S.; Ellman, A.; Hegazy, A.; Panchal, H. Experimental study and mathematical model development for the effect of water depth on water production of a modified basin solar still. Case Stud. Therm. Eng. 2022, 33, 101925. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Essa, F.; Ben Bacha, H.; Omara, Z. Improving the trays solar still performance using reflectors and phase change material with nanoparticles. J. Energy Storage 2020, 31, 101744. [Google Scholar] [CrossRef]
- Alawee, W.H.; Essa, F.; Mohammed, S.A.; Dhahad, H.A.; Abdullah, A.; Omara, Z.; Gamiel, Y. Improving the performance of pyramid solar distiller using dangled cords of various wick materials: Novel working mechanism of wick. Case Stud. Therm. Eng. 2021, 28, 101550. [Google Scholar] [CrossRef]
- Elsheikh, A.; Sharshir, S.W.; Mostafa, M.E.; Essa, F.A.; Ali, M.K.A. Applications of nanofluids in solar energy: A review of recent advances. Renew. Sustain. Energy Rev. 2018, 82, 3483–3502. [Google Scholar] [CrossRef]
- Omara, Z.M.; Abdullah, A.; Kabeel, A.; Essa, F. The cooling techniques of the solar stills’ glass covers—A review. Renew. Sustain. Energy Rev. 2017, 78, 176–193. [Google Scholar] [CrossRef]
- Essa, F.A.; Omara, Z.M.; Abdullah, A.S.; Shanmugan, S.; Panchal, H.; Kabeel, A.E.; Sathyamurthy, R.; Alawee, W.H.; Manokar, A.M.; Elsheikh, A.H. Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: Experimental implementation. J. Energy Storage 2020, 32, 102008. [Google Scholar] [CrossRef]
- Essa, F.A.; Omara, Z.; Abdullah, A.; Shanmugan, S.; Panchal, H.; Kabeel, A.E.; Sathyamurthy, R.; Athikesavan, M.M.; Elsheikh, A.; Abdelgaied, M.; et al. Augmenting the productivity of stepped distiller by corrugated and curved liners, CuO/paraffin wax, wick, and vapor suctioning. Environ. Sci. Pollut. Res. 2021, 28, 56955–56965. [Google Scholar] [CrossRef]
- Shanmugan, S.; Essa, F.; Nagaraj, J.; Itnal, S. Performance of Stepped Bar Plate-Coated Nanolayer of a Box Solar Cooker Control Based on Adaptive Tree Traversal Energy and OSELM, in Machine Vision Inspection Systems; Scrivener Publishing LLC.: Beverly, MA, USA, 2021; Volume 2, pp. 193–217. [Google Scholar]
- Essa, F.A.; Abdullah, A.S.; Omara, Z.M. Rotating discs solar still: New mechanism of desalination. J. Clean. Prod. 2020, 275, 123200. [Google Scholar] [CrossRef]
- Essa, F.A.; Abou-Taleb, F.S.; Diab, M.R. Experimental investigation of vertical solar still with rotating discs. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–21. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Sathyamurthy, R.; Manokar, A.M.; Sharshir, S.W.; Essa, F.; Elshiekh, A.H. Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM’s) for fresh water production. J. Energy Storage 2020, 28, 101204. [Google Scholar] [CrossRef]
- Elashmawy, M. Improving the performance of a parabolic concentrator solar tracking-tubular solar still (PCST-TSS) using gravel as a sensible heat storage material. Desalination 2020, 473, 114182. [Google Scholar] [CrossRef]
- Essa, F.A.; Abdullah, A.S.; Omara, Z.M. Improving the performance of tubular solar still using rotating drum—Experimental and theoretical investigation. Process Saf. Environ. Prot. 2021, 148, 579–589. [Google Scholar] [CrossRef]
- Abdullah, A.; Essa, F.; Omara, Z.; Rashid, Y.; Hadj-Taieb, L.; Abdelaziz, G.; Kabeel, A. Rotating-drum solar still with enhanced evaporation and condensation techniques: Comprehensive study. Energy Convers. Manag. 2019, 199, 112024. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Omara, Z.; Alarjani, A.; Essa, F. Experimental investigation of a new design of drum solar still with reflectors under different conditions. Case Stud. Therm. Eng. 2021, 24, 100850. [Google Scholar] [CrossRef]
- Essa, F.A.; Abdullah, A.; Alawee, W.H.; Alarjani, A.; Alqsair, U.F.; Shanmugan, S.; Omara, Z.; Younes, M. Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles’ coating, parabolic solar concentrator, and phase change material. Case Stud. Therm. Eng. 2022, 29, 101705. [Google Scholar] [CrossRef]
- Pounraj, P.; Winston, D.P.; Kabeel, A.; Kumar, B.P.; Manokar, A.M.; Sathyamurthy, R.; Christabel, S.C. Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance. Energy Convers. Manag. 2018, 168, 371–381. [Google Scholar] [CrossRef]
- Hedayati-Mehdiabadi, E.; Sarhaddi, F.; Sobhnamayan, F. Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector. Renew. Energy 2020, 145, 2409–2425. [Google Scholar] [CrossRef]
- Omara, Z.; Hamed, M.H.; Kabeel, A. Performance of finned and corrugated absorbers solar stills under Egyptian conditions. Desalination 2011, 277, 281–287. [Google Scholar] [CrossRef]
- Abdullah, A.; Younes, M.; Omara, Z.; Essa, F. New design of trays solar still with enhanced evaporation methods—Comprehensive study. Sol. Energy 2020, 203, 164–174. [Google Scholar] [CrossRef]
- Essa, F.A.; Abdullah, A.; Omara, Z.; Kabeel, A.; Gamiel, Y. Experimental study on the performance of trays solar still with cracks and reflectors. Appl. Therm. Eng. 2021, 188, 116652. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Omara, Z.; Essa, F.; Younes, M.; Shanmugan, S.; Abdelgaied, M.; Amro, M.; Kabeel, A.; Farouk, W. Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters. J. Energy Storage 2021, 40, 102782. [Google Scholar] [CrossRef]
- Kumar, P.N.; Manokar, A.M.; Madhu, B.; Kabeel, A.; Arunkumar, T.; Panchal, H.; Sathyamurthy, R. Experimental investigation on the effect of water mass in triangular pyramid solar still integrated to inclined solar still. Groundw. Sustain. Dev. 2017, 5, 229–234. [Google Scholar] [CrossRef]
- Omara, Z.; Kabeel, A.; Essa, F. Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers. Manag. 2015, 103, 965–972. [Google Scholar] [CrossRef]
- Abdullah, A.; Alarjani, A.; Abou Al-Sood, M.M.; Omara, Z.M.; Kabeel, A.E.; Essa, F.A. Rotating-wick solar still with mended evaporation technics: Experimental approach. Alex. Eng. J. 2019, 58, 1449–1459. [Google Scholar] [CrossRef]
- Abdullah, A.; Essa, F.; Omara, Z.; Bek, M. Performance evaluation of a humidification–dehumidification unit integrated with wick solar stills under different operating conditions. Desalination 2018, 441, 52–61. [Google Scholar] [CrossRef]
- Omara, Z.M.; Kabeel, A.; Abdullah, A.; Essa, F. Experimental investigation of corrugated absorber solar still with wick and reflectors. Desalination 2016, 381, 111–116. [Google Scholar] [CrossRef]
- Younes, M.; Abdullah, A.; Essa, F.; Omara, Z.; Amro, M. Enhancing the wick solar still performance using half barrel and corrugated absorbers. Process Saf. Environ. Prot. 2021, 150, 440–452. [Google Scholar] [CrossRef]
- Modi, K.V.; Nayi, K.H.; Sharma, S.S. Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector. Groundw. Sustain. Dev. 2020, 10, 100299. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Kabeel, A.; Abdelgaied, M.; Essa, F.; Omara, Z. Enhancement of hemispherical solar still productivity using iron, zinc and copper trays. Sol. Energy 2021, 216, 295–302. [Google Scholar] [CrossRef]
- Abderachid, T.; Abdenacer, K. Effect of orientation on the performance of a symmetric solar still with a double effect solar still (comparison study). Desalination 2013, 329, 68–77. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Murugavel, K.K. Theoretical and experimental investigation on double basin double slope solar still. Desalination 2013, 319, 25–32. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Elango, T.; Murugavel, K.K. Comparative study of double basin and single basin solar stills. Desalination 2013, 309, 27–31. [Google Scholar] [CrossRef]
- El-Sebaii, A. Thermal performance of a triple-basin solar still. Desalination 2005, 174, 23–37. [Google Scholar] [CrossRef]
- Suneja, S.; Tiwari, G.N. Effect of water depth on the performance of an inverted absorber double basin solar still. Energy Convers. Manag. 1999, 40, 1885–1897. [Google Scholar] [CrossRef]
- Essa, F.A.; Alawee, W.H.; Mohammed, S.A.; Dhahad, H.A.; Abdullah, A.; Omara, Z. Experimental investigation of convex tubular solar still performance using wick and nanocomposites. Case Stud. Therm. Eng. 2021, 27, 101368. [Google Scholar] [CrossRef]
- Omara, Z.M.; Alawee, W.H.; Mohammed, S.A.; Dhahad, H.A.; Abdullah, A.; Essa, F.A. Experimental study on the performance of pyramid solar still with novel convex and dish absorbers and wick materials. J. Clean. Prod. 2021, 373, 133835. [Google Scholar] [CrossRef]
- Alawee, W.H.; Mohammed, S.A.; Dhahad, H.A.; Abdullah, A.; Omara, Z.; Essa, F. Improving the performance of pyramid solar still using rotating four cylinders and three electric heaters. Process Saf. Environ. Prot. 2021, 148, 950–958. [Google Scholar] [CrossRef]
- Essa, F.; Alawee, W.H.; Mohammed, S.A.; Abdullah, A.; Omara, Z. Enhancement of pyramid solar distiller performance using reflectors, cooling cycle, and dangled cords of wicks. Desalination 2021, 506, 115019. [Google Scholar] [CrossRef]
- Al-Madhhachi, H.; Smaisim, G.F. Experimental and numerical investigations with environmental impacts of affordable square pyramid solar still. Sol. Energy 2021, 216, 303–314. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A. Numerical investigation of modified solar still using nanofluids and external condenser. J. Taiwan Inst. Chem. Eng. 2017, 75, 77–86. [Google Scholar] [CrossRef]
- Khechekhouche, A.; Manokar, A.M.; Sathyamurthy, R.; Essa, F.A.; Sadeghzadeh, M.; Issakhov, A. Energy, Exergy Analysis, and Optimizations of Collector Cover Thickness of a Solar Still in El Oued Climate, Algeria. Int. J. Photoenergy 2021, 2021, 6668325. [Google Scholar] [CrossRef]
- Thamizharasu, P.; Shanmugan, S.; Gorjian, S.; Pruncu, C.I.; Essa, F.A.; Panchal, H.; Harish, M. Improvement of Thermal Performance of a Solar Box Type Cooker Using SiO2/TiO2 Nanolayer. Silicon 2020, 14, 557–565. [Google Scholar] [CrossRef]
- Arani, R.P.; Sathyamurthy, R.; Chamkha, A.; Kabeel, A.E.; Deverajan, M.; Kamalakannan, K.; Balasubramanian, M.; Manokar, A.M.; Essa, F.; Saravanan, A. Effect of fins and silicon dioxide nanoparticle black paint on the absorber plate for augmenting yield from tubular solar still. Environ. Sci. Pollut. Res. 2021, 28, 35102–35112. [Google Scholar] [CrossRef] [PubMed]
- Bhavani, S.; Shanmugan, S.; Chithambaram, V.; Essa, F.A.E.; Kabeel, A.-E.; Selvaraju, P. Simulation study on thermal performance of a Solar box Cooker using nanocomposite for natural Food invention. Environ. Sci. Pollut. Res. 2021, 28, 50649–50667. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A.H.; Yu, J.; Sathyamurthy, R.; Tawfik, M.; Shanmugan, S.; Essa, F. Improving the tribological properties of AISI M50 steel using Sns/Zno solid lubricants. J. Alloy Compd. 2020, 821, 153494. [Google Scholar] [CrossRef]
- Essa, F.; Yu, J.; Elsheikh, A.H.; Tawfik, M.M. A new M50 matrix composite sintered with a hybrid Sns/Zno nanoscale solid lubricants: An experimental investigation. Mater. Res. Express 2019, 6, 116523. [Google Scholar] [CrossRef]
- Essa, F.; Zhang, Q.; Huang, X.; Ibrahim, A.M.M.; Ali, M.K.A.; Abdelkareem, M.A.A.; Elagouz, A. Improved Friction and Wear of M50 Steel Composites Incorporated with ZnO as a Solid Lubricant with Different Concentrations Under Different Loads. J. Mater. Eng. Perform. 2017, 26, 4855–4866. [Google Scholar] [CrossRef]
- Essa, F.; Zhang, Q.; Huang, X.; Ali, M.K.A.; Elagouz, A.; Abdelkareem, M.A.A. Effects of ZnO and MoS2 solid lubricants on mechanical and tribological properties of M50-steel-based composites at high temperatures: Experimental and simulation study. Tribol. Lett. 2017, 65, 97. [Google Scholar] [CrossRef]
- Essa, F.; Zhang, Q.; Huang, X. Investigation of the effects of mixtures of WS2 and ZnO solid lubricants on the sliding friction and wear of M50 steel against silicon nitride at elevated temperatures. Wear 2017, 374, 128–141. [Google Scholar] [CrossRef]
- Yadav, Y.P. Performance analysis of a solar still coupled to a heat exchanger. Desalination 1991, 82, 243. [Google Scholar] [CrossRef]
- Valsaraj, P. An experimental study on solar distillation in a single slope basin still by surface heating the water mass. Renew. Energy 2002, 25, 607–612. [Google Scholar] [CrossRef]
- Modi, K.V.; Shukla, D.L. Regeneration of liquid desiccant for solar air-conditioning and desalination using hybrid solar still. Energy Convers. Manag. 2018, 171, 1598–1616. [Google Scholar] [CrossRef]
- Abdallah, S.; Abu-Khader, M.M.; Badran, O. Effect of various absorbing materials on the thermal performance of solar stills. Desalination 2009, 242, 128–137. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Omara, Z.; Essa, F.; Alarjani, A.; Mansir, I.B.; Amro, M. Enhancing the solar still performance using reflectors and sliding-wick belt. Sol. Energy 2021, 214, 268–279. [Google Scholar] [CrossRef]
- Omara, Z.; Abdullah, A.; Essa, F.; Younes, M. Performance evaluation of a vertical rotating wick solar still. Process Saf. Environ. Prot. 2021, 148, 796–804. [Google Scholar] [CrossRef]
- Diab, M.R.; Essa, F.A.; Abou-Taleb, F.S.; Omara, Z.M. Solar still with rotating parts: A review. Environ. Sci. Pollut. Res. 2021, 28, 54260–54281. [Google Scholar] [CrossRef]
- Panchal, H.; Nurdiyanto, H.; Sadasivuni, K.K.; Hishan, S.S.; Essa, F.; Khalid, M.; Dharaskar, S.; Shanmugan, S. Experimental investigation on the yield of solar still using manganese oxide nanoparticles coated absorber. Case Stud. Therm. Eng. 2021, 25, 100905. [Google Scholar] [CrossRef]
- Kabeel, A.; Omara, Z.; Essa, F.; Abdullah, A.; Arunkumar, T.; Sathyamurthy, R. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alex. Eng. J. 2017, 56, 433–438. [Google Scholar] [CrossRef]
- Vigneswaran, V.S.; Kumaresan, G.; Dinakar, B.; Kamal, K.K.; Velraj, R. Augmenting the productivity of solar still using multiple PCMs as heat energy storage. J. Energy Storage 2019, 26, 101019. [Google Scholar] [CrossRef]
- Abdelgaied, M.; Zakaria, Y.; Kabeel, A.; Essa, F.A. Improving the tubular solar still performance using square and circular hollow fins with phase change materials. J. Energy Storage 2021, 38, 102564. [Google Scholar] [CrossRef]
- Thalib, M.M.; Manokar, A.M.; Essa, F.A.; Vasimalai, N.; Sathyamurthy, R.; Marquez, F.P.G. Comparative study of tubular solar stills with phase change material and nano-enhanced phase change material. Energies 2020, 13, 3989. [Google Scholar] [CrossRef]
- Dhivagar, R.; El-Sapa, S.; Alrubaie, A.J.; Al-Khaykan, A.; Chamkha, A.J.; Panchal, H.; El-Sebaey, M.S.; Sharma, K. A case study on thermal performance analysis of a solar still basin employing ceramic magnets. Case Stud. Therm. Eng. 2022, 39, 102402. [Google Scholar] [CrossRef]
- Hassan, H. Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity. Renew. Energy 2020, 148, 437–450. [Google Scholar] [CrossRef]
- Abdallah, S.; Badran, O. Sun tracking system for productivity enhancement of solar still. Desalination 2008, 220, 669–676. [Google Scholar] [CrossRef]
- Al-Hinai, H.; Al-Nassri, M.; Jubran, B. Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Convers. Manag. 2002, 43, 1639–1650. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Amro, M.; Younes, M.; Omara, Z.; Kabeel, A.; Essa, F. Experimental investigation of single pass solar air heater with reflectors and turbulators. Alex. Eng. J. 2020, 59, 579–587. [Google Scholar] [CrossRef]
- Gnanaraj, S.J.P.; Ramachandran, S.; Christopher, D.S. Enhancing the design to optimize the performance of double basin solar still. Desalination 2017, 411, 112–123. [Google Scholar] [CrossRef]
- Aboelmaaref, M.M.; Zayed, M.E.; Zhao, J.; Li, W.; Askalany, A.A.; Ahmed, M.S.; Ali, E.S. Hybrid solar desalination systems driven by parabolic trough and parabolic dish CSP technologies: Technology categorization, thermodynamic performance and economical assessment. Energy Convers. Manag. 2020, 220, 113103. [Google Scholar] [CrossRef]
- Makkeh, S.A.; Ahmadi, A.; Esmaeilion, F.; Aliehyaei, M. Energy, exergy and exergoeconomic optimization of a cogeneration system integrated with parabolic trough collector-wind turbine with desalination. J. Clean. Prod. 2020, 273, 123122. [Google Scholar] [CrossRef]
- Mosleh, H.J.; Mamouri, S.J.; Shafii, M.; Sima, A.H. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Convers. Manag. 2015, 99, 141–150. [Google Scholar] [CrossRef]
- Ziyaei, M.; Jalili, M.; Chitsaz, A.; Nazari, M.A. Dynamic simulation and life cycle cost analysis of a MSF desalination system driven by solar parabolic trough collectors using TRNSYS software: A comparative study in different world regions. Energy Convers. Manag. 2021, 243, 114412. [Google Scholar] [CrossRef]
- Narayanan, S.R.; Vijay, S. Desalination of water using parabolic trough collector. Mater. Today Proc. 2020, 21, 375–379. [Google Scholar] [CrossRef]
- Alsehli, M.; Essa, F.A.; Omara, Z.; Othman, M.M.; Elsheikh, A.H.; Alwetaishi, M.; Alghamdi, S.; Saleh, B. Improving the performance of a hybrid solar desalination system under various operating conditions. Process Saf. Environ. Prot. 2022, 162, 706–720. [Google Scholar] [CrossRef]
- Bait, O. Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still. J. Clean. Prod. 2019, 212, 630–646. [Google Scholar] [CrossRef]
- Manokar, M.; Taamneh, Y.; Kabeel, A.E.; Winston, D.P.; Vijayabalan, P.; Balaji, D.; Sathyamurthy, R.; Sundar, S.P.; Mageshbabu, D. Effect of water depth and insulation on the productivity of an acrylic pyramid solar still—An experimental study. Groundw. Sustain. Dev. 2020, 10, 100319. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Rim angle | 90° | |
Aperture of parabola (width) | 1 m | |
Focal height | 250 mm | |
Rim radius | 500 mm | |
Minimum diameter of receiver | 4.65 mm | |
Concentration ratio | 6.77 |
Property | Value |
---|---|
Density | 1.8 g/cm³ |
Thermal conductivity | 195 W/m °C |
Thermal expansion coefficient | 3.2 μm/mK |
Porosity | 13% |
Instrument | Dimension | Unit | Resolution | Accuracy | Range | Error |
---|---|---|---|---|---|---|
Solarimeter | Solar intensity | W/m2 | 0.1 | ±1 | 0–5000 | 1.5% |
Waterproof temperature sensors of ds18b20 | Temperature | °C | 0.1 | ±0.5 | 55–100 | 1% |
DHT11 temperature sensor | Temperature | °C | 0.1 | ±1 | 0–50 | 1% |
K-type thermocouple | Temperature | °C | 0.1 | ±0.5 | 0–100 | 1.2% |
Wind speed measuring device GM8908 | Wind velocity | m/s | 0.01 | ±0.1 | 0.4–30 | 1.2% |
Calibrated flasks | Distillate | L | 0.005 | ±0.2 | 0–2.5 | 1.1% |
Module | Average Daily Solar Radiation | Flow Rate of Water | Maximum Outlet Water Temperature | Total Quantity of Saline Water | Distillate Productivity |
---|---|---|---|---|---|
1 | 720 W/m² | 6 L/h | 92 °C | 60 L/daytime | 33 L/daytime |
2 | 700 W/m² | 7.5 L/h | 87 °C | 75 L/daytime | 44.7 L/daytime |
3 | 690 W/m² | 10 L/h | 85 °C | 100 L/daytime | 58 L/daytime |
4 | 700 W/m² | 20 L/h | 55 °C | 200 L/daytime | 83 L/daytime |
5 | 710 W/m² | 40 L/h | 50.5 °C | 400 L/daytime | 60 L/daytime |
6 | 695 W/m² | 60 L/h | 45 °C | 600 L/daytime | 44.5 L/daytime |
Module | Flow Rate of Water, L/h | Thermal Efficiency, % |
---|---|---|
1 | 6 | 70 |
2 | 7.5 | 81 |
3 | 10 | 77 |
4 | 20 | 55 |
5 | 40 | 24 |
6 | 60 | 15 |
Unit | Cost of Component ($) |
---|---|
Iron sheets | 55 |
Evacuated pipe | 30 |
Supporting legs | 30 |
Paint | 7 |
Insulation (Fiber glass) | 15 |
Production | 30 |
PVC pipes | 20 |
Tracing mechanism | 50 |
Pipe fitting | 30 |
Separation unit | 25 |
Fan | 20 |
Tanks | 30 |
Nanoparticles | 50 |
Copper coil | 20 |
Total fixed cost (F) | 412 |
Reference | Device and Modifications | Yield Improvement (%) | Yield (L/m²·day) | Cost of Freshwater ($/L) |
---|---|---|---|---|
Essa et al. [17] | Stepped still with trays and nanomaterials | 55 | 6.2 | 0.015 |
Essa et al. [24] | Tubular still with rotating drum | 175 | 6.6 | 0.024 |
Abdullah et al. [26] | Drum still with reflectors and wick | 296 | 7.25 | 0.041 |
Alawee et al. [51] | Pyramid still with rotating cylinders and electric heaters | 214 | 9.1 | - |
Essa et al. [52] | Pyramid still with mirrors, cooling cycle, and wick cords | 195 | 11.5 | 0.017 |
Essa et al. [18] | Stepped still by corrugated and curved liners, nano-PCM, wick, and vapor suctioning | 170 | 7 | 0.014 |
Abdullah et al. [25] | Drum still with condenser | 350 | 9.22 | 0.039 |
Essa et al. [27] | Tubular still with rotating drum, nanoparticles, parabolic solar concentrator, and PCM | 218 | 6.6 | 0.024 |
Abdullah et al. [85] | Trays still with mirrors | 95 | 4.8 | 0.021 |
Alawee et al. [86] | Pyramid still with wick ropes | 122 | 7.9 | - |
Manokar et al. [87] | Pyramid still with insulation conditions and 1 cm water depth. | 19.46 | 3.72 | - |
Present study | PTSC, EP, CU, and SU | 59.6 | 44.7 | 0.0085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, B.; Essa, F.A.; Omara, Z.M.; Ahmed, M.H.; El-Sebaey, M.S.; Stephen, M.T.; Sundar, L.S.; Qasim, M.A.; Ramana, E.V.; Shanmugan, S.; et al. Using Direct Solar Energy Conversion in Distillation via Evacuated Solar Tube with and without Nanomaterials. Processes 2023, 11, 1734. https://doi.org/10.3390/pr11061734
Saleh B, Essa FA, Omara ZM, Ahmed MH, El-Sebaey MS, Stephen MT, Sundar LS, Qasim MA, Ramana EV, Shanmugan S, et al. Using Direct Solar Energy Conversion in Distillation via Evacuated Solar Tube with and without Nanomaterials. Processes. 2023; 11(6):1734. https://doi.org/10.3390/pr11061734
Chicago/Turabian StyleSaleh, Bahaa, Fadl A. Essa, Zakaria M. Omara, Mohamed H. Ahmed, Mahmoud S. El-Sebaey, Mogaji Taye Stephen, Lingala Syam Sundar, Mohammed A. Qasim, Eskilla Venkata Ramana, Sengottiyan Shanmugan, and et al. 2023. "Using Direct Solar Energy Conversion in Distillation via Evacuated Solar Tube with and without Nanomaterials" Processes 11, no. 6: 1734. https://doi.org/10.3390/pr11061734
APA StyleSaleh, B., Essa, F. A., Omara, Z. M., Ahmed, M. H., El-Sebaey, M. S., Stephen, M. T., Sundar, L. S., Qasim, M. A., Ramana, E. V., Shanmugan, S., & Elsheikh, A. H. (2023). Using Direct Solar Energy Conversion in Distillation via Evacuated Solar Tube with and without Nanomaterials. Processes, 11(6), 1734. https://doi.org/10.3390/pr11061734