A Study on the Dynamic Collision Behaviors of a Hydrous Ethanol Droplet on a Heated Surface
Abstract
:1. Introduction
2. Methodology
2.1. Experiment Setup
2.2. Droplet Properties and Test Conditions
2.3. The Parameters Related to Droplet Collision Behavior
2.4. Image Processing
3. Results and Discussion
3.1. Overview of Droplet-Impinging Behaviors
3.2. Droplet-Impinging Behaviors in Region A
3.3. Droplet-Impinging Behaviors in Region B
3.4. Droplet-Impinging Behaviors in Region C
3.5. Droplet-Impinging Behaviors in Region D
3.6. Analysis of the Generality of Parameters in Describing Droplet Collision Behaviors
4. Conclusions
- (1)
- The addition of volatile ethanol to less volatile water can promote a shift in droplet collision behaviors from quiescent surface evaporation (with spreading) to explosive boiling, and eventually to the Leidenfrost phenomenon. As the ethanol mass fraction (ωe) increased from 0% to 100%, the superheat limit temperature decreased by approximately 80 K, while the Leidenfrost temperature decreased by at least 100 K.
- (2)
- Four regions were clearly identified for surface temperature (Tsurface) ranging from 373 K to 553 K, and the ethanol mass fraction (ωe) varied from 0% to 100%. In region A, the droplets just spread with quiescent surface evaporation. In region B, the puffing or partial boiling occurred as the droplets spread. In region C, the droplets reacted by explosive nuclear boiling. In region D, the wettability disappeared, and the droplet rebounded due to the Leidenfrost effect.
- (3)
- The dimensionless diameter of a droplet in region A is determined by the combined effect of surface temperature, surface tension, and viscosity. In region D, the dimensionless diameter and height of the droplet are mainly influenced by its surface tension. The droplets of lower ethanol concentrations rebounded faster and higher due to their lower surface tensions.
- (4)
- Although Rp, the Weber number, and the Reynolds number lack the generality to describe overall droplet collision behaviors, it is feasible to predict partial collision behaviors by using one of them under certain conditions. For drops with low-impact Weber numbers (Weber number < 40), when only one of the two conditions, ethanol proportion or substrate surface temperature, changes, Rp provides a good correlation with the shift in different behavior regions. For drops in the Leidenfrost effect region, the Weber number provides a good correlation with the spreading or rebounding behavior of the droplets.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mudawar, I. Assessment of high-heat-flux thermal management schemes. IEEE Trans. Compon. Packag. Technol. 2001, 24, 122–141. [Google Scholar] [CrossRef]
- Pasandideh-Fard, M.; Aziz, S.D.; Chandra, S.; Mostaghimi, J. Cooling effectiveness of a water drop impinging on a hot surface. Int. J. Heat Fluid Flow 2001, 22, 201–210. [Google Scholar] [CrossRef]
- Moreira, A.L.N.; Moita, A.S.; Panão, M.R. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog. Energy Combust. Sci. 2010, 36, 554–580. [Google Scholar] [CrossRef]
- Zhang, G.; Shi, P.; Luo, H.; Ogata, Y.; Nishida, K. Investigation on fuel adhesion characteristics of wall-impingement spray under cross-flow conditions. Fuel 2022, 320, 123925. [Google Scholar] [CrossRef]
- Zhang, G.; Si, Z.; Zhai, C.; Luo, H.; Ogata, Y.; Nishida, K. Characteristics of wall-jet vortex development during fuel spray impinging on flat-wall under cross-flow conditions. Fuel 2022, 317, 123507. [Google Scholar] [CrossRef]
- Liu, H.; Cai, C.; Jia, M.; Gao, J.; Yin, H.; Chen, H. Experimental investigation on spray cooling with low-alcohol additives. Appl. Therm. Eng. 2019, 146, 921–930. [Google Scholar] [CrossRef]
- Luo, H.; Jin, Y.; Nishida, K.; Ogata, Y.; Yao, J.; Chen, R. Microscopic characteristics of impinging spray sliced by a cone structure under increased injection pressures. Fuel 2021, 284, 284. [Google Scholar] [CrossRef]
- Luo, H.; Chang, F.; Zhan, C.; Nishida, K.; Ogata, Y.; Zhang, J.; Yao, J.; Kong, X.; Zhu, J. Microscopic characteristics of multiple droplets behaviors at the near-wall region during the quasi-steady state. Fuel 2021, 286, 119431. [Google Scholar] [CrossRef]
- Mundo, C.; Sommerfeld, M.; Tropea, C. Droplet-wall collisions: Experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 1995, 21, 151–173. [Google Scholar] [CrossRef]
- An, S.M.; Lee, S.Y. Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Exp. Therm. Fluid Sci. 2012, 38, 140–148. [Google Scholar] [CrossRef]
- Andrade, R.; Skurtys, O.; Osorio, F. Experimental study of drop impacts and spreading on epicarps: Effect of fluid properties. J. Food Eng. 2012, 109, 430–437. [Google Scholar] [CrossRef]
- Abubakar, A.A.; Yilbas, B.S.; Al-Qahtani, H.; Mohammed, A.S. Liquid Droplet Impact Over Hydrophobic Mesh Surfaces and Assessment of Weber Number Dependent Characteristics. J. Fluids Eng. 2022, 144-155, 144–155. [Google Scholar] [CrossRef]
- Abubakar, A.A.; Yilbas, B.S.; Qahtani, M.H.A.; Hassan, G.; Yakubu, M.; Bahatab, S.; Adukwu, J.A.E. Experimental and Model Studies of Various Size Water Droplet Impacting on a Hydrophobic Surface. J. Fluid Eng.-T. Asme. 2021, 163, 061402. [Google Scholar] [CrossRef]
- Josserand, C.; Lemoyne, L.; Troeger, R.; Zaleski, S. Droplet impact on a dry surface: Triggering the splash with a small obstacle. J. Fluid Mech. 2005, 524, 47–56. [Google Scholar] [CrossRef]
- Yarin, A.L. Droplet impact dynamics: Splashing, Spreading, Receding, Bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Bernardin, J.D.; Stebbins, C.J.; Mudawar, I. Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Int. J. Heat Mass Transf. 1997, 40, 247–267. [Google Scholar] [CrossRef]
- Choi, K.J.; Yao, S.C. Mechanisms of film boiling heat transfer of normally impacting spray. Int. J. Heat Mass Transf. 1987, 30, 311–318. [Google Scholar] [CrossRef]
- Avedisian, C.T. On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1997, 432, 13–41. [Google Scholar] [CrossRef]
- Grissom, W.M.; Wierum, F.A. Liquid spray cooling of a heated surface. Int. J. Heat Mass Transf. 1981, 24, 261–271. [Google Scholar] [CrossRef]
- Qiao, Y.M.; Chandra, S. Experiments on adding a surfactant to water drops boiling on a hot surface. Proceedings of the Royal Society of London Series A: Mathematical. Phys. Eng. Sci. 1997, 453, 673–689. [Google Scholar] [CrossRef]
- Chandra, S.; di Marzo, M.; Qiao, Y.M.; Tartarini, P. Effect of liquid-solid contact angle on droplet evaporation. Fire Saf. J. 1996, 27, 141–158. [Google Scholar] [CrossRef]
- Fujimoto, H.; Oku, Y.; Ogihara, T.; Takuda, H. Hydrodynamics and boiling phenomena of water droplets impinging on hot solid. Int. J. Multiph. Flow 2010, 36, 620–642. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Weisensee, P. Droplet impact and Leidenfrost dynamics on a heated post. Int. J. Heat Mass Transf. 2023, 201–212. [Google Scholar] [CrossRef]
- Roisman, I.V.; Breitenbach, J.; Tropea, C. Thermal atomisation of a liquid drop after impact onto a hot substrate. J. Fluid Mech. 2018, 842, 87–101. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Li, Y.-Y.; Long, W.-J.; Cheng, W.-L. Enhancement mechanism of high alcohol surfactant on spray cooling: Experimental study. Int. J. Heat Mass Transf. 2018, 126, 363–376. [Google Scholar] [CrossRef]
- Shi, X.; Qian, W.; Liao, Y.; Ma, X.; Wang, Q.; Ni, J. Experimental and Simulation Analysis on Spray Characteristics of Hydrous Ethanol–Gasoline Blends. J. Energy Resour. Technol. 2022, 144, 112302. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Mi, M.; Wang, Z.; Jiang, L. Evaporation of a bicomponent droplet during depressurization. Int. J. Heat Mass Transf. 2016, 100, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Blanken, N.; Saleem, M.S.; Thoraval, M.-J.; Antonini, C. Impact of compound drops: A perspective. Curr. Opin. Colloid Interface Sci. 2021, 51, 101389. [Google Scholar] [CrossRef]
- Piskunov, M.; Semyonova, A.; Khomutov, N.; Ashikhmin, A.; Yanovsky, V. Effect of rheology and interfacial tension on spreading of emulsion drops impacting a solid surface. Phys. Fluids 2021, 33, 83309. [Google Scholar] [CrossRef]
- Renon, H.; Prausnitz, J.M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135–144. [Google Scholar] [CrossRef]
- ASPEN Technology. Aspen Plus®: Aspen Plus User Guide, Version 11.1; Aspen Technology, Inc.: Bedford, MA, USA, 2001.
- Seki, M.; Kawamura, H.; Sanokawa, K. Transient Temperature Profile of a Hot Wall Due to an Impinging Liquid Droplet. J. Heat Transf. 1978, 100, 167–169. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Bao, X.; Li, Y.; Jiang, Y.; Xu, H.; Zhang, X. Microscopic investigation of near-field spray characteristics of 2-methylfuran, ethanol and isooctane under flash boiling conditions. Fuel 2018, 215, 142–152. [Google Scholar] [CrossRef]
- Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 1993, 12, 61–93. [Google Scholar] [CrossRef]
- Wachters, L.H.J.; Westerling, N.A.J. The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Eng. Sci. 1966, 21, 1047–1056. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kandlikar, S.G.; Steinke, M.E. Contact angles and interface behavior during rapid evaporation of liquid on a heated surface. Int. J. Heat Mass Transf. 2002, 45, 3771–3780. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.; Wang, B.; Wei, Y. Superheat limit and micro-explosion in droplets of hydrous ethanol-diesel emulsions at atmospheric pressure and diesel-like conditions. Energy 2018, 154, 535–543. [Google Scholar] [CrossRef]
- Cossali, G.E.; Marengo, M.; Santini, M. Secondary atomisation produced by single drop vertical impacts onto heated surfaces. Exp. Therm. Fluid Sci. 2005, 29, 937–946. [Google Scholar] [CrossRef]
- Moita, A.S.; Moreira, A.L.N. The combined effects of surface topography and heat transfer on the droplet/wall interaction mechanisms. In Proceedings of the 20th Annual Conference on Liquid Atomisation and Spray Systems-ILASS, Vail, CO, USA, 26–30 July 2005; pp. 431–436. [Google Scholar]
- Avedisian, C.T. The Homogeneous Nucleation Limits of Liquids. J. Phys. Chem. Ref. Data 1985, 14, 695–729. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y.; Zhang, J.; Wang, Y.; Yan, F.; Xu, H. Effects of component proportions on multi-jet instant expansion of binary solutions under flash boiling conditions. Fuel 2021, 308, 122018. [Google Scholar] [CrossRef]
- Araneo, L.; Donde, R. Flash boiling in a multihole G-DI injector–Effects of the fuel distillation curve. Fuel 2017, 191, 500–510. [Google Scholar] [CrossRef]
- Aori, G.; Hung, D.L.S.; Zhang, M.; Zhang, G.; Li, T. Effect of Nozzle Configuration on Macroscopic Spray Characteristics of Multi-Hole Fuel Injectors under Superheated Conditions. At. Spray 2016, 26, 439–462. [Google Scholar] [CrossRef]
Item | Specifications |
---|---|
Test fluid [-] | Ethanol/Water |
Ethanol mass fraction [%] | 0/30/50/70/100 |
Surface temperature [K] | 373/393/413/433/453/473/493/513/533/553 |
Surface roughness [nm] | 1.2 |
Frame rate [fps] | 6000 |
Exposure time [μs] | 120 |
Resolution [pixel] | 512 × 384 |
Rp | Ethanol Mass Fraction [%] | |||||
---|---|---|---|---|---|---|
0 | 30 | 50 | 70 | 100 | ||
Surface temperature (Tsurface) [K] | 373 | 1.0 | 1.8 | 2.0 | 2.1 | 2.2 |
393 | 1.9 | 3.4 | 3.8 | 4.0 | 4.2 | |
413 | 3.5 | 6.2 | 6.8 | 7.2 | 7.4 | |
433 | 6.0 | 10.4 | 11.3 | 12.0 | 12.3 | |
453 | 9.8 | 16.7 | 18.1 | 19.1 | 19.4 | |
473 | 15.3 | 25.8 | 27.8 | 29.2 | 29.3 | |
493 | 22.8 | 39.8 | 43.3 | 46.3 | - | |
513 | 32.9 | 60.1 | 64.5 | 67.0 | - | |
533 | 46.2 | 82.2 | 87.1 | 91.0 | - | |
553 | 63.3 | 108.1 | 114.9 | 120.5 | - |
Ethanol Mass Fraction [%] | |||||
---|---|---|---|---|---|
0 | 30 | 50 | 70 | 100 | |
Weber number | 14.67 | 15.21 | 16.29 | 18.80 | 38.74 |
Reynolds number | 2547.42 | 1868.62 | 1747.87 | 1621.11 | 1394.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Yan, F.; Zhang, G.; Wu, D.; Xu, H. A Study on the Dynamic Collision Behaviors of a Hydrous Ethanol Droplet on a Heated Surface. Processes 2023, 11, 1804. https://doi.org/10.3390/pr11061804
Zhou Z, Yan F, Zhang G, Wu D, Xu H. A Study on the Dynamic Collision Behaviors of a Hydrous Ethanol Droplet on a Heated Surface. Processes. 2023; 11(6):1804. https://doi.org/10.3390/pr11061804
Chicago/Turabian StyleZhou, Ze, Fuwu Yan, Gengxin Zhang, Dawei Wu, and Hongming Xu. 2023. "A Study on the Dynamic Collision Behaviors of a Hydrous Ethanol Droplet on a Heated Surface" Processes 11, no. 6: 1804. https://doi.org/10.3390/pr11061804
APA StyleZhou, Z., Yan, F., Zhang, G., Wu, D., & Xu, H. (2023). A Study on the Dynamic Collision Behaviors of a Hydrous Ethanol Droplet on a Heated Surface. Processes, 11(6), 1804. https://doi.org/10.3390/pr11061804