A Review of Third Generation Solar Cells
Abstract
:1. Introduction
1.1. Basic SC Parameters
1.1.1. Open Circuit Voltage (Voc)
1.1.2. Short Circuit Current Density (Jsc)
1.1.3. Fill Factor (FF)
1.1.4. Efficiency (PCE)
1.2. Solar Cell Electricity Market
2. Dye-Sensitized Solar Cells
2.1. Working Mechanisms of DSSCs
2.2. Components of DSSCs
2.2.1. Photo-Anodes
2.2.2. Dye Sensitizers
- it must be capable of maximum absorption from the visible region and near-infrared region;
- it should have excellent binding with anode material;
- the anode material conduction band must be low compared to the LUMO (Lowest Unoccupied Molecular Orbital) of a dye;
- the anode material conduction band must be high compared to the HOMO (Highest Occupied Molecular Orbital) of a dye;
- it must be durable.
2.2.3. Electrolytes
2.2.4. Counter Electrodes
2.3. Challenges in DSSCs
3. Perovskite Solar Cells
3.1. Structure and Working Mechanisms of a PSC
3.2. Techniques to Improve Efficiency
3.3. Film Fabrication Techniques
3.3.1. Spin Coating
3.3.2. Inkjet Printing Method
3.3.3. Spray Coating Methods
3.3.4. Blade-Coating Method
3.3.5. Slot-Die Coating Method
3.4. Challenges towards Commercialization
4. Quantum Dot Solar Cells
4.1. Working Principles of a QDSSC
4.2. Developments in the Efficiency of QDSSCs
4.2.1. Based on the Photoanode
4.2.2. Based on QD Sensitizers
4.3. Application of QD in PSCs
4.3.1. QDs as Additives in ETLs
4.3.2. QDs as Additives in HTLs
4.3.3. QDs as ETMs
4.3.4. QDs as HTMs
4.4. Challenges in QDSSCs
5. Tandem Solar Cells
6. Organic Photovoltaics
6.1. Working Mechanisms of an OPV
6.2. D-A Materials
6.2.1. Acceptor Materials
6.2.2. Donor Materials
6.3. Challenges towards Commercialization
7. Other Third-Generation Technologies
7.1. Up-Conversion Devices
Mechanisms behind Photon UC
7.2. Down-Conversion and Down-Shifting Devices
7.3. Hot Carrier Solar Cells
7.4. Intermediate Band Photovoltaics
7.5. Multiple Exciton Generation
7.6. Flexible Thin-Film SCs
8. Comparison and Future Direction of Third-Generation SC
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Kuldasheva, Z.; Bobojanov, S.; Djalilov, B.; Salahodjaev, R.; Abbas, S. Exploring the links between fossil fuel energy consumption, industrial value-added, and carbon emissions in G20 countries. Environ. Sci. Pollut. Res. 2022, 30, 10854–10866. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zheng, M.; Feng, G.F.; Chang, C.P. Does an environmental policy bring to green innovation in renewable energy? Renew. Energy 2022, 195, 1113–1124. [Google Scholar] [CrossRef]
- Sadiqa, A.; Gulagi, A.; Bogdanov, D.; Caldera, U.; Breyer, C. Renewable energy in Pakistan: Paving the way towards a fully renewables-based energy system across the power, heat, transport and desalination sectors by 2050. IET Renew. Power Gener. 2022, 16, 177–197. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (Version 58). Prog. Photovolt. Res. Appl. 2021, 29, 657–667. [Google Scholar] [CrossRef]
- Bhattacharya, S.; John, S. Beyond 30% conversion efficiency in silicon solar cells: A numerical demonstration. Sci. Rep. 2019, 9, 12482–12515. [Google Scholar] [CrossRef] [Green Version]
- Le Donne, A.; Trifiletti, V.; Binetti, S. New earth-abundant thin film solar cells based on chalcogenides. Front. Chem. 2019, 7, 297. [Google Scholar] [CrossRef] [Green Version]
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Romeo, A. Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Meredith, P.; Armin, A. Scaling of next generation solution processed organic and perovskite solar cells. Nat. Commun. 2018, 9, 5261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayawardena, K.D.G.I.; Silva, S.M.; Misra, R.K. Solution processed perovskite incorporated tandem photovoltaics: Developments, manufacturing, and challenges. J. Mater. Chem. C 2020, 8, 10641–10675. [Google Scholar] [CrossRef]
- Green, M.A. Third Generation Photovoltaics; Springer: New York, NY, USA, 2003. [Google Scholar]
- Jiang, W.; Ni, X.; Liu, F. Exotic topological bands and quantum states in metal–organic and covalent–organic frameworks. Acc. Chem. Res. 2021, 54, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Park, N.G. A thin film (<200 nm) perovskite solar cell with 18% efficiency. J. Mater. Chem. A 2020, 8, 17420–17428. [Google Scholar]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Ji, J.M.; Zhou, H.; Eom, Y.K.; Kim, C.H.; Kim, H.K. 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno [3,2-b]indole-based organic dyes with a promising porphyrin sensitizer. Adv. Energy Mater. 2020, 10, 2000124. [Google Scholar] [CrossRef]
- Gao, X.X.; Luo, W.; Zhang, Y.; Hu, R.; Zhang, B.; Züttel, A.; Nazeeruddin, M.K. Stable and high-efficiency methylammonium-free perovskite solar cells. Adv. Mater. 2020, 32, 1905502. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, F.; Chi, D.; Shi, K.; Huang, S. High-efficiency perovskite solar cells with poly (vinylpyrrolidone)-doped SnO2 as an electron transport layer. Mater. Adv. 2020, 1, 617–624. [Google Scholar] [CrossRef]
- Sirtl, M.T.; Hooijer, R.; Armer, M.; Ebadi, F.G.; Mohammadi, M.; Maheu, C.; Bein, T. 2D/3D Hybrid Cs2AgBiBr6 Double Perovskite Solar Cells: Improved Energy Level Alignment for Higher Contact-Selectivity and Large Open Circuit Voltage. Adv. Energy Mater. 2022, 12, 2103215. [Google Scholar] [CrossRef]
- Chiang, Y.H.; Lin, K.Y.; Chen, Y.H.; Waki, K.; Abate, M.A.; Jiang, J.C.; Chang, J.Y. Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot-sensitized solar cells. J. Mater. Chem. A 2018, 6, 9629–9641. [Google Scholar] [CrossRef]
- Rasal, A.S.; Yadav, S.; Kashale, A.A.; Altaee, A.; Chang, J.Y. Stability of quantum dot-sensitized solar cells: A review and prospects. Nano Energy 2021, 94, 106854. [Google Scholar] [CrossRef]
- Kant, N.; Singh, P. Review of next generation photovoltaic solar cell technology and comparative materialistic development. Mater. Today Proc. 2022, 56, 3460–3470. [Google Scholar] [CrossRef]
- He, Y.; Li, N.; Heumüller, T.; Wortmann, J.; Hanisch, B.; Aubele, A.; Lucas, S.; Feng, G.; Jiang, X.; Li, W.; et al. Industrial viability of single-component organic solar cells. Joule 2022, 6, 1160–1171. [Google Scholar] [CrossRef]
- Lamkaouane, H.; Ftouhi, H.; Louarn, G.; Mir, Y.; Morsli, M.; Addou, M.; Cattin, L.; Bernède, J.C. Investigation of the different possible energy band structure configurations for planar heterojunction organic solar cells. Solid-State Electron. 2022, 191, 108254. [Google Scholar] [CrossRef]
- Dash, B.P.; Beriha, S.K.; Naik, B.; Sahoo, P.K. Organic materials based solar cells. Mater. Today Proc. 2022, 67, 1057–1063. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F.T.; Vlachopoulos, N.; Grätzel, M. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature 2023, 613, 60–65. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Chen, H. Manipulating the D: A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544. [Google Scholar] [CrossRef]
- Khalid, S.; Sultan, M.; Ahmed, E.; Ahmed, W. Third-generation solar cells. In Emerging Nanotechnologies for Renewable Energy; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–35. [Google Scholar]
- Niu, G.; Guo, X.; Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980. [Google Scholar] [CrossRef]
- Sharma, D.; Jha, R.; Kumar, S. Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 2016, 155, 294–322. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Yue, S.; Yu, X.; Zhou, H. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. Nanotechnology 2021, 33, 072002. [Google Scholar] [CrossRef]
- Tyagi, P.K.; Singh, V. N-type diamane: An effective emitter layer in crystalline Si heterojunction solar cell. Carbon Trends 2022, 9, 100209. [Google Scholar]
- Zouhair, S.; Luo, B.; Bogachuk, D.; Martineau, D.; Wagner, L.; Chahboun, A.; Hinsch, A. Fill Factor Assessment in Hole Selective Layer Free Carbon Electrode-Based Perovskite Solar Cells with 15.5% Certified Power Conversion Efficiency. Sol. RRL 2022, 6, 2100745. [Google Scholar] [CrossRef]
- Kataria, V.; Mehta, D.S. Multispectral harvesting rare-earth oxysulphide based highly efficient transparent luminescent solar concentrator. J. Rare Earths 2022, 40, 41–48. [Google Scholar] [CrossRef]
- AbdElAziz, H. Performance Evaluation of Free Hole Transport Layer CsPbI3 Perovskite Solar cells. J. Mater. Sci. Mater. Electron. 2023, 34, 470. [Google Scholar] [CrossRef]
- Yin, S.; Wang, J.; Li, Z.; Fang, X. State-of-the-art short-term electricity market operation with solar generation: A review. Renew. Sustain. Energy Rev. 2021, 138, 110647. [Google Scholar] [CrossRef]
- Agrawal, A.; Siddiqui, S.A.; Soni, A.; Sharma, G.D. Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell. Sol. Energy 2022, 233, 378–407. [Google Scholar] [CrossRef]
- Yang, J.; Siempelkamp, B.D.; Liu, D.; Kelly, T.L. Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS Nano 2015, 9, 1955–1963. [Google Scholar] [CrossRef]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Kumar, N.M.; Anand, A.; Chopra, S.S. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renew. Sustain. Energy Rev. 2022, 158, 112126. [Google Scholar] [CrossRef]
- Kumar, S.; Muthu, S.; Sekar, S.; Bathula, C.; Kaliamurthy, A.K.; Lee, S. Metal chalcogenide-based counter electrodes for dye-sensitized solar cells. Oxide Free. Nanomater. Energy Storage Convers. Appl. 2022, 259–286. [Google Scholar]
- Brian, O.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar]
- Aljafari, B.; Vijaya, S.; Takshi, A.; Anandan, S. Copper doped manganese dioxide as counter electrode for dye-sensitized solar cells. Arab. J. Chem. 2022, 15, 104068. [Google Scholar] [CrossRef]
- Mir, N.; Salavati-Niasari, M. Photovoltaic properties of corresponding dye sensitized solar cells: Effect of active sites of growth controller on TiO2 nanostructures. Sol. Energy 2012, 86, 3397–3404. [Google Scholar] [CrossRef]
- Ito, S.; Nazeeruddin, M.K.; Liska, P.; Comte, P.; Charvet, R.; Péchy, P.; Grätzel, M. Photovoltaic characterization of dye-sensitized solar cells: Effect of device masking on conversion efficiency. Prog. Photovolt. Res. Appl. 2006, 14, 589–601. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Baranoff, E.; Grätzel, M. Dye-sensitized solar cells: A brief overview. Sol. Energy 2011, 85, 1172–1178. [Google Scholar] [CrossRef]
- Kim, I.D.; Hong, J.M.; Lee, B.H.; Kim, D.Y.; Jeon, E.K.; Choi, D.K.; Yang, D.J. Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats. Appl. Phys. Lett. 2007, 91, 163109. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Y.; Wang, J. ZnO nanosheets derived from surfactant-directed process: Growth mechanism, and application in dye-sensitized solar cells. J. Am. Ceram. Soc. 2012, 95, 1241–1246. [Google Scholar] [CrossRef]
- Lu, L.; Li, R.; Fan, K.; Peng, T. Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol. Energy 2010, 84, 844–853. [Google Scholar] [CrossRef]
- Giannouli, M.; Spiliopoulou, F. Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells. Renew. Energy 2012, 41, 115–122. [Google Scholar] [CrossRef]
- Zhang, Q.; Dandeneau, C.S.; Zhou, X.; Cao, G. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Zou, J.; Wu, X.; Gong, X.; Li, C.; Xie, Y. Efficient dye-sensitized solar cells based on concerted companion dyes: Systematic optimization of thiophene units in the organic dye components. Chin. Chem. Lett. 2022, 33, 4313–4316. [Google Scholar] [CrossRef]
- Cortés, E.; Wendisch, F.J.; Sortino, L.; Mancini, A.; Ezendam, S.; Saris, S.; Maier, S.A. Optical metasurfaces for energy conversion. Chem. Rev. 2022, 122, 15082–15176. [Google Scholar] [CrossRef]
- Cole, J.M.; Pepe, G.; Al Bahri, O.K.; Cooper, C.B. Cosensitization in dye-sensitized solar cells. Chem. Rev. 2019, 119, 7279–7327. [Google Scholar] [CrossRef]
- Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2015, 52, 54–64. [Google Scholar] [CrossRef]
- Maddah, H.A.; Berry, V.; Behura, S.K. Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights. Renew. Sustain. Energy Rev. 2020, 121, 109678. [Google Scholar] [CrossRef]
- Aslam, A.; Mehmood, U.; Arshad, M.H.; Ishfaq, A.; Zaheer, J.; Khan AU, H.; Sufyan, M. Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications. Sol. Energy 2020, 207, 874–892. [Google Scholar] [CrossRef]
- Yan, N.; Zhao, C.; You, S.; Zhang, Y.; Li, W. Recent progress of thin-film photovoltaics for indoor application. Chin. Chem. Lett. 2020, 31, 643–653. [Google Scholar] [CrossRef]
- Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 2006, 45, L638. [Google Scholar] [CrossRef]
- Ko, S.H.; Lee, D.; Kang, H.W.; Nam, K.H.; Yeo, J.Y.; Hong, S.J.; Sung, H.J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666–671. [Google Scholar] [CrossRef]
- Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yanagida, M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 2012, 5, 6057–6060. [Google Scholar] [CrossRef]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.I.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review. Renew. Sustain. Energy Rev. 2022, 159, 112252. [Google Scholar] [CrossRef]
- Dwivedi, G.; Munjal, G.; Bhaskarwar, A.N.; Chaudhary, A. Dye-sensitized solar cells with polyaniline: A review. Inorg. Chem. Commun. 2022, 135, 109087. [Google Scholar] [CrossRef]
- Moharam, M.M.; El Shazly, A.N.; Anand, K.V.; Rayan, D.E.; Mohammed, M.K.; Rashad, M.M.; Shalan, A.E. Semiconductors as effective electrodes for dye sensitized solar cell applications. Top. Curr. Chem. 2021, 379, 20. [Google Scholar] [CrossRef] [PubMed]
- Boucle, J.; Ackermann, J. Solid-state dye-sensitized and bulk heterojunction solar cells using TiO2 and ZnO nanostructures: Recent progress and new concepts at the borderline. Polym. Int. 2012, 61, 355–373. [Google Scholar] [CrossRef]
- Hočevar, M.; Krašovec, U.O.; Bokalič, M.; Topič, M.; Veurman, W.; Brandt, H.; Hinsch, A. Sol-gel based TiO2 paste applied in screen-printed dye-sensitized solar cells and modules. J. Ind. Eng. Chem. 2013, 19, 1464–1469. [Google Scholar] [CrossRef]
- Fan, K.; Liu, M.; Peng, T.; Ma, L.; Dai, K. Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells. Renew. Energy 2010, 35, 555–561. [Google Scholar] [CrossRef]
- Baglio, V.; Girolamo, M.; Antonucci, V.; Aricò, A. Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells. Int. J. Electrochem. Sci. 2011, 6, 3375–3384. [Google Scholar]
- Zhang, Y.; Wu, L.; Xie, E.; Duan, H.; Han, W.; Zhao, J. A simple method to prepare uniform-size nanoparticle TiO2 electrodes for dye-sensitized solar cells. J. Power Sources 2009, 189, 1256–1263. [Google Scholar] [CrossRef]
- Luo, P.; Niu, H.; Zheng, G.; Bai, X.; Zhang, M.; Wang, W. Enhancement of photoelectric conversion by high-voltage electric field assisted crystallization of a novel ternary-encapsulated spherical TiO2 aggregate for solar cells. Electrochim. Acta 2010, 55, 2697–2705. [Google Scholar] [CrossRef]
- Mondal, B.; Usha, K.; Mahata, S.; Kumbhakar, P.; Nandi, M.M. Synthesis and characterization of nanocrystalline TiO2 thin films for use as photoelectrodes in dye sensitized solar cell application. Trans. Indian Ceram. Soc. 2011, 70, 173–177. [Google Scholar] [CrossRef]
- Roy, A.; Mukhopadhyay, S.; Devi, P.S.; Sundaram, S. Polyaniline-layered rutile TiO2 nanorods as alternative photoanode in dye-sensitized solar cells. ACS Omega 2019, 4, 1130–1138. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.K.; Kumari, R.; Gunsaria, R.K. Role of Dye Photosensitizer and Surfactant in Solar Energy: A Review. J. Adv. Sci. Res. 2022, 13, 12–18. [Google Scholar] [CrossRef]
- Kabir, F.; Manir, S.; Bhuiyan, M.M.H.; Aftab, S.; Ghanbari, H.; Hasani, A.; Adachi, M.M. Instability of dye-sensitized solar cells using natural dyes and approaches to improving stability—An overview. Sustain. Energy Technol. Assess. 2022, 52, 102196. [Google Scholar] [CrossRef]
- Hegazy, B.M.; Othman, H.; Hassabo, A.G. Polycation Natural Materials for Improving Textile Dyeability and Functional Performance. J. Text. Color. Polym. Sci. 2022, 19, 155–178. [Google Scholar] [CrossRef]
- Dokoohaki, M.H.; Zolghadr, A.R.; Klein, A. Highly Efficient Dye-Sensitized Solar Cells Based on Electrolyte Solutions Containing Choline Chloride/Ethylene Glycol Deep Eutectic Solvent: Electrolyte Optimization. Ind. Eng. Chem. Res. 2022, 61, 11464–11473. [Google Scholar] [CrossRef]
- Kong, F.T.; Dai, S.Y.; Wang, K.J. Review of recent progress in dye-sensitized solar cells. Adv. OptoElectron. 2007, 2007, 75384. [Google Scholar] [CrossRef] [Green Version]
- Sasi, S.; Sajeev, A.; Sugunan, S.K.; Nair, P.R.; Mathew, S. Dye-Sensitized Solar Cells Based on a New Type of Non-Volatile Co (II)/Co (III) Electrolyte Delivering Higher Power Conversion Efficiency for Indoor Applications. Micro Nanosyst. 2022, 14, 77–82. [Google Scholar] [CrossRef]
- Chang, H.; Chen, T.L.; Huang, K.D.; Chien, S.H.; Hung, K.C. Fabrication of highly efficient flexible dye-sensitized solar cells. J. Alloys Compd. 2010, 504, S435–S438. [Google Scholar] [CrossRef]
- Zheng, H.; Tachibana, Y.; Kalantar-Zadeh, K. Dye-sensitized solar cells based on WO3. Langmuir 2010, 26, 19148–19152. [Google Scholar] [CrossRef]
- Kumari, J.M.K.W.; Senadeera, G.K.R.; Weerasinghe, A.M.J.S.; Thotawatthage, C.A.; Dissanayake, M.A.K.L. Effect of polyaniline (PANI) on efficiency enhancement of dye-sensitized solar cells fabricated with poly (ethylene oxide)-based gel polymer electrolytes. J. Solid State Electrochem. 2021, 25, 695–705. [Google Scholar] [CrossRef]
- Mozaffari, S.; Nateghi, M.R.; Zarandi, M.B. An overview of the Challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 2017, 71, 675–686. [Google Scholar] [CrossRef]
- Aftabuzzaman, M.; Kim, H.K. Porous carbon materials as supreme metal-free counter electrode for dye-sensitized solar cells. In Emerging Solar Energy Materials; IntechOpen: London, UK, 2018; Volume 4. [Google Scholar]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Siwach, B.; Ghoshal, S.K.; Mohan, D. Dye sensitized solar cells: From genesis to recent drifts. Renew. Sustain. Energy Rev. 2017, 70, 529–537. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Zang, X.F.; Hong, Y.P.; Chen, Z.E. An efficient strategy for designing high-performance DSSCs: Using the terminal auxiliary acceptor to improve electronic transitions. Dye. Pigment. 2022, 206, 110642. [Google Scholar] [CrossRef]
- Ma, J.; Li, C.; Yu, F.; Chen, J. 3D Single-Walled Carbon Nanotube/GrapheneAerogels as Pt-Free Transparent Counter Electrodes for High Efficiency Dye-Sensitized Solar Cells. ChemSusChem 2014, 7, 3304–3311. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ganesan, P.; Teuscher, J.; Moehl, T.; Kim, Y.J.; Yi, C.; Grätzel, M. Influence of the donor size in D− π–A organic dyes for dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136, 5722–5730. [Google Scholar] [CrossRef] [PubMed]
- Noh, Y.; Song, O. Properties of an Au/Pt bilayered counter electrode in dye sensitized solar cells. Electron. Mater. Lett. 2014, 10, 981–984. [Google Scholar] [CrossRef]
- Dayan, S.; Kayaci, N.; Özpozan, N.K. Improved performance with molecular design of Ruthenium (II) complexes bearing diamine-based bidentate ligands as sensitizer for dye-sensitized solar cells (DSSC). J. Mol. Struct. 2020, 1209, 127920. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, R.; Bansal, A. Role of chenodeoxycholic acid as co-additive in improving the efficiency of DSSCs. Sol. Energy 2020, 196, 589–596. [Google Scholar] [CrossRef]
- Zatirostami, A. Increasing the efficiency of TiO2-based DSSC by means of a double layer RF- sputtered thin film blocking layer. Optik 2020, 207, 164419. [Google Scholar] [CrossRef]
- Elmorsy, M.R.; Abdel-Latif, E.; Badawy, S.A.; Fadda, A.A. Molecular geometry, synthesis and photovoltaic performance studies over 2-cyanoacetanilides as sensitizers and effective co-sensitizers for DSSCs loaded with HD-2. J. Photochem. Photobiol. A Chem. 2020, 389, 112239. [Google Scholar] [CrossRef]
- Pinto, A.L.; Cruz, L.; Gomes, V.; Cruz, H.; Calogero, G.; de Freitas, V.; Pina, F.; Parola, A.J.; Lima, J.C. Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts. Dye. Pigment. 2019, 170, 107577. [Google Scholar] [CrossRef]
- Diantoro, M.; Maftuha, D.; Suprayogi, T.; Iqbal, M.R.; Solehudin; Mufti, N.; Taufiq, A.; Hidayat, A.; Suryana, R.; Hidayat, R. Performance of pterocarpus indicus willd leaf extract as natural dye TiO2-Dye/ITO DSSC. Mater. Today Proc. 2019, 17, 1268–1276. [Google Scholar] [CrossRef]
- Raïssi, M.; Pellegrin, Y.; Lefevre, F.X.; Boujtita, M.; Rousseau, D.; Berthelot, T.; Odobel, F. Digital printing of efficient dye-sensitized solar cells (DSSCs). Sol. Energy 2020, 199, 92–99. [Google Scholar] [CrossRef]
- Jie, J.; Xu, Q.; Yang, G.; Feng, Y.; Zhang, B. Porphyrin sensitizers involving a fluorine-substituted benzothiadiazole as auxiliary acceptor and thiophene as π bridge for use in dye-sensitized solar cells (DSSCs). Dye. Pigment. 2020, 174, 107984. [Google Scholar] [CrossRef]
- Arslan, B.S.; Güzel, E.; Kaya, T.; Durmaz, V.; Keskin, M.; Avcı, D.; Nebioğlu, M.; Şişman, İ. Novel D-π-A organic dyes for DSSCs based on dibenzo [b, h][1, 6] naphthyridine as a π-bridge. Dye. Pigment. 2019, 164, 188–197. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.-E.; Tian, H.-R. Molecular engineering of metal-free organic sensitizers with polycyclic benzenoid hydrocarbon donor for DSSC applications: The effect of the conjugate mode. Sol. Energy 2020, 198, 239–246. [Google Scholar] [CrossRef]
- Gullace, S.; Nastasi, F.; Puntoriero, F.; Trusso, S.; Calogero, G. A platinum-free nanostructured gold counter electrode for DSSCs prepared by pulsed laser ablation. Appl. Surf. Sci. 2020, 506, 144690. [Google Scholar] [CrossRef]
- Ferreira, F.; Babu, R.S.; Barros, A.; Raja, S.; da Conceição, L.; Mattoso, L. Photoelectric performance evaluation of DSSCs using the dye extracted from different color petals of Leucanthemum vulgare flowers as novel sensitizers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 233, 118198. [Google Scholar] [CrossRef]
- Basumatary, P.; Agarwal, P. A short review on progress in perovskite solar cells. Mater. Res. Bull. 2022, 149, 111700. [Google Scholar] [CrossRef]
- Sharma, D.; Mehra, R.; Raj, B. Design and comparative analysis of various planar perovskite solar cells through numerical simulation using different HTLs to improve efficiency. Opt. Mater. 2022, 126, 112221. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; You, J. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Zhao, L.; Price, J.S.; Grede, A.J.; Roh, K.; Brigeman, A.N.; Giebink, N.C. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 2018, 9, 4893. [Google Scholar] [CrossRef] [PubMed]
- Ricciardulli, A.G.; Yang, S.; Smet, J.H.; Saliba, M. Emerging perovskite monolayers. Nat. Mater. 2021, 20, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Tailor, N.K.; Kar, S.; Mishra, P.; These, A.; Kupfer, C.; Hu, H.; Satapathi, S. Advances in lead-free perovskite single crystals: Fundamentals and applications. ACS Mater. Lett. 2021, 3, 1025–1080. [Google Scholar] [CrossRef]
- Yan, P.; Yang, D.; Wang, H.; Yang, S.; Ge, Z. Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy Environ. Sci. 2022, 15, 3630–3669. [Google Scholar] [CrossRef]
- Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A.K.; Liu, B.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Green, M.A.; Sheng, R.; Ho-Baillie, A. Room temperature optical properties of organic–inorganic lead halide perovskites. Sol. Energy Mater. Sol. Cells 2015, 137, 253–257. [Google Scholar] [CrossRef]
- Lin, Q.; Armin, A.; Nagiri RC, R.; Burn, P.L.; Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 2015, 9, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Quarti, C.; Mosconi, E.; Ball, J.M.; D’Innocenzo, V.; Tao, C.; Pathak, S.; De Angelis, F. Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: Implications for perovskite solar cells. Energy Environ. Sci. 2016, 9, 155–163. [Google Scholar] [CrossRef]
- Löper, P.; Stuckelberger, M.; Niesen, B.; Werner, J.; Filipič, M.; Moon, S.J.; Ballif, C. Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. J. Phys. Chem. Lett. 2014, 6, 66–71. [Google Scholar] [CrossRef]
- Yin, W.J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Fujiwara, H. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. J. Appl. Phys. 2016, 119, 115501. [Google Scholar] [CrossRef] [Green Version]
- Nemnes, G.A.; Besleaga, C.; Tomulescu, A.G.; Pintilie, I.; Pintilie, L.; Torfason, K.; Manolescu, A. Dynamic electrical behavior of halide perovskite based solar cells. Sol. Energy Mater. Sol. Cells 2017, 159, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Hamukwaya, S.L.; Hao, H.; Zhao, Z.; Dong, J.; Zhong, T.; Xing, J.; Mashingaidze, M.M. A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. Coatings 2022, 12, 252. [Google Scholar] [CrossRef]
- Berger, E.; Bagheri, M.; Asgari, S.; Zhou, J.; Kokkonen, M.; Talebi, P.; Hashmi, S.G. Recent developments in perovskite-based precursor inks for scalable architectures of perovskite solar cell technology. Sustain. Energy Fuels 2022, 6, 2879–2900. [Google Scholar] [CrossRef]
- Reddy, P.V.; Giri, P.; Tiwari, J.P. Degradation conceptualization of an innovative perovskite solar cell fabricated using SnO2 and P3HT as electron and hole transport layers. New J. Chem. 2022, 46, 12751–12766. [Google Scholar] [CrossRef]
- Tonui, P.; Oseni, S.O.; Sharma, G.; Yan, Q.; Mola, G.T. Perovskites photovoltaic solar cells: An overview of current status. Renew. Sustain. Energy Rev. 2018, 91, 1025–1044. [Google Scholar] [CrossRef]
- Shah, A.A.; Khan, M.A.; Raj, V.; Gupta, A. Intervention of Nanotechnology as a Tool for Enhanced Renewable Energy Application in the Field of Solar Power Harnessing. In Environmental Security and Sustainable Development; Discovery Publishing House Pvt. Ltd.: New Delhi, India, 2022. [Google Scholar]
- Bhojak, V.; Bhatia, D.; Jain, P.K. Investigation of photocurrent efficiency of Cs2TiBr6 double perovskite solar cell. Mater. Today Proc. 2022, 66, 3692–3697. [Google Scholar] [CrossRef]
- Asghar, M.I.; Zhang, J.; Wang, H.; Lund, P.D. Device stability of perovskite solar cells—A review. Renew. Sustain. Energy Rev. 2017, 77, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, R.; Xu, H.T.; Hong, F.; Xu, F.; Wang, L.J. Nature of the band gap of halide perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): First-principles calculations. Chin. Phys. B 2015, 24, 116302. [Google Scholar] [CrossRef]
- Tsai, H.; Nie, W.; Blancon, J.C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Mohite, A.D. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Seo, J. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; You, J. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, X.; Li, Y.; Li, Y. A review: Crystal growth for high-performance all-inorganic perovskite solar cells. Energy Environ. Sci. 2020, 13, 1971–1996. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, H.; Liu, C.; Arain, Z.; Ding, Y.; Ma, S.; Dai, S. Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. J. Mater. Chem. A 2019, 7, 6450–6458. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Zhang, Y.; Liu, X.; Han, J.; Li, X.; Choy, W.C. Water-soluble triazolium ionic-liquid-induced surface self-assembly to enhance the stability and efficiency of perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1900417. [Google Scholar] [CrossRef]
- Kumar, S.; Choi, Y.; Kang, S.H.; Oh, N.K.; Lee, J.; Seo, J.; Park, H. Multifaceted role of a dibutylhydroxytoluene processing additive in enhancing the efficiency and stability of planar perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 38828–38837. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Guo, Q.; Yang, Y.; Luo, H.; Liu, Q.; Lan, Z. Pyrrole: An additive for improving the efficiency and stability of perovskite solar cells. J. Mater. Chem. A 2019, 7, 11764–11770. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.; Yang, J.; Pu, X.; Gao, B.; He, Z.; Li, X. Multiple functional groups synergistically improve the performance of inverted planar perovskite solar cells. Nano Energy 2021, 82, 105742. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Wang, S.; Pan, W.; Zhang, M.; Wang, X.; Lin, J. Additive Engineering by 6-Aminoquinoline Monohydrochloride for High-Performance Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 7083–7090. [Google Scholar] [CrossRef]
- Xu, T.; Wan, Z.; Tang, H.; Zhao, C.; Lv, S.; Chen, Y.; Huang, W. Carbon quantum dot additive engineering for efficient and stable carbon-based perovskite solar cells. J. Alloys Compd. 2021, 859, 157784. [Google Scholar] [CrossRef]
- Chang, X.; Fang, J.; Fan, Y.; Luo, T.; Su, H.; Zhang, Y.; Zhao, K. Printable CsPbI3 perovskite solar cells with PCE of 19% via an additive strategy. Adv. Mater. 2020, 32, 2001243. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Wang, J.; Liu, X.; Yuan, H.; Xu, Z.; Long, Y.; Zhu, Y. Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chem. Eng. J. 2021, 422, 130572. [Google Scholar] [CrossRef]
- Ahmed, D.S.; Mohammed, M.K. Novel mixed solution of ethanol/MACl for improving the crystallinity of air-processed triple cation perovskite solar cells. Sol. Energy 2020, 207, 1240–1246. [Google Scholar] [CrossRef]
- Akin, S.; Arora, N.; Zakeeruddin, S.M.; Graetzel, M.; Friend, R.H.; Dar, M.I. New strategies for defect passivation in high-efficiency perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903090. [Google Scholar] [CrossRef]
- Le Corre, V.M.; Stolterfoht, M.; Perdigon Toro, L.; Feuerstein, M.; Wolff, C.; Gil-Escrig, L.; Koster, L.J.A. Charge transport layers limiting the efficiency of perovskite solar cells: How to optimize conductivity, doping, and thickness. ACS Appl. Energy Mater. 2019, 2, 6280–6287. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, V.E.; Zimmermann, I.; Baloch, A.A.; Manekkathodi, A.; Belaidi, A.; Tabet, N.; Nazeeruddin, M.K. CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Appl. Energy Mater. 2019, 3, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Wu, Y.; He, R.; Hui, Y.; Yin, J.; Zheng, L.; Zheng, N. Hyperstable Perovskite Solar Cells Without Ion Migration and Metal Diffusion Based on ZnS Segregated Cubic ZnTiO3 Electron Transport Layers. Sol. RRL 2021, 5, 2000654. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Guo, X. Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21%. Adv. Mater. 2019, 31, 1902781. [Google Scholar] [CrossRef]
- Pham, H.D.; Jain, S.M.; Li, M.; Wang, Z.K.; Manzhos, S.; Feron, K.; Sonar, P. All-rounder low-cost dopant-free D-A-D hole-transporting materials for efficient indoor and outdoor performance of perovskite solar cells. Adv. Electron. Mater. 2020, 6, 1900884. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Wang, X.; Tao, J.; Jiang, J.; Hu, Z.; Chu, J. Enhanced performance of carbon-based planar CsPbBr3 perovskite solar cells with room-temperature sputtered Nb2O5 electron transport layer. Sol. Energy 2019, 191, 263–271. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Gil, B.; Yun, A.J.; Kim, J.; Woo, H.; Park, B. A Cu2O–CuSCN nanocomposite as a hole-transport material of perovskite solar cells for enhanced carrier transport and suppressed interfacial degradation. ACS Appl. Energy Mater. 2020, 3, 7572–7579. [Google Scholar] [CrossRef]
- Luo, X.; Ding, J.; Wang, J.; Zhang, J. Electron transport enhancement in perovskite solar cell via the polarized BaTiO3 thin film. J. Mater. Res. 2020, 35, 2158–2165. [Google Scholar] [CrossRef]
- Liu, X.; Ma, S.; Mateen, M.; Shi, P.; Liu, C.; Ding, Y.; Dai, S. Molecular engineering of simple carbazole-arylamine hole-transport materials for perovskite solar cells. Sustain. Energy Fuels 2020, 4, 1875–1882. [Google Scholar] [CrossRef]
- Li, C.; Hu, Q.; Chen, Q.; Yu, W.; Xu, J.; Xu, Z.X. Tetrapropyl-substituted palladium phthalocyanine used as an efficient hole transport material in perovskite solar cells. Org. Electron. 2021, 88, 106018. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, L.; Huang, J.; Miao, X.; Sun, L.; Hua, Y.; Wang, Y. Amino-capped zinc oxide modified tin oxide electron transport layer for efficient perovskite solar cells. Cell Rep. Phys. Sci. 2021, 2, 100590. [Google Scholar] [CrossRef]
- Yang, B.; Wang, M.; Hu, X.; Zhou, T.; Zang, Z. Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 2019, 57, 718–727. [Google Scholar] [CrossRef]
- Kang, D.H.; Park, N.G. On the current–voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 2019, 31, 1805214. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Schmidt-Mende, L.; Garcia-Belmonte, G.; Jose, R.; Mora-Sero, I. Interfaces in perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Lu, H.; Larson, B.W.; Xiao, C.; Dunfield, S.P.; Reid, O.G.; Zhu, K. Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. Chem 2021, 7, 774–785. [Google Scholar] [CrossRef]
- Bu, T.; Li, J.; Huang, W.; Mao, W.; Zheng, F.; Bi, P.; Huang, F. Surface modification via self-assembling large cations for improved performance and modulated hysteresis of perovskite solar cells. J. Mater. Chem. A 2019, 7, 6793–6800. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, H.; Ji, L.; Chen, H.; Wang, Y.; Zhang, P.; Li, S. Improved crystallinity of perovskite via molecularly tailored surface modification of SnO2. J. Power Sources 2019, 441, 227161. [Google Scholar] [CrossRef]
- Lian, X.; Chen, J.; Shan, S.; Wu, G.; Chen, H. Polymer Modification on the NiO x Hole Transport Layer Boosts Open-Circuit Voltage to 1.19 V for Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 46340–46347. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Xia, J.; Yang, H.; Luo, J.; Wan, Z.; Malik, H.A.; Jia, C. Self-assembled hydrophobic molecule-based surface modification: A strategy to improve efficiency and stability of perovskite solar cells. ACS Sustain. Chem. Eng. 2020, 8, 10859–10869. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, B.; Li, X.; Zhang, J.; Zhang, L. Enhanced efficiency of perovskite solar cells by PbS quantum dot modification. Appl. Surf. Sci. 2019, 487, 32–40. [Google Scholar] [CrossRef]
- Wang, G.; Wang, C.; Gao, Y.; Wen, S.; MacKenzie, R.C.; Guo, L.; Ruan, S. Passivation agent with dipole moment for surface modification towards efficient and stable perovskite solar cells. J. Energy Chem. 2022, 64, 55–61. [Google Scholar] [CrossRef]
- Chen, R.; Long, B.; Wang, S.; Liu, Y.; Bai, J.; Huang, S.; Chen, X. Efficient and Stable Perovskite Solar Cells Using Bathocuproine Bilateral-Modified Perovskite Layers. ACS Appl. Mater. Interfaces 2021, 13, 24747–24755. [Google Scholar] [CrossRef]
- Seo, J.; Park, S.; Kim, Y.C.; Jeon, N.J.; Noh, J.H.; Yoon, S.C.; Seok, S.I. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 2014, 7, 2642–2646. [Google Scholar] [CrossRef]
- Jeng, J.Y.; Chiang, Y.F.; Lee, M.H.; Peng, S.R.; Guo, T.F.; Chen, P.; Wen, T.C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef]
- Zuo, L.; Gu, Z.; Ye, T.; Fu, W.; Wu, G.; Li, H.; Chen, H. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 2015, 137, 2674–2679. [Google Scholar] [CrossRef]
- Eperon, G.E.; Burlakov, V.M.; Docampo, P.; Goriely, A.; Snaith, H.J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157. [Google Scholar] [CrossRef]
- Huang, J.; Gu, Z.; Zuo, L.; Ye, T.; Chen, H. Morphology control of planar heterojunction perovskite solar cells with fluorinated PDI films as organic electron transport layer. Sol. Energy 2016, 133, 331–338. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Lee, S.; Kang, R.; Kim, J.-E.; Yeo, J.-S.; Lee, S.-H.; Kim, S.-S.; Yun, J.-M.; Kim, D.-Y. Planar heterojunction perovskite solar cells with superior reproducibility. Sci. Rep. 2014, 4, 6953. [Google Scholar] [CrossRef] [Green Version]
- Ergen, O.; Gilbert, S.M.; Pham, T.; Turner, S.J.; Tan, M.T.Z.; Worsley, M.A.; Zettl, A. Graded bandgap perovskite solar cells. Nat. Mater. 2017, 16, 522–525. [Google Scholar] [CrossRef]
- Tang, H.; He, S.; Peng, C. A short progress report on high-efficiency perovskite solar cells. Nanoscale Res. Lett. 2017, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Malinkiewicz, O.; Yella, A.; Lee, Y.H.; Espallargas, G.M.; Graetzel, M.; Nazeeruddin, M.K.; Bolink, H.J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128–132. [Google Scholar] [CrossRef]
- Larson, R.G.; Rehg, T.J. Spin coating. In Liquid Film Coating: Scientific Principles and Their Technological Implications; Springer: Berlin/Heidelberg, Germany, 1997; pp. 709–734. [Google Scholar]
- Tzounis, L.; Stergiopoulos, T.; Zachariadis, A.; Gravalidis, C.; Laskarakis, A.; Logothetidis, S. Perovskite solar cells from small scale spin coating process towards roll-to-roll printing: Optical and morphological studies. Mater. Today Proc. 2017, 4, 5082–5089. [Google Scholar] [CrossRef]
- Shalan, A.E. Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Mater. Adv. 2020, 1, 292–309. [Google Scholar] [CrossRef]
- Mathies, F.; Abzieher, T.; Hochstuhl, A.; Glaser, K.; Colsmann, A.; Paetzold, U.W.; Quintilla, A. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. J. Mater. Chem. A 2016, 4, 19207–19213. [Google Scholar] [CrossRef]
- Liang, C.; Li, P.; Gu, H.; Zhang, Y.; Li, F.; Song, Y.; Shao, G.; Mathews, N.; Xing, G. One-step inkjet printed perovskite in air for efficient light harvesting. Sol. RRL 2018, 2, 1700217. [Google Scholar] [CrossRef]
- Li, P.; Liang, C.; Bao, B.; Li, Y.; Hu, X.; Wang, Y.; Song, Y. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy 2018, 46, 203–211. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Gao, F.; Yin, Z.; Zhang, X.; You, J. Research progress in large-area perovskite solar cells. Photonics Res. 2020, 8, A1–A15. [Google Scholar] [CrossRef]
- Tait, J.G.; Manghooli, S.; Qiu, W.; Rakocevic, L.; Kootstra, L.; Jaysankar, M.; Poortmans, J. Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J. Mater. Chem. A 2016, 4, 3792–3797. [Google Scholar] [CrossRef]
- Ye, F.; Chen, H.; Xie, F.; Tang, W.; Yin, M.; He, J.; Han, L. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci. 2016, 9, 2295–2301. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Han, L. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Han, L. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 2017, 29, 1701073. [Google Scholar] [CrossRef] [PubMed]
- Di Giacomo, F.; Fakharuddin, A.; Jose, R.; Brown, T.M. Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 2016, 9, 3007–3035. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Zuo, Z.; Cui, J.; Shen, Y.; Moehl, T.; Zakeeruddin, S.M.; Wang, M. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 2015, 17, 171–179. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Jiang, Q.; Chu, W.; Zhang, D.; Zhou, Z.; Xin, J. Synergistic effect to high-performance perovskite solar cells with reduced hysteresis and improved stability by the introduction of Na-treated TiO2 and spraying-deposited CuI as transport layers. ACS Appl. Mater. Interfaces 2017, 9, 41354–41362. [Google Scholar] [CrossRef]
- Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Q.; Yuan, Y.; Huang, J. Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Mater. Horiz. 2015, 2, 578–583. [Google Scholar] [CrossRef]
- Wu, W.Q.; Yang, Z.; Rudd, P.N.; Shao, Y.; Dai, X.; Wei, H.; Huang, J. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 2019, 5, eaav8925. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Munir, R.; Li, J.; Tang, M.C.; Niazi, M.R.; Smilgies, D.M.; Amassian, A. Blade-coated hybrid perovskite solar cells with efficiency> 17%: An in situ investigation. ACS Energy Lett. 2018, 3, 1078–1085. [Google Scholar] [CrossRef]
- Lin, Y.; Ye, X.; Wu, Z.; Zhang, C.; Zhang, Y.; Su, H.; Li, J. Manipulation of the crystallization of perovskite films induced by a rotating magnetic field during blade coating in air. J. Mater. Chem. A 2018, 6, 3986–3995. [Google Scholar] [CrossRef]
- Li, J.; Munir, R.; Fan, Y.; Niu, T.; Liu, Y.; Zhong, Y.; Liu, S.F. Phase transition control for high-performance blade-coated perovskite solar cells. Joule 2018, 2, 1313–1330. [Google Scholar] [CrossRef] [Green Version]
- Razza, S.; Di Giacomo, F.; Matteocci, F.; Cina, L.; Palma, A.L.; Casaluci, S.; Di Carlo, A. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J. Power Sources 2015, 277, 286–291. [Google Scholar] [CrossRef]
- Deng, Y.; Van Brackle, C.H.; Dai, X.; Zhao, J.; Chen, B.; Huang, J. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 2019, 5, eaax7537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Bu, T.; Li, J.; Li, H.; Mo, Y.; Wu, Z.; Huang, F. Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules. J. Mater. Chem. A 2020, 8, 8447–8454. [Google Scholar] [CrossRef]
- Ding, X.; Liu, J.; Harris, T.A. A review of the operating limits in slot die coating processes. AIChE J. 2016, 62, 2508–2524. [Google Scholar] [CrossRef]
- Whitaker, J.B.; Kim, D.H.; Larson, B.W.; Zhang, F.; Berry, J.J.; van Hest, M.F.; Zhu, K. Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels 2018, 2, 2442–2449. [Google Scholar] [CrossRef]
- Zuo, C.; Vak, D.; Angmo, D.; Ding, L.; Gao, M. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 2018, 46, 185–192. [Google Scholar] [CrossRef]
- Chauhan, J.; Mehto, V.R.; Mehto, A.; Thakur, P. Structural and Optical Study of CdSe Q-dots. Int. J. Nanomater. Nanostruct. 2021, 8, 25–30. [Google Scholar]
- Meng, H.; Zhang, F.; Mo, C.; Xia, Q.; Zhong, M.; Jun, H. Energy transfer in hybrid 0D-CdSe quantum dot/2D-WSe2 near-infrared photodetectors. J. Phys. D Appl. Phys. 2022, 55, 444006. [Google Scholar] [CrossRef]
- Markna, J.H.; Rathod, P.K. Review on the efficiency of quantum dot sensitized solar cell: Insights into photoanodes and QD sensitizers. Dye. Pigment. 2022, 199, 110094. [Google Scholar] [CrossRef]
- Ba, K.; Wang, J. Advances in solution-processed quantum dots based hybrid structures for infrared photodetector. Mater. Today 2022, 58, 119–134. [Google Scholar] [CrossRef]
- Maiti, S.; Dana, J.; Ghosh, H.N. Correlating Charge-Carrier Dynamics with Efficiency in Quantum-Dot Solar Cells: Can Excitonics Lead to Highly Efficient Devices? Chem.—A Eur. J. 2019, 25, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; du Fossé, I.; Jia, X.; Xu, J.; Yu, X.; Zhang, H.; Wang, H.I. Long-lived charge separation following pump-wavelength–dependent ultrafast charge transfer in graphene/WS2 heterostructures. Sci. Adv. 2021, 7, eabd9061. [Google Scholar] [CrossRef] [PubMed]
- Luther, J.M.; Gao, J.; Lloyd, M.T.; Semonin, O.E.; Beard, M.C.; Nozik, A.J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J.; Yuan, Y.; Wang, L. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5, 79–88. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Sahu, A.; Ashish, G.; Ambesh, D. A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency. Sol. Energy 2022, 203, 210–239. [Google Scholar] [CrossRef]
- Basit, M.A.; Abbas, M.A.; Jung, E.S.; Bang, J.H.; Park, T.J. Improved light absorbance and quantum-dot loading by macroporous TiO2 photoanode for PbS quantum-dot-sensitized solar cells. Mater. Chem. Phys. 2017, 196, 170–176. [Google Scholar] [CrossRef]
- Dong, L.; Wang, S.; Chen, L.; Jin, X. CdS QD-CQD co-sensitized TiO2 solar cells: Preparation and photoelectrochemical properties. Mater. Technol. 2019, 34, 59–67. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Rajalakshmi, S. Performance of perovskite and quantum dot sensitized solar cell based on ZnO photoanode structure. Mater. Today Proc. 2020, 22, 400–403. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, W.; Yang, H.; Li, Y.; Chen, Y.; Sun, M.; Tian, L. CdS quantum dots sensitized SnO2 photoelectrode for photoelectrochemical application. Electrochim. Acta 2013, 89, 510–515. [Google Scholar] [CrossRef]
- Park, J.; Sajjad, M.T.; Jouneau, P.H.; Ruseckas, A.; Faure-Vincent, J.; Samuel, I.D.; Aldakov, D. Efficient eco-friendly inverted quantum dot sensitized solar cells. J. Mater. Chem. A 2016, 4, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, N.; Darvekar, S.; Nasikkar, P.; Kulkarni, A.; Tagad, C. Recent developments on green synthesised nanomaterials and their application in dye-sensitised solar cells. Int. J. Ambient. Energy 2022, 43, 7133–7149. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Wu, C.; Li, R.; Lin, J.; Liu, Y.; Zhang, X. Noncorrosive necking treatment of the mesoporous BaSnO3 photoanode for quantum dot-sensitized solar cells. Sol. Energy 2020, 208, 527–531. [Google Scholar] [CrossRef]
- Mathpal, M.C.; Kumar, P.; Aragón, F.H.; Soler, M.A.; Swart, H.C. Basic concepts, engineering, and advances in dye-sensitized solar cells. In Solar Cells; Springer: Cham, Switzerland, 2020; pp. 185–233. [Google Scholar]
- Archana, T.; Vijayakumar, K.; Arivanandhan, M.; Jayavel, R. TiO2 nanostructures with controlled morphology for improved electrical properties of photoanodes and quantum dot sensitized solar cell characteristics. Surf. Interfaces 2019, 17, 100350. [Google Scholar] [CrossRef]
- Maiti, S.; Azlan, F.; Jadhav, Y.; Dana, J.; Anand, P.; Haram, S.K.; Ghosh, H.N. Efficient charge transport in surface engineered TiO2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells. Sol. Energy 2019, 181, 195–202. [Google Scholar] [CrossRef]
- Shen, G.; Du, Z.; Pan, Z.; Du, J.; Zhong, X. Solar paint from TiO2 particles supported quantum dots for photoanodes in quantum dot–sensitized solar cells. ACS Omega 2018, 3, 1102–1109. [Google Scholar] [CrossRef]
- Huang, X.; Huang, S.; Zhang, Q.; Guo, X.; Li, D.; Luo, Y.; Meng, Q. A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). Chem. Commun. 2011, 47, 2664–2666. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, L.; Zhang, X.; Duan, L.; Li, X.; Yang, X.; Lü, W. Carbon nanoparticle template assisted formation of mesoporous TiO2 photoanodes for quantum dot-sensitized solar cells. New J. Chem. 2019, 43, 5374–5381. [Google Scholar] [CrossRef]
- Zhu, G.; Pan, L.; Xu, T.; Sun, Z. CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl. Mater. Interfaces 2011, 3, 3146–3151. [Google Scholar] [CrossRef]
- Sanehira, E.M.; Marshall, A.R.; Christians, J.A.; Harvey, S.P.; Ciesielski, P.N.; Wheeler, L.M.; Luther, J.M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Perkins, C.L.; Luther, J.M.; Hanna, M.C.; Chen, H.Y.; Semonin, O.E.; Beard, M.C. n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 2011, 11, 3263–3266. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Church, C.P.; Miller, E.M.; Luther, J.M.; Klimov, V.I.; Beard, M.C. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010–6015. [Google Scholar] [CrossRef]
- Kim, S.; Marshall, A.R.; Kroupa, D.M.; Miller, E.M.; Luther, J.M.; Jeong, S.; Beard, M.C. Air-stable and efficient PbSe quantum-dot solar cells based upon ZnSe to PbSe cation-exchanged quantum dots. ACS Nano 2015, 9, 8157–8164. [Google Scholar] [CrossRef]
- Santra, P.K.; Kamat, P.V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511. [Google Scholar] [CrossRef]
- Zhu, G.; Xu, T.; Lv, T.; Pan, L.; Zhao, Q.; Sun, Z. Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J. Electroanal. Chem. 2011, 650, 248–251. [Google Scholar] [CrossRef]
- Singh, N.; Salam, Z.; Subasri, A.; Sivasankar, N.; Subramania, A. Development of porous TiO2 nanofibers by solvosonication process for high performance quantum dot sensitized solar cell. Sol. Energy Mater. Sol. Cells 2018, 179, 417–426. [Google Scholar] [CrossRef]
- Singh, N.; Murugadoss, V.; Nemala, S.; Mallick, S.; Angaiah, S. Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Sol. Energy 2018, 171, 571–579. [Google Scholar] [CrossRef]
- Singh, N.; Murugadoss, V.; Rajavedhanayagam, J.; Angaiah, S. A wide solar spectrum light harvesting Ag2Se quantum dot-sensitized porous TiO2 nanofibers as photoanode for high-performance QDSC. J. Nanopart. Res. 2019, 21, 176. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, J.; Pan, Z.; Zhao, K.; Zhang, H.; Li, Y.; Zhong, X. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem. Mater. 2015, 27, 8398–8405. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, H.; Huang, T.; Zhang, X.; Shi, Z.; Zhou, L.; Tang, G. High-performance TiO2/ZnO photoanodes for CdS quantum dot-sensitized solar cells. J. Electron. Mater. 2019, 48, 7320–7327. [Google Scholar] [CrossRef]
- Li, L.; Yang, X.; Zhang, W.; Zhang, H.; Li, X. Boron and sulfur co-doped TiO2 nanofilm as effective photoanode for high efficiency CdS quantum-dot-sensitized solar cells. J. Power Sources 2014, 272, 508–512. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, H.; Bao, H.; Zhong, X. Optimization of TiO2 photoanode films for highly efficient quantum dot-sensitized solar cells. J. Mater. Chem. A 2014, 2, 13033–13040. [Google Scholar] [CrossRef]
- Kumar, P.N.; Das, A.; Deepa, M. Nitrogen doping of TiO2 and annealing treatment of photoanode for enhanced solar cell performance. J. Alloys Compd. 2020, 832, 154880. [Google Scholar] [CrossRef]
- Kottayi, R.; Panneerselvam, P.; Murugadoss, V.; Sittaramane, R.; Angaiah, S. Cu2AgInSe4 QDs sensitized electrospun porous TiO2 nanofibers as an efficient photoanode for quantum dot sensitized solar cells. Sol. Energy 2020, 199, 317–325. [Google Scholar] [CrossRef]
- Meng, K.; Surolia, P.K.; Thampi, K.R. BaTiO3 photoelectrodes for CdS quantum dot sensitized solar cells. J. Mater. Chem. A 2014, 2, 10231–10238. [Google Scholar] [CrossRef]
- Lan, Z.; Liu, L.; Huang, M.; Wu, J.; Lin, J. Preparation of nano-flower-like SnO2 particles and their applications in efficient CdS quantum dots sensitized solar cells. J. Mater. Sci. Mater. Electron. 2015, 26, 7914–7920. [Google Scholar] [CrossRef]
- Huang, Q.; Li, F.; Gong, Y.; Luo, J.; Yang, S.; Luo, Y.; Meng, Q. Recombination in SnO2-based quantum dots sensitized solar cells: The role of surface states. J. Phys. Chem. C 2013, 117, 10965–10973. [Google Scholar] [CrossRef]
- Alvarado, J.A.; Luo, J.; Juarez, H.; Pacio, M.; Cortes-Santiago, A.; Liang, L.; Cao, G. Vacuum-Evaporated ZnO Photoanode, Applied in Quantum Dot-Sensitized Solar Cells (CdS-CdSe). Phys. Status Solidi 2018, 215, 1800356. [Google Scholar] [CrossRef]
- Li, C.; Yang, L.; Xiao, J.; Wu, Y.C.; Søndergaard, M.; Luo, Y.; Iversen, B.B. ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8710–8715. [Google Scholar] [CrossRef]
- Chuang CH, M.; Brown, P.R.; Bulović, V.; Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhang, Q.; Uchaker, E.; Liang, Z.; Gao, R.; Qu, X.; Cao, G. Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 2013, 1, 6770–6775. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, Y.; Wu, J.; Tu, Y.; Zhang, X.; Fang, B. Improved performance of quantum dots sensitized solar cells using ZnO hierarchical spheres as photoanodes. Ceram. Int. 2015, 41, 14501–14507. [Google Scholar] [CrossRef]
- Tyagi, J.; Gupta, H.; Purohit, L.P. Cascade Structured ZnO/TiO2/CdS quantum dot sensitized solar cell. Solid State Sci. 2020, 102, 106176. [Google Scholar] [CrossRef]
- Khodam, F.; Amani-Ghadim, A.R.; Aber, S. Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties. Sol. Energy 2019, 181, 325–332. [Google Scholar] [CrossRef]
- Yu, J.; Li, D.; Zhu, L.; Xu, X. Application of ZnTiO3 in quantum-dot-sensitized solar cells and numerical simulations using first-principles theory. J. Alloys Compd. 2016, 681, 88–95. [Google Scholar] [CrossRef]
- Sundheep, R.; Asok, A.; Prasanth, R. Surface engineering of CdTe quantum dots using ethanol as a co-solvent for enhanced current conversion efficiency in QDSSC. Sol. Energy 2019, 180, 501–509. [Google Scholar] [CrossRef]
- Nozik, A.J. Quantum dot solar cells. Phys. E Low-Dimens. Syst. Nanostruct. 2002, 14, 115–120. [Google Scholar] [CrossRef]
- Hu, L.; Geng, X.; Singh, S.; Shi, J.; Hu, Y.; Li, S.; Wu, T. Synergistic effect of electron transport layer and colloidal quantum dot solid enable PbSe quantum dot solar cell achieving over 10% efficiency. Nano Energy 2019, 64, 103922. [Google Scholar] [CrossRef]
- Zaban AM, O.I.; Mićić, O.I.; Gregg, B.A.; Nozik, A.J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 1998, 14, 3153–3156. [Google Scholar] [CrossRef]
- Saeed, S.; Iqbal, A.; Iqbal, A. Photoinduced charge carrier dynamics in a ZnSe quantum dot-attached CdTe system. Proc. R. Soc. A 2020, 476, 20190616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadpour, M.; Jun, H.K.; Parand, P.; Najafi, M.N. CdS quantum dots pre-deposition for efficiency enhancement of quantum dot-sensitized solar cells. Sol. Energy 2019, 188, 825–830. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. Recent developments of solar cells from PbS colloidal quantum dots. Appl. Sci. 2020, 10, 1743. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, F.; Yuan, J.; Zhang, Y.; Gu, M.; Xu, Y.; Ma, W. Toward scalable PbS quantum dot solar cells using a tailored polymeric hole conductor. ACS Energy Lett. 2019, 4, 2850–2858. [Google Scholar] [CrossRef]
- Badawi, A. Effect of the non-toxic Ag2S quantum dots size on their optical properties for environment-friendly applications. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 109, 107–113. [Google Scholar] [CrossRef]
- Peter, I.J.; Dhinakaran, S.; Ramachandran, K.; Nithiananthi, P. Performance of TiO2/CdS/Bi2S3 heterostructure based semiconductor sensitized solar cell. In AIP Conference Proceedings; AIP Publishing LLC.: Melville, NY, USA, 2019; Volume 2115, p. 030557. [Google Scholar]
- Fu, B.; Deng, C.; Yang, L. Efficiency enhancement of solid-state CuInS2 quantum dot-sensitized solar cells by improving the charge recombination. Nanoscale Res. Lett. 2019, 14, 198. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Zhu, K.; Norman, A.G.; Ferrere, S.; Frank, A.J.; Nozik, A.J. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 2006, 110, 25451–25454. [Google Scholar] [CrossRef]
- Suriyawong, N.; Aragaw, B.; Shi, J.B.; Lee, M.W. Ternary CuBiS2 nanoparticles as a sensitizer for quantum dot solar cells. J. Colloid Interface Sci. 2016, 473, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Song, B.; Li, H.; Zhou, J.; Dong, W.; Zhao, G.; Han, G. Strategy for performance enhancement of Cd1-XZnXTe/CdS core/shell quantum dot sensitized solar cells through band adjustment. J. Alloys Compd. 2020, 826, 154050. [Google Scholar] [CrossRef]
- Mirahmadi, F.S.; Marandi, M.; Karimipour, M.; Molaei, M. Microwave activated synthesis of Ag2S and Ag2S@ ZnS nanocrystals and their application in well-performing quantum dot sensitized solar cells. Sol. Energy 2020, 202, 155–163. [Google Scholar] [CrossRef]
- Li, W.; Yang, J.; Jiang, Q.; Luo, Y.; Hou, Y.; Zhou, S.; Zhou, Z. Electrochemical atomic layer deposition of Bi2S3/Sb2S3 quantum dots co-sensitized TiO2 nanorods solar cells. J. Power Sources 2016, 307, 690–696. [Google Scholar] [CrossRef]
- Ca, N.X.; Hien, N.T.; Luyen, N.T.; Lien VT, K.; Thanh, L.D.; Do, P.V.; Pham, T.T. Photoluminescence properties of CdTe/CdTeSe/CdSe core/alloyed/shell type-II quantum dots. J. Alloys Compd. 2019, 787, 823–830. [Google Scholar] [CrossRef]
- Zheng, X.; Das, S.; Gu, Y.; Liu, S.; Zhao, J. Optimal engineering of CdS/PbS co-sensitized TiO2 nanotube arrays for enhanced photoelectrochemical performance. Ceram. Int. 2020, 46, 12050–12058. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Liu, J.; Liu, S.; Wang, C.; Ge, Z.; Xiao, H. The photovoltaic performance of CdS/CdSe quantum dots co-sensitized solar cells based on zinc titanium mixed metal oxides. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 115, 113669. [Google Scholar] [CrossRef]
- Marandi, M.; Mirahmadi, F.S. Aqueous synthesis of the CdTe NCs and influence of size on photovoltaic performance of the CdS/CdTe co-sensitized solar cells. J. Alloys Compd. 2019, 800, 140–149. [Google Scholar] [CrossRef]
- Zavaraki, A.J.; Liu, Q.; Ågren, H. Solar cell sensitized with “green” InP-ZnS quantum dots: Effect of ZnS shell deposition. Nano-Struct. Nano-Objects 2020, 22, 100461. [Google Scholar] [CrossRef]
- Choi, Y.; Seol, M.; Kim, W.; Yong, K. Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dot-sensitized solar cell application. J. Phys. Chem. C 2014, 118, 5664–5670. [Google Scholar] [CrossRef]
- Becker, M.A.; Radich, E.J.; Bunker, B.A.; Kamat, P.V. How does a SILAR CdSe film grow? Tuning the deposition steps to suppress interfacial charge recombination in solar cells. J. Phys. Chem. Lett. 2014, 5, 1575–1582. [Google Scholar] [CrossRef]
- Punnoose, D.; Suh, S.M.; Kim, B.J.; Kumar, C.S.P.; Rao, S.S.; Thulasi-Varma, C.V.; Kim, H.J. The influence of in situ deposition techniques on PbS seeded CdS/CdSe for enhancing the photovoltaic performance of quantum dot sensitized solar cells. J. Electroanal. Chem. 2016, 773, 27–38. [Google Scholar] [CrossRef]
- Kyaw HM, A.; Noor AF, M.; Kawamura, G.; Matsuda, A.; Yaacob, K.A. Effect of CdSe thickness deposited by electrophoretic deposition for quantum-dot-sensitized solar cell. Mater. Today Proc. 2019, 16, 196–200. [Google Scholar] [CrossRef]
- Salant, A.; Shalom, M.; Hod, I.; Faust, A.; Zaban, A.; Banin, U. Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 2010, 4, 5962–5968. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, G.; Yu, J.; Wang, W.; Pan, Z.; Nakazawa, N.; Zhong, X. High efficiency quantum dot sensitized solar cells based on direct adsorption of quantum dots on photoanodes. ACS Appl. Mater. Interfaces 2017, 9, 22549–22559. [Google Scholar] [CrossRef] [PubMed]
- Veerathangam, K.; Pandian, M.S.; Ramasamy, P. Incorporation of Co2+ in CdS quantum dots for solar cell applications. Mater. Sci. Semicond. Process. 2020, 108, 104869. [Google Scholar] [CrossRef]
- Ganguly, A.; Nath, S.S. Mn-doped CdS quantum dots as sensitizers in solar cells. Mater. Sci. Eng. B 2020, 255, 114532. [Google Scholar] [CrossRef]
- Dissanayake, M.A.K.L.; Jaseetharan, T.; Senadeera, G.K.R.; Thotawatthage, C.A. A novel, PbS: Hg quantum dot-sensitized, highly efficient solar cell structure with triple layered TiO2 photoanode. Electrochim. Acta 2018, 269, 172–179. [Google Scholar] [CrossRef]
- Tung, H.T.; Van Thuan, D.; Kiat, J.H.; Phuc, D.H. Ag+ ion doped on the CdSe quantum dots for quantum-dot-sensitized solar cells’ application. Appl. Phys. A 2019, 125, 505. [Google Scholar] [CrossRef]
- Li, L.; Zou, X.; Zhou, H.; Teng, G. Cu-doped-CdS/In-doped-CdS cosensitized quantum dot solar cells. J. Nanomater. 2014, 2014, 314386. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kwak, W.C.; Min, S.K.; Lee, J.C.; Chae, W.S.; Sung, Y.M.; Han, S.H. Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals. Electrochem. Commun. 2008, 10, 1699–1702. [Google Scholar] [CrossRef]
- Marandi, M.; Torabi, N.; Farahani, F.A. Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer. Sol. Energy 2020, 207, 32–39. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, S.; Xu, Z.; Zhang, J.; Ma, F.; Peng, S. Enhanced performance of CdS/CdSe quantum dot-sensitized solar cells by long-persistence phosphors structural layer. Sci. China Mater. 2020, 63, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Huang, S.; Patterson, R.; Halpert, J.E. Enhanced mobility in PbS quantum dot films via PbSe quantum dot mixing for optoelectronic applications. J. Mater. Chem. C 2019, 7, 4497–4502. [Google Scholar] [CrossRef]
- Ma, C.; Shi, C.; Lv, K.; Ying, C.; Fan, S.; Yang, Y. Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells. Nanoscale 2019, 11, 8402–8407. [Google Scholar] [CrossRef]
- Jun, H.K.; Careem, M.A.; Arof, A.K. Quantum dot-sensitized solar cells—Perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. Renew. Sustain. Energy Rev. 2013, 22, 148–167. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, Z.; Li, F.; Xia, Z.; Yang, Y.; Xu, L. First application of CoO nanorods as efficient counter electrode for quantum dots-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2020, 206, 110307. [Google Scholar] [CrossRef]
- Shen, X.; Jia, J.; Lin, Y.; Zhou, X. Enhanced performance of CdTe quantum dot sensitized solar cell via anion exchanges. J. Power Sources 2015, 277, 215–221. [Google Scholar] [CrossRef]
- Pan, Z.; Mora-Seró, I.; Shen, Q.; Zhang, H.; Li, Y.; Zhao, K.; Bisquert, J. High-efficiency “green” quantum dot solar cells. J. Am. Chem. Soc. 2014, 136, 9203–9210. [Google Scholar] [CrossRef]
- McDaniel, H.; Fuke, N.; Makarov, N.S.; Pietryga, J.M.; Klimov, V.I. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells. Nat. Commun. 2013, 4, 2887. [Google Scholar] [CrossRef] [Green Version]
- Rao, H.; Zhou, M.; Pan, Z.; Zhong, X. Quantum dot materials engineering boosting the quantum dot sensitized solar cell efficiency over 13%. J. Mater. Chem. A 2020, 8, 10233–10241. [Google Scholar] [CrossRef]
- Peng, W.; Du, J.; Pan, Z.; Nakazawa, N.; Sun, J.; Du, Z.; Zhong, X. Alloying strategy in Cu–In–Ga–Se quantum dots for high efficiency quantum dot sensitized solar cells. ACS Appl. Mater. Interfaces 2017, 9, 5328–5336. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Kou, D.; Zhou, W.; Zhou, Z.; Wu, S. Application of quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells based on the hydrolysis approach. Green Chem. 2015, 17, 4377–4382. [Google Scholar] [CrossRef]
- Kottayi, R.; Panneerselvam, P.; Singh, N.; Murugadoss, V.; Sittaramane, R.; Angaiah, S. Influence of a bifunctional linker on the loading of Cu2AgInS4 QDs onto porous TiO2 NFs to use as an efficient photoanode to boost the photoconversion efficiency of QDSCs. New J. Chem. 2020, 44, 13148–13156. [Google Scholar] [CrossRef]
- Song, H.; Lin, Y.; Zhou, M.; Rao, H.; Pan, Z.; Zhong, X. Zn-Cu-In-S-Se Quinary “Green” Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4%. Angew. Chem. Int. Ed. 2021, 60, 6137–6144. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Xu, S.; Zhang, M.; Zhong, W.; Xiao, Z.; Luo, Y. Green allium fistulosum derived nitrogen self-doped carbon dots for quantum dot-sensitized solar cells. Mater. Chem. Phys. 2020, 240, 122158. [Google Scholar] [CrossRef]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 2018, 119, 3418–3451. [Google Scholar] [CrossRef]
- Kari, M.; Saghafi, K. Current-voltage hysteresis reduction of CH3NH3PbI3 planar perovskite solar cell by multi-layer absorber. Micro Nanostruct. 2022, 165, 207207. [Google Scholar] [CrossRef]
- Lin, Z. Relationship between ion vacancy mobility and hysteresis of perovskite solar cells. Chem. Phys. 2022, 554, 111422. [Google Scholar] [CrossRef]
- Wu, F.; Pathak, R.; Qiao, Q. Origin and alleviation of JV hysteresis in perovskite solar cells: A short review. Catal. Today 2021, 374, 86–101. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, X.; Yang, J.; Qiu, Q.; Xie, T.; Liang, T. Application of quantum dot interface modification layer in perovskite solar cells: Progress and perspectives. Nanomaterials 2022, 12, 2102. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Biesold, G.M.; Zhang, M.; Wang, W.; Bai, T.; Lin, Z. Multifunctional quantum dot materials for perovskite solar cells: Charge transport, efficiency and stability. Nano Today 2021, 40, 101286. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, Y.; Ren, W.; Sunli, Z.; Xie, X.; Cui, Y.; Hao, Y. Application of quantum dots in perovskite solar cells. Nanotechnology 2021, 32, 482003. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Chen, C.; Li, H.; Cheng, Y.; Xu, L.; Dong, B.; Dai, Q. Enhanced performance and photostability of perovskite solar cells by introduction of fluorescent carbon dots. ACS Appl. Mater. Interfaces 2017, 9, 14518–14524. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Huang, W.; Yao, E.P.; Han, J.; Chen, Z.; Yang, Y. Carbon quantum dots/TiO x electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%. Nano Lett. 2017, 17, 2328–2335. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, J.; Yuan, S.; Li, N.; Qiu, Z.; Jia, J.; Cao, B. Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer. New J. Chem. 2019, 43, 7130–7135. [Google Scholar] [CrossRef]
- Chen, J.; Dong, H.; Zhang, L.; Li, J.; Jia, F.; Jiao, B.; Wu, Z. Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22%. J. Mater. Chem. A 2020, 8, 2644–2653. [Google Scholar] [CrossRef]
- Hui, W.; Yang, Y.; Xu, Q.; Gu, H.; Feng, S.; Su, Z.; Huang, W. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 1906374. [Google Scholar] [CrossRef]
- Nagaraj, G.; Mohammed, M.K.; Shekargoftar, M.; Sasikumar, P.; Sakthivel, P.; Ravi, G.; Shalan, A.E. High-performance perovskite solar cells using the graphene quantum dot–modified SnO2/ZnO photoelectrode. Mater. Today Energy 2021, 22, 100853. [Google Scholar] [CrossRef]
- Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Yang, D. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. Acs Nano 2017, 11, 9176–9182. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, W.; Jiang, Z.; Zhang, Y.; Ni, C. Graphene quantum dots doping SnO2 for improving carrier transport of perovskite solar cells. Ceram. Int. 2021, 47, 29712–29721. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kermanpur, A.; Atapour, M.; Adhami, S.; Heidari, R.H.; Khorshidi, E.; Rezaie, B. Performance enhancement of mesoscopic perovskite solar cells with GQDs-doped TiO2 electron transport layer. Sol. Energy Mater. Sol. Cells 2020, 208, 110407. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, J.; Arivazhagan, V.; Xiao, K.; Qiang, Y.; Huang, K.; Yang, D. Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer. Nano Energy 2017, 40, 345–351. [Google Scholar] [CrossRef]
- Pang, S.; Zhang, C.; Zhang, H.; Dong, H.; Chen, D.; Zhu, W.; Hao, Y. Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers. Appl. Surf. Sci. 2020, 507, 145099. [Google Scholar] [CrossRef]
- Shen, D.; Zhang, W.; Xie, F.; Li, Y.; Abate, A.; Wei, M. Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells. J. Power Sources 2018, 402, 320–326. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, S.; Yin, X.; Han, J.; Tai, M.; Zhao, X.; Lin, H. Enhancing electron transport via graphene quantum dot/SnO2 composites for efficient and durable flexible perovskite photovoltaics. J. Mater. Chem. A 2019, 7, 1878–1888. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, T.; Leng, C.; Zang, Z.; Wang, M.; Hu, W.; Zhou, M. Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer. J. Mater. Chem. A 2017, 5, 17499–17505. [Google Scholar] [CrossRef]
- Ali, S.M.; Ramay, S.M.; Aziz, M.H.; AlGarawi, M.S.; AlGhamd, S.S.; Mahmood, A.; Atiq, S. Efficiency enhancement of perovskite solar cells by incorporation of CdS quantum dot through fast electron injection. Org. Electron. 2018, 62, 21–25. [Google Scholar] [CrossRef]
- Kumnorkaew, P.; Rattanawichai, N.; Ratanatawanate, C.; Yoriya, S.; Lohawet, K.; Zhao, Y.; Vas-Umnuay, P. Influence of PbS quantum dots-doped TiO2 nanotubes in TiO2 film as an electron transport layer for enhanced perovskite solar cell performance. IEEE J. Photovolt. 2019, 10, 287–295. [Google Scholar] [CrossRef]
- Pang, Z.; Yang, S.; Sun, Y.; He, L.; Wang, F.; Fan, L.; Yang, J. Hydrophobic PbS QDs layer decorated ZnO electron transport layer to boost photovoltaic performance of perovskite solar cells. Chem. Eng. J. 2022, 439, 135701. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Wu, Y.; Zhou, Q.; Shi, Z.; Zhuang, X.; Song, H. Double-layer synergistic optimization by functional black phosphorus quantum dots for high-efficiency and stable planar perovskite solar cells. Nano Energy 2021, 90, 106610. [Google Scholar] [CrossRef]
- Gu, B.; Du, Y.; Chen, B.; Zhao, R.; Lu, H.; Xu, Q.; Guo, C. Black Phosphorus Quantum Dot-Engineered Tin Oxide Electron Transport Layer for Highly Stable Perovskite Solar Cells with Negligible Hysteresis. ACS Appl. Mater. Interfaces 2022, 14, 11264–11272. [Google Scholar] [CrossRef]
- Zhou, J.; Lyu, M.; Zhu, J.; Li, G.; Li, Y.; Jin, S.; Zhou, R. SnO2 Quantum Dot-Modified Mesoporous TiO2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 3052–3063. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Q.; Wang, M.; Ma, H.; Pei, M.; Bian, J.; Shi, Y. Efficient Planar Perovskite Solar Cells with Carbon Quantum Dot-Modified spiro-MeOTAD as a Composite Hole Transport Layer. ACS Appl. Mater. Interfaces 2021, 13, 56265–56272. [Google Scholar] [CrossRef]
- Benetti, D.; Jokar, E.; Yu, C.H.; Fathi, A.; Zhao, H.; Vomiero, A.; Rosei, F. Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material. Nano Energy 2019, 62, 781–790. [Google Scholar] [CrossRef]
- Kim, J.K.; Nguyen, D.N.; Lee, J.H.; Kang, S.; Kim, Y.; Kim, S.S.; Kim, H.K. Carbon quantum dot-incorporated nickel oxide for planar pin type perovskite solar cells with enhanced efficiency and stability. J. Alloys Compd. 2020, 818, 152887. [Google Scholar] [CrossRef]
- Li, W.; Cheng, N.; Cao, Y.; Zhao, Z.; Xiao, Z.; Zi, W.; Sun, Z. Boost the performance of inverted perovskite solar cells with PEDOT: PSS/graphene quantum dots composite hole transporting layer. Org. Electron. 2020, 78, 105575. [Google Scholar] [CrossRef]
- Wang, Z.; Rong, X.; Wang, L.; Wang, W.; Lin, H.; Li, X. Dual role of amino-functionalized graphene quantum dots in NiOx films for efficient inverted flexible perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 8342–8350. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Jin, Z.; Chen, Y.; Liu, H.; Wang, J.; Liu, S. Graphdiyne quantum dots for much improved stability and efficiency of perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1701117. [Google Scholar] [CrossRef]
- Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, Y. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943. [Google Scholar] [CrossRef]
- Zheng, J.; Li, F.; Chen, C.; Du, Q.; Jin, M.; Li, H.; Shen, Z. Perovskite Solar Cells Employing a PbSO4 (PbO)4 Quantum Dot-Doped Spiro-OMeTAD Hole Transport Layer with an Efficiency over 22%. ACS Appl. Mater. Interfaces 2022, 14, 2989–2999. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Seo, H.K.; Nazeeruddin, M.K.; Shin, H.S. An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: Optoelectronic transient and charge trapping studies. J. Phys. Chem. C 2015, 119, 10379–10390. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Tavakoli, R.; Nourbakhsh, Z.; Waleed, A.; Virk, U.S.; Fan, Z. High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 2016, 3, 1500790. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, J.; Zheng, M.; Huo, J.; Zhou, P.; Lan, Z.; Huang, M. TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%. Nanoscale 2015, 7, 20539–20546. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Chen, P.; Yin, X.; Wu, Y.; Que, W. Novel ethanol vapor annealing treatment of SnO2 quantum dots film for highly efficient planar heterojunction perovskite solar cells. Org. Electron. 2020, 84, 105751. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Z.; Wang, H.; Ye, F.; Ma, J.; Zheng, X.; Fang, G. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells. J. Mater. Chem. A 2019, 7, 10636–10643. [Google Scholar] [CrossRef]
- Wang, E.; Chen, P.; Yin, X.; Wu, Y.; Que, W. Tailoring electronic properties of SnO2 quantum dots via aluminum addition for high-efficiency perovskite solar cells. Sol. RRL 2019, 3, 1900041. [Google Scholar] [CrossRef]
- Yang, G.; Chen, C.; Yao, F.; Chen, Z.; Zhang, Q.; Zheng, X.; Fang, G. Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells. Adv. Mater. 2018, 30, 1706023. [Google Scholar] [CrossRef]
- Park, S.Y.; Baek, M.Y.; Ju, Y.; Kim, D.H.; Moon, C.S.; Noh, J.H.; Jung, H.S. Simultaneous ligand exchange fabrication of flexible perovskite solar cells using newly synthesized uniform tin oxide quantum dots. J. Phys. Chem. Lett. 2018, 9, 5460–5467. [Google Scholar] [CrossRef]
- Vijayaraghavan, S.N.; Wall, J.; Li, L.; Xing, G.; Zhang, Q.; Yan, F. Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO2 quantum dot electron transport layer. Mater. Today Phys. 2020, 13, 100204. [Google Scholar] [CrossRef]
- Fu, N.; Huang, C.; Lin, P.; Zhu, M.; Li, T.; Ye, M.; Ke, S. Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. J. Mater. Chem. A 2018, 6, 8886–8894. [Google Scholar] [CrossRef]
- Hu, L.; Wang, W.; Liu, H.; Peng, J.; Cao, H.; Shao, G.; Tang, J. PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3, 515–518. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Huang, Y.; Wei, J.; Liu, F.; Shao, Z.; Dai, S. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots. Nanoscale 2015, 7, 9902–9907. [Google Scholar] [CrossRef] [PubMed]
- Paulo, S.; Stoica, G.; Cambarau, W.; Martinez-Ferrero, E.; Palomares, E. Carbon quantum dots as new hole transport material for perovskite solar cells. Synth. Met. 2016, 222, 17–22. [Google Scholar] [CrossRef]
- Zhao, G.; Cai, Q.; Liu, X.; Li, P.; Zhang, Y.; Shao, G.; Liang, C. PbS QDs as electron blocking layer toward efficient and stable perovskite solar cells. IEEE J. Photovolt. 2018, 9, 194–199. [Google Scholar] [CrossRef]
- Majdi, M.; Eskandari, M.; Fathi, D. Textured HTM-free perovskite/PbS quantum dot solar cell: Optical and electrical efficiency improvement by light trapping control. Sol. Energy 2021, 230, 618–627. [Google Scholar] [CrossRef]
- Lv, M.; Zhu, J.; Huang, Y.; Li, Y.; Shao, Z.; Xu, Y.; Dai, S. Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 17482–17488. [Google Scholar] [CrossRef]
- Kim, J.Y.; Baek, W.; Kim, S.; Kang, G.; Han, I.K.; Hyeon, T.; Park, M. Moisture proof hole transport layers based on CISe quantum dots for highly stable and large active area perovskite solar cells. Appl. Surf. Sci. 2019, 496, 143610. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Liu, Y.; Liu, Y.; Gao, H.; Mao, Y. An inorganic hole-transport material of CuInSe2 for stable and efficient perovskite solar cells. Org. Electron. 2019, 67, 168–174. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Ren, D.; Liu, Y.; Zheng, A.; Zakeeruddin, S.M.; Dong, X.; Hagfeldt, A.; Grätzel, M.; Wang, P. SnS quantum dots as hole transporter of perovskite solar cells. Acs Appl. Energy Mater. 2019, 2, 3822–3829. [Google Scholar] [CrossRef]
- Duan, J.; Dou, D.; Zhao, Y.; Wang, Y.; Yang, X.; Yuan, H.; Tang, Q. Spray-assisted deposition of CsPbBr3 films in ambient air for large-area inorganic perovskite solar cells. Mater. Today Energy 2018, 10, 146–152. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, X.; Chen, S.; Zhao, X.; Dai, S.; Xu, B. Hydrophobic Cu2O Quantum Dots Enabled by Surfactant Modification as Top Hole-Transport Materials for Efficient Perovskite Solar Cells. Adv. Sci. 2019, 6, 1801169. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Duan, J.; Yuan, H.; Wang, Y.; Yang, X.; He, B.; Tang, Q. Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as charge-transporting materials for 10.6%-efficiency all-inorganic CsPbBr3 perovskite solar cells with an ultrahigh open-circuit voltage of 1.610 V. Sol. RRL 2019, 3, 1800284. [Google Scholar] [CrossRef]
- Li, F.; Wei, J.; Liao, G.; Guo, C.; Huang, Y.; Zhang, Q.; Li, Q. Quaternary quantum dots with gradient valence band for all-inorganic perovskite solar cells. J. Colloid Interface Sci. 2019, 549, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Q.; Mei, A.; Hu, B.; Yang, Z.; Chen, W. Bandgap aligned Cu12Sb4S13 quantum dots as efficient inorganic hole transport materials in planar perovskite solar cells with enhanced stability. Sustain. Energy Fuels 2019, 3, 831–840. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Yang, Z.; Li, Q.; Wei, W.; Hu, B.; Chen, W. Cu12Sb4S13 quantum dots with ligand exchange as hole transport materials in all-inorganic perovskite CsPbI3 quantum dot solar cells. ACS Appl. Energy Mater. 2020, 3, 3521–3529. [Google Scholar] [CrossRef]
- Tamilselvan, M.; Bhattacharyya, A.J. Tetrahedrite (Cu12Sb4S13) ternary inorganic hole conductor for ambient processed stable Perovskite solar cells. ACS Appl. Energy Mater. 2018, 1, 4227–4234. [Google Scholar] [CrossRef]
- Wu, Q.; Xue, C.; Li, Y.; Zhou, P.; Liu, W.; Zhu, J.; Yang, S. Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 28466–28473. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Deng, Y.Q.; Zhang, P.P.; Kou, D.X.; Zhou, W.H.; Meng, Y.N.; Wu, S.X. Cu2ZnSnS4 Quantum Dots as Hole Transport Material for Enhanced Charge Extraction and Stability in All-Inorganic CsPbBr3 Perovskite Solar Cells. Sol. RRL 2019, 3, 1800354. [Google Scholar] [CrossRef]
- Khanzada, L.S.; Levchuk, I.; Hou, Y.; Azimi, H.; Osvet, A.; Ahmad, R.; Brabec, C.J. Effective ligand engineering of the Cu2ZnSnS4 nanocrystal surface for increasing hole transport efficiency in perovskite solar cells. Adv. Funct. Mater. 2016, 26, 8300–8306. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, X.; Kong, J.; Zhou, W.; Zhou, Z.; Tian, Q.; Kou, D. Controlling the band gap to improve open-circuit voltage in metal chalcogenide based perovskite solar cells. Electrochim. Acta 2016, 215, 374–379. [Google Scholar] [CrossRef]
- Xu, L.; Deng, L.L.; Cao, J.; Wang, X.; Chen, W.Y.; Jiang, Z. Solution-processed Cu (In, Ga)(S, Se)2 nanocrystal as inorganic hole-transporting material for efficient and stable perovskite solar cells. Nanoscale Res. Lett. 2017, 12, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Duan, J.; Zhao, Y.; Jiao, Z.; He, B.; Tang, Q. 9.13%-Efficiency and stable inorganic CsPbBr3 solar cells. Lead-free CsSnBr3-xIx quantum dots promote charge extraction. J. Power Sources 2018, 399, 76–82. [Google Scholar] [CrossRef]
- Im, J.H.; Lee, C.R.; Lee, J.W.; Park, S.W.; Park, N.G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [Green Version]
- Bang, J.H.; Kamat, P.V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3, 1467–1476. [Google Scholar] [CrossRef]
- González-Pedro, V.; Xu, X.; Mora-Sero, I.; Bisquert, J. Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 2010, 4, 5783–5790. [Google Scholar] [CrossRef]
- Yao, Y.; Hang, P.; Li, B.; Hu, Z.; Kan, C.; Xie, J.; Yu, X. Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with over 30% Efficiency. Small 2022, 18, 2203319. [Google Scholar] [CrossRef]
- De Vos, A. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 1980, 13, 839. [Google Scholar] [CrossRef]
- Wali, Q.; Elumalai, N.K.; Iqbal, Y.; Uddin, A.; Jose, R. Tandem perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 84, 89–110. [Google Scholar] [CrossRef]
- Yao, M.; Cong, S.; Arab, S.; Huang, N.; Povinelli, M.L.; Cronin, S.B.; Zhou, C. Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition. Nano Lett. 2015, 15, 7217–7224. [Google Scholar] [CrossRef]
- Saravanan, S.; Kato, R.; Balamurugan, M.; Kaushik, S.; Soga, T. Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles. J. Sci. Adv. Mater. Devices 2017, 2, 418–424. [Google Scholar] [CrossRef]
- Bedair, S.M.; Lamorte, M.F.; Hauser, J.R. A two-junction cascade solar-cell structure. Appl. Phys. Lett. 1979, 34, 38–39. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, S.; Liu, Z.; Yu, K.; Wang, C.; Wu, S.; Pan, X. Fluorescence enhanced microfluidic sensor with CsPbI3 probe for lubricant copper ions on-site rapid detection based on SiO2 inverse opal photonic crystals. J. Lumin. 2021, 238, 118276. [Google Scholar] [CrossRef]
- Gnida, P.; Amin, M.F.; Pająk, A.K.; Jarząbek, B. Polymers in High-Efficiency Solar Cells: The Latest Reports. Polymers 2022, 14, 1946. [Google Scholar] [CrossRef]
- You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Yang, Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, Z.; Zhu, Y.; Feng, X.; Xiu, J.; Zhang, R.; Ma, X.; He, Z. Sputtered Indium-Zinc Oxide for Buffer Layer Free Semitransparent Perovskite Photovoltaic Devices in Perovskite/Silicon 4T-Tandem Solar Cells. Adv. Mater. Interfaces 2021, 8, 2001604. [Google Scholar] [CrossRef]
- Chen, B.; Baek, S.W.; Hou, Y.; Aydin, E.; De Bastiani, M.; Scheffel, B.; Sargent, E.H. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 2020, 11, 1257. [Google Scholar] [CrossRef] [Green Version]
- Park, I.J.; Park, J.H.; Ji, S.G.; Park, M.A.; Jang, J.H.; Kim, J.Y. A three-terminal monolithic perovskite/Si tandem solar cell characterization platform. Joule 2019, 3, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wang, P.; Li, R.; Ren, N.; Chen, Y.; Han, W.; Zhang, X. Composite electron transport layer for efficient nip type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage. J. Energy Chem. 2021, 63, 461–467. [Google Scholar] [CrossRef]
- Aydin, E.; Liu, J.; Ugur, E.; Azmi, R.; Harrison, G.T.; Hou, Y.; De Wolf, S. Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 2021, 14, 4377–4390. [Google Scholar] [CrossRef]
- Lamanna, E.; Matteocci, F.; Calabrò, E.; Serenelli, L.; Salza, E.; Martini, L.; di Carlo, A. Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%. Joule 2020, 4, 865–881. [Google Scholar] [CrossRef]
- Chen, B.; Zhengshan, J.Y.; Manzoor, S.; Wang, S.; Weigand, W.; Yu, Z.; Huang, J. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 2020, 4, 850–864. [Google Scholar] [CrossRef]
- Khan, A.D.; Subhan, F.E.; Khan, A.D.; Khan, S.D.; Ahmad, M.S.; Rehan, M.S.; Noman, M. Optimization of efficient monolithic perovskite/silicon tandem solar cell. Optik 2020, 208, 164573. [Google Scholar]
- Abbasiyan, A.; Noori, M.; Baghban, H. Quasi-periodic selective intermediate structure for perovskite/Si tandem solar cells. Sol. Energy 2020, 198, 461–468. [Google Scholar] [CrossRef]
- Park, H.H.; Kim, J.; Kim, G.; Jung, H.; Kim, S.; Moon, C.S.; Seo, J. Transparent Electrodes Consisting of a Surface-Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four-Terminal Tandem Applications. Small Methods 2020, 4, 2000074. [Google Scholar] [CrossRef]
- Tockhorn, P.; Wagner, P.; Kegelmann, L.; Stang, J.C.; Mews, M.; Albrecht, S.; Korte, L. Three-terminal perovskite/silicon tandem solar cells with top and interdigitated rear contacts. ACS Appl. Energy Mater. 2020, 3, 1381–1392. [Google Scholar] [CrossRef]
- Xu, J.; Boyd, C.C.; Yu, Z.J.; Palmstrom, A.F.; Witter, D.J.; Larson, B.W.; McGehee, M.D. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 2020, 367, 1097–1104. [Google Scholar] [CrossRef]
- Mazzarella, L.; Lin, Y.H.; Kirner, S.; Morales-Vilches, A.B.; Korte, L.; Albrecht, S.; Schlatmann, R. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 2019, 9, 1803241. [Google Scholar] [CrossRef]
- Ramírez Quiroz, C.O.; Spyropoulos, G.D.; Salvador, M.; Roch, L.M.; Berlinghof, M.; Darío Perea, J.; Brabec, C.J. Interface molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factor. Adv. Funct. Mater. 2019, 29, 1901476. [Google Scholar] [CrossRef]
- Sampaio, P.; González, M. A review on organic photovoltaic cell. Int. J. Energy Res. 2022, 46, 17813–17828. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Sun, Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.T.; Wu, Y.; Li, G.; Yu, L. For the bright future—Bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138. [Google Scholar] [CrossRef]
- Rafique, S.; Abdullah, S.M.; Sulaiman, K.; Iwamoto, M. Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renew. Sustain. Energy Rev. 2018, 84, 43–53. [Google Scholar] [CrossRef]
- Riede, M.; Spoltore, D.; Leo, K. Organic solar cells—The path to commercial success. Adv. Energy Mater. 2021, 11, 2002653. [Google Scholar] [CrossRef]
- Ahmad, Z.; Najeeb, M.A.; Shakoor, R.A.; Al-Muhtaseb, S.A.; Touati, F. Limits and possible solutions in quantum dot organic solar cells. Renew. Sustain. Energy Rev. 2018, 82, 1551–1564. [Google Scholar] [CrossRef]
- Kumavat, P.P.; Sonar, P.; Dalal, D.S. An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renew. Sustain. Energy Rev. 2017, 78, 1262–1287. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, J.; Wei, Q.; Zou, Y. Small-molecule electron acceptors for efficient non-fullerene organic solar cells. Front. Chem. 2018, 6, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesavan, A.V.; Kumar, M.P.; Rao, A.D.; Ramamurthy, P.C. Light management through up-conversion and scattering mechanism of rare earth nanoparticle in polymer photovoltaics. Opt. Mater. 2019, 94, 286–293. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, C.; Sun, Y.; Li, Q.; Islam, M.R.; Liu, K.; Wang, Z. Optical management in organic photovoltaic devices. Carbon Energy 2021, 3, 4–23. [Google Scholar] [CrossRef]
- Nam, Y.M.; Huh, J.; Jo, W.H. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 1118–1124. [Google Scholar] [CrossRef]
- Ulum, M.S.; Sesa, E.; Belcher, W. The effect of active layer thickness on P3HT: PCBM nanoparticulate organic photovoltaic device performance. J. Phys. Conf. Ser. 2019, 1242, 012025. [Google Scholar] [CrossRef]
- Ho CH, Y.; Kothari, J.; Fu, X.; So, F. Interconnecting layers for tandem organic solar cells. Mater. Today Energy 2021, 21, 100707. [Google Scholar]
- Gusain, A.; Faria, R.M.; Miranda, P.B. Polymer solar cells—Interfacial processes related to performance issues. Front. Chem. 2019, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Colladet, K.; Nicolas, M.; Goris, L.; Lutsen, L.; Vanderzande, D. Low-band gap polymers for photovoltaic applications. Thin Solid Film. 2004, 451, 7–11. [Google Scholar] [CrossRef]
- Dhanabalan, A.; van Duren, J.K.; van Hal, P.A.; van Dongen, J.L.; Janssen, R.A.J. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Adv. Funct. Mater. 2001, 11, 255–262. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, Y.; Feng, D.; Tsai, S.T.; Son, H.J.; Li, G.; Yu, L. Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 2009, 131, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, J.; Zhang, Z.G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.L.; Lau, T.K.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, Y.; Zhang, Y.; Zhang, W.; Bai, H.; Du, M.; Zhou, E. Recent Progress of Y6-Derived Asymmetric Fused Ring Electron Acceptors. Adv. Funct. Mater. 2022, 32, 2205115. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Y.; Yang, X.; Gao, Y.; Chen, Z.; Li, K.; Min, J. Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. Adv. Mater. 2022, 34, 2110147. [Google Scholar] [CrossRef]
- Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 2022, 34, 2109516. [Google Scholar] [CrossRef]
- Kamel, M.S.; Al-Jumaili, A.; Oelgemöller, M.; Jacob, M.V. Inorganic nanoparticles to overcome efficiency inhibitors of organic photovoltaics: An in-depth review. Renew. Sustain. Energy Rev. 2022, 166, 112661. [Google Scholar] [CrossRef]
- Smets, A.H.; Jäger, K.; Isabella, O.; Swaaij, R.A.; Zeman, M. Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems; UIT Cambridge: Cambridge, UK, 2015. [Google Scholar]
- Xu, W.; Li, X.; Jeong, S.Y.; Son, J.H.; Zhou, Z.; Jiang, Q.; Zhang, F. Achieving 17.5% efficiency for polymer solar cells via a donor and acceptor layered optimization strategy. J. Mater. Chem. C 2022, 10, 5489–5496. [Google Scholar] [CrossRef]
- Xue, R.; Zhang, J.; Li, Y.; Li, Y. Organic solar cell materials toward commercialization. Small 2018, 14, 1801793. [Google Scholar] [CrossRef]
- Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yu, T.; Bi, Z.; Ma, W.; Li, Y.; Peng, Q. Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-thiadiazole-based wide-bandgap copolymers. Adv. Mater. 2018, 30, 1703973. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T.C.; Zhan, X. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J. Am. Chem. Soc. 2016, 138, 4955–4961. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28, 9423–9429. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Liu, K.K.; Hong, L.; Ge, G.Y.; Zhang, C.; Hou, J. Selenopheno [3, 2-b] thiophene-based narrow-bandgap nonfullerene acceptor enabling 13.3% efficiency for organic solar cells with thickness-insensitive feature. ACS Energy Lett. 2018, 3, 2967–2976. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, F.; Prasad, S.K.; Chen, J.D.; Cai, W.; Zhang, Q.; Zhan, X. Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with> 12% efficiency. Adv. Mater. 2018, 30, 1706363. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, Y.; Wang, J.; Liu, K.; Jiang, H.; Lin, Y.; Zhan, X. Alkoxy-induced near-infrared sensitive electron acceptor for high-performance organic solar cells. Chem. Mater. 2018, 30, 4150–4156. [Google Scholar] [CrossRef]
- Li, T.; Dai, S.; Ke, Z.; Yang, L.; Wang, J.; Yan, C.; Zhan, X. Fused Tris (thienothiophene)-Based Electron Acceptor with Strong Near-Infrared Absorption for High-Performance As-Cast Solar Cells. Adv. Mater. 2018, 30, 1705969. [Google Scholar] [CrossRef]
- Tran, H.N.; Park, S.; Wibowo FT, A.; Krishna, N.V.; Kang, J.H.; Seo, J.H.; Cho, S. 17% Non-Fullerene Organic Solar Cells with Annealing-Free Aqueous MoOx. Adv. Sci. 2020, 7, 2002395. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Hou, J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Hou, J. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Y.; Cai, G.; Zhang, Y.; Lu, X.; Lin, Y. Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells. J. Am. Chem. Soc. 2020, 142, 18741–18745. [Google Scholar] [CrossRef] [PubMed]
- Chai, G.; Chang, Y.; Zhang, J.; Xu, X.; Yu, L.; Zou, X.; Yan, H. Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy Environ. Sci. 2021, 14, 3469–3479. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, T.; Cheng, P.; Zou, Y.; Zhang, H.; Yang, J.L.; Yang, Y. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 2019, 10, 570. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Zhu, L.; Li, C.; Xu, J.; Wu, H.; Zhang, X.; Sun, Y. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter 2021, 4, 2542–2552. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.E.; Brabec, C.J.; Sariciftci, N.S.; Padinger, F.; Fromherz, T.; Hummelen, J.C. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 2001, 78, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 2018, 30, 1800868. [Google Scholar] [CrossRef]
- Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Yan, H. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem. 2020, 63, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Xu, Y.; Xian, K.; Hou, J. Achieving over 15% efficiency in organic photovoltaic cells via copolymer design. Adv. Mater. 2019, 31, 1808356. [Google Scholar] [CrossRef]
- Bin, H.; Zhang, Z.G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 2016, 138, 4657–4664. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Yang, Y.; Xu, J.; Zhang, C.; Bin, H.; Zhang, Z.G.; Li, Y. Side chain engineering on medium bandgap copolymers to suppress triplet formation for high-efficiency polymer solar cells. Adv. Mater. 2017, 29, 1703344. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Jin, K.; Jiang, Y.; Qin, J.; Wang, T.; Liu, J.; Ding, L. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci. Bull. 2019, 64, 1573–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, K.; Xiao, Z.; Ding, L. D18, an eximious solar polymer! J. Semicond. 2021, 42, 010502. [Google Scholar] [CrossRef]
- Singh-Rachford, T.N.; Castellano, F.N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 2010, 254, 2560–2573. [Google Scholar] [CrossRef]
- Weingarten, D.H.; LaCount, M.D.; van de Lagemaat, J.; Rumbles, G.; Lusk, M.T.; Shaheen, S.E. Experimental demonstration of photon upconversion via cooperative energy pooling. Nat. Commun. 2017, 8, 14808. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, J.E.; Tsiminis, G.; Klantsataya, E.; de Prinse, T.J.; Ottaway, D.; Spooner, N.A. A practical review of shorter than excitation wavelength light emission processes. Appl. Spectrosc. Rev. 2020, 55, 327–349. [Google Scholar] [CrossRef]
- Bloembergen, N. Solid state infrared quantum counters. Phys. Rev. Lett. 1959, 2, 84. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef]
- Ye, H.; Bogdanov, V.; Liu, S.; Vajandar, S.; Osipowicz, T.; Hernandez, I.; Xiong, Q. Bright photon upconversion on composite organic lanthanide molecules through localized thermal radiation. J. Phys. Chem. Lett. 2017, 8, 5695–5699. [Google Scholar] [CrossRef]
- Wang, J.; Ming, T.; Jin, Z.; Wang, J.; Sun, L.D.; Yan, C.H. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%. Nat. Commun. 2014, 5, 5669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef]
- Bünzli JC, G.; Chauvin, A.S. Lanthanides in solar energy conversion. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2014; Volume 44, pp. 169–281. [Google Scholar]
- Zhang, Q.Y.; Huang, X.Y. Recent progress in quantum cutting phosphors. Prog. Mater. Sci. 2010, 55, 353–427. [Google Scholar] [CrossRef]
- Dexter, D.L. Possibility of luminescent quantum yields greater than unity. Phys. Rev. 1957, 108, 630. [Google Scholar] [CrossRef]
- Timmerman, D.; Izeddin, I.; Stallinga, P.; Yassievich, I.N.; Gregorkiewicz, T. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nat. Photonics 2008, 2, 105–109. [Google Scholar] [CrossRef]
- Ronda, C. Luminescent materials with quantum efficiency larger than 1, status and prospects. J. Lumin. 2002, 100, 301–305. [Google Scholar] [CrossRef]
- Richards, B.S. Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Sol. Energy Mater. Sol. Cells 2006, 90, 1189–1207. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.; McCormack, S.J.; Doran, J. External quantum efficiency improvement with luminescent downshifting layers: Experimental and modelling. Int. J. Spectrosc. 2016, 2016, 8543475. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Bremner, S.P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 2017, 16, 23–34. [Google Scholar] [CrossRef]
- Semonin, O.E.; Luther, J.M.; Choi, S.; Chen, H.Y.; Gao, J.; Nozik, A.J.; Beard, M.C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011, 334, 1530–1533. [Google Scholar] [CrossRef]
- De la Mora, M.B.; Amelines-Sarria, O.; Monroy, B.M.; Hernández-Pérez, C.D.; Lugo, J.E. Materials for downconversion in solar cells: Perspectives and challenges. Sol. Energy Mater. Sol. Cells 2017, 165, 59–71. [Google Scholar] [CrossRef]
- Ehrler, B.; Wilson, M.W.; Rao, A.; Friend, R.H.; Greenham, N.C. Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 2012, 12, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.T.; Nozik, A.J. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 1982, 53, 3813–3818. [Google Scholar] [CrossRef]
- Hirst, L.C.; Lumb, M.P.; Hoheisel, R.; Bailey, C.G.; Philipps, S.P.; Bett, A.W.; Walters, R.J. Spectral sensitivity of hot carrier solar cells. Sol. Energy Mater. Sol. Cells 2014, 120, 610–615. [Google Scholar] [CrossRef]
- Conibeer, G.; Shrestha, S.; Huang, S.; Patterson, R.; Xia, H.; Feng, Y.; Chung, S. Hot carrier solar cell absorber prerequisites and candidate material systems. Sol. Energy Mater. Sol. Cells 2015, 135, 124–129. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 1997, 78, 5014. [Google Scholar] [CrossRef]
- Ginley, D.; Okada, Y.; van-Sark, W.; Bett, A.; Glunz, S.; Gessert, T.; Frei, H. Advanced Concepts in Photovoltaics; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Brown, A.S.; Green, M.A. Impurity photovoltaic effect: Fundamental energy conversion efficiency limits. J. Appl. Phys. 2002, 92, 1329–1336. [Google Scholar] [CrossRef]
- Schaller, R.D.; Klimov, V.I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601. [Google Scholar] [CrossRef] [Green Version]
- Beard, M.C.; Knutsen, K.P.; Yu, P.; Luther, J.M.; Song, Q.; Metzger, W.K.; Nozik, A.J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 2007, 7, 2506–2512. [Google Scholar] [CrossRef]
- Stubbs, S.K.; Hardman, S.J.; Graham, D.M.; Spencer, B.F.; Flavell, W.R.; Glarvey, P.; Binks, D.J. Efficient carrier multiplication in InP nanoparticles. Phys. Rev. B 2010, 81, 081303. [Google Scholar] [CrossRef] [Green Version]
- McGuire, J.A.; Sykora, M.; Joo, J.; Pietryga, J.M.; Klimov, V.I. Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett. 2010, 10, 2049–2057. [Google Scholar] [CrossRef]
- Wang, S.; Khafizov, M.; Tu, X.; Zheng, M.; Krauss, T.D. Multiple exciton generation in single-walled carbon nanotubes. Nano Lett. 2010, 10, 2381–2386. [Google Scholar] [CrossRef] [PubMed]
- Tielrooij, K.J.; Song JC, W.; Jensen, S.A.; Centeno, A.; Pesquera, A.; Zurutuza Elorza, A.; Koppens, F.H.L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 2013, 9, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Congreve, D.N.; Lee, J.; Thompson, N.J.; Hontz, E.; Yost, S.R.; Reusswig, P.D.; Baldo, M.A. External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 2013, 340, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Wu, Z.; Luo, D.; Yu, H.Y.; Lu, Z.H. Review and perspective of materials for flexible solar cells. Mater. Rep. Energy 2021, 1, 100001. [Google Scholar] [CrossRef]
Cell Type | Dye | Photoanode/ Cathode | Electrolyte | CE | VOC (V) | JSC (mAcm−2) | FF | η (%) | Refs. |
---|---|---|---|---|---|---|---|---|---|
Wine Daisy flower petals | Anthocyanin (Lv) | TiO2/ITO | I−/I3− | Graphite C/ITO | 0.52 | 0.38 | 0.26 | 0.79 | [89] |
Wine Daisy flower petals | Anthocyanin (Lv) | TiO2/ITO | I−/I3− | Pt/ITO | 0.52 | 0.42 | 0.27 | 0.87 | [89] |
Ru (II) complexes bearing diamine-based bidentate ligands | Ru (II) 8A | TiO2/FTO | I−/I3− | Pt/FTO | 0.64 | 5.13 | 0.68 | 2.25 | [90] |
Co-additive CDA | N719 + 7.5 mM CDA | TiO2/FTO | I−/I3− | Graphite C- PEDOT: PSS/FT O | 0.79 | 11.64 | 0.76 | 7.00 | [91] |
Co-additive CDA | RhB + 10 mM CDA | TiO2/FTO | I−/I3− | Graphite C- PEDOT: PSS/FT O | 0.61 | 4.19 | 0.69 | 1.75 | [91] |
Co-additive CDA | D149 + 10 mM CDA | TiO2/FTO | I−/I3− | Graphite C- PEDOT: PSS/FT O | 0.81 | 13.77 | 0.69 | 7.72 | [91] |
TiO2/ZnO Blocking Layer | N719 | TiO2 NP/TiO2/ZnO/FTO | I−/I3− | Pt/FTO | 0.73 | 16.63 | 0.59 | 7.10 | [92] |
2- cyanoacetani lide based organic dyes | Ru (II) complex HD-2 with SA1 | TiO2/FTO | I−/I3− | Pt/FTO | 0.68 | 20.33 | 0.58 | 8.02 | [93] |
Catecholpyr ano-5,7,3′,4′-tetrahydroxy flavylium pyranoflavyli um salts | Pyrano- anthocyanin | TiO2/FTO | I−/I3− | Pt/FTO | 0.34 | 6.43 | 0.53 | 1.15 | [94] |
Natural liquid dye extract 12- hour immersion | PIW Leaf chlorophyll | TiO2/ITO | I−/I3− | Candle soot C/ITO | 0.42 | 0.14 | 0.41 | 0.02 | [95] |
Screen printing 0.25 cm2 | D35 | TiO2 NP/FTO | I−/I3− | Pt/FTO | 0.76 | 10.03 | 0.72 | 5.48 | [96] |
Digital printing 0.25 cm2 | D35 | TiO2 NP/FTO | I−/I3− | Pt/FTO | 0.78 | 12.65 | 0.75 | 7.40 | [96] |
(D–A–π–A) type zinc porphyrin sensitizers | TH-2F | TiO2/FTO | 0.1 M TBAPF6 | Pt/FTO | 0.68 | 16.07 | 0.64 | 6.98 | [97] |
Gel polymer electrolyte based DSSCs | Black mulberry fruits juice | TiO2/FTO | AMPS-IA-F-Cl-Br- An | Pt/FTO | 0.40 | 0.02 | 0.49 | [98] | |
Combination of natural red and green dyes | 80% R +20% G | TiO2/FTO | I−/I3− | C (CNT)/F TO | 0.30 | 4.65 | 0.55 | 0.99 | [99] |
Mixed one layer Pigment combination | Chlorophyll and anthocyanin volumetric proportion of 1:1 | TiO2/FTO | I−/I3− | Pt/FTO | 0.72 | 1.61 | 0.73 | 0.85 | [100] |
Two distinct layer Pigment combination | Chlorophyll and anthocyanin volumetric proportion of 1:1 | TiO2/FTO | I−/I3− | Pt/FTO | 0.71 | 1.38 | 0.74 | 0.74 | [100] |
Properties | Value Range |
---|---|
Bandgap | 1.5–2.5 eV |
Exciton binding energy | Less than 10 meV |
Crystallization energy barrier | 56.6–97.3 kJ mol−1 |
Relative permittivity | 3 |
Charge carrier lifetime | Greater than 300 nm |
PL quantum efficiency | 70% |
Trap-state density | 1010 cm3 (single crystals), 1015–1017 cm3 (polycrystalline) |
Carrier mobility | 800 cm2/Vs |
Perovskite Composition | Additive Name | VOC (V) | JSC (mA cm−2) | FF (%) | η (%) | Additive (%) | Refs. |
---|---|---|---|---|---|---|---|
MAPbI3 | ammonium benzenesulfonate | 1.09 | 22.92 | 78.62 | 17.29 | 19.64 | [130] |
MAPbI3 | 1-alkyl-4-amino-1,2,4-triazolium | 1.10 | 23.39 | 77.84 | 16.13 | 20.03 | [131] |
MAPbI3 | dibutylhydroxytoluene | 1.03 | 22.50 | 78.10 | 17.10 | 18.10 | [132] |
MAPbI3 | pyrrole | 1.142 | 23.38 | 75.20 | 18.58 | 20.07 | [133] |
Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 | 1-propionate-4-amino-1,2,4-triazolium tetrafluoroborate (PATMBF4) | 1.11 | 23.74 | 81.02 | 18.27 | 21.35 | [134] |
Cs0.05(MA0.12FA0.88)0.95Pb(I0·88Br0.12)3 | 6-aminoquinoline monohydrochloride (AQCl) | 1.18 | 22.74 | 80.73 | 19.24 | 21.66 | [135] |
CH3NH3PbI3 | carbon quantum dots(A-CQDs) | 0.94 | 22.35 | 51.27 | 9.15 | 10.74 | [136] |
CsPbI3 | bis(pentafluorophenyl)zinc [Zn(C6F5)2] | 1.12 | 20.67 | 81.98 | 16.97 | 19.00 | [137] |
CsPbI2Br | 2-hydroxyethyl methacrylate (HEMA) | 1.23 | 15.81 | 82.98 | 14.10 | 16.13 | [138] |
CsPbI3 | ethanol/MACl (Et-M) | 0.928 | 20.75 | 68.43 | 9.49 | 13.18 | [139] |
Perovskite Composition | Transmission Material | VOC (V) | JSC (mA cm−2) | FF (%) | η (%) | Refs. |
---|---|---|---|---|---|---|
Cs0.05(FA0.85MA0.15)0.95Pb(Br0.15I0.85)3 | ZTO-ZnS(ETL) | 1.15 | 23.80 | 77.70 | 21.30 | [143] |
CsFAMA | MPA-BTTI(HTL) | 1.12 | 23.23 | 81.40 | 21.17 | [144] |
CH3NH3PbI3 | 2,3-bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)fumaronitrile(TPA-BPFN-TPA)(HTL) | 1.04 | 22.70 | 78.00 | 18.40 | [145] |
CsPbBr3 | Nb2O5 (a-Nb2O5)(ETL) | 1.45 | 5.64 | 70.00 | 5.74 | [146] |
Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 | Cu2OCuSCN nanocomposite (HTL) | 1.05 | 23.23 | 78.40 | 19.20 | [147] |
CH3NH3PbI3 | BaTiO3/TiO2 (ETL) | 0.97 | 20.50 | 65.00 | 13.00 | [148] |
(FAPbI3)0.85(MAPbBr3)0.15 | 3,6-N(HTL) | 1.08 | 22.65 | 78.00 | 19.25 | [149] |
Cs0.05(MA0.13FA0.87)0.95Pb(I0.87Br0.13)3 | PdPrPc(HTL) | 1.08 | 23.49 | 71.11 | 18.09 | [150] |
(CsPbI3)0.05(FA0.85MA0.15Pb[I0.85Br0.15]3)0.95 | NH2-ZnO@SnO2(ETL) | 1.14 | 25.11 | 78.68 | 22.52 | [151] |
CsPbIBr2 | In2S3(ETL) | 1.09 | 7.76 | 65.94 | 5.59 | [152] |
Device Structure | VOC (V) | JSC (mA cm−2) | FF (%) | η (%) | Refs. |
---|---|---|---|---|---|
FTO/TiO2/perovskite/(Me-PDA)Pb2I6/Spiro-OMETAD/Au | 1.13 | 24.61 | 79.00 | 22.00 | [155] |
FTO/PCBM/perovskite/Spiro-OMETAD/Au | 1.12 | 22.77 | 79.00 | 20.12 | [156] |
ITO/SnO2/perovskite/PTAA/Metal | 1.11 | 24.06 | 75.81 | 20.30 | [157] |
ITO/NiOx/PTAA/(MAPbI3)0.95(MAPbBr2Cl)0.05/PCBM/BCP/Ag | 1.19 | 22.23 | 81.71 | 21.56 | [158] |
FTO/c-TiO2/perovskite/PTABr/PTAA:LAD/Au | 1.09 | 23.28 | 79.13 | 20.13 | [159] |
FTO/bl-RiO2/MAPbI3/PbS/Spiro-OMETAD/Au | 1.14 | 23.17 | 72.83 | 19.24 | [160] |
ITO/SnO2/MAPbI3/4-CIBA Spiro-OMETAD/Ag | 1.16 | 22.76 | 74.00 | 20.99 | [161] |
FTO/SnO2/BCP/Spiro-OMETAD/Ag | 1.14 | 23.50 | 77.10 | 20.60 | [162] |
Photoanodes | Sensitizer | VOC (V) | JSC (mA/cm2) | FF | η (%) | Refs. |
---|---|---|---|---|---|---|
TiO2 | CdS | 0.37 | 6.24 | 0.33 | 0.75 | [216] |
TiO2 | CdSeS | 0.68 | 16.8 | 0.44 | 5.01 | [217] |
TiO2 | ZCISe | 0.59 | 11.58 | 0.63 | 4.25 | [218] |
TiO2 | CdS/CdSe | 0.53 | 12.5 | 0.60 | 3.96 | [219] |
TiO2 | CdSe/CdS | 0.62 | 14.4 | 0.49 | 4.41 | [220] |
TiO2 | CdS/CdSe | 0.56 | 16.1 | 0.337 | 3.06 | [221] |
TiO2 | CsPbI3 | 1.20 | 14.37 | 0.78 | 13.4 | [222] |
TiO2 | PbS | 0.59 | 8.92 | 0.56 | 2.94 | [204] |
TiO2 | PbS | 0.52 | 18.14 | 0.46 | 4.4 | [223] |
TiO2 | PbSe | 0.52 | 23.4 | 0.52 | 6.2 | [224] |
TiO2 | PbSe | 0.53 | 24 | 0.51 | 6.47 | [225] |
TiO2 | CdS/CdSe: Mn (2%) | 0.56 | 20.7 | 0.47 | 5.42 | [226] |
TiO2 | CdS: Graphene (1.6%) | 0.54 | 5.9 | 0.38 | 1.2 | [227] |
TiO2 NF | CdSe | 0.42 | 9.21 | 0.56 | 2.15 | [228] |
TiO2 NFs | CZTSe | 0.47 | 13.65 | 0.56 | 3.61 | [229] |
TiO2 NFs | Ag2Se | 0.41 | 11.12 | 0.55 | 2.5 | [230] |
TiO2/C– TiO2/TiO2 | CdS | 0.27 | 4.80 | 0.13 | 0.17 | [208] |
TiO2/QD/TiCl4 | CdSeTe | 0.70 | 20.69 | 0.62 | 9.01 | [231] |
TiO2/ZnO NR why different? | CdS | 0.41 | 2.37 | 0.35 | 0.33 | [232] |
TiO2/ZnO NR | CdS | 0.48 | 13.34 | 0.42 | 2.71 | |
TiO2: B/Sa co-doped | CdS | 1.22 | 3.35 | 0.88 | 3.60 | [233] |
TiO2:TiCl4 | CdSe | 0.56 | 15.54 | 0.61 | 5.53 | [234] |
TiO2wth SrTiO3 (10%) | CdS | 0.60 | 6 | 0.48 | 1.80 | [235] |
N doped TiO2 | CdS | 0.84 | 10.40 | 0.53 | 4.58 | [236] |
P– TiO2 NF | Cu2AgInSe4 (CAISe) | 0.52 | 12.86 | 0.63 | 4.24 | [237] |
BaTiO3 | CdS | 0.61 | 3.74 | 0.56 | 1.26 | [238] |
NiO | CuInSxSe2−x:Zn+2 | 0.35 | 9.13 | 0.39 | 1.25 | [211] |
SnO2 | CdS | 0.45 | 1.47 | 0.34 | 0.22 | [210] |
SnO2 NF | CdS | 0.61 | 11.56 | 0.43 | 3 | [239] |
SnO2 with TiCl4 | PbS/CdS | 0.30 | 19.12 | 0.28 | 1.60 | [240] |
ZnO | CdS/CdSe | 0.67 | 4.77 | 0.39 | 1.26 | [241] |
ZnO | PbS-TBAI /PbS-EDT | 24.2 | 0.55 | 0.64 | 8.55 | [242] |
ZnO | CdS/CdSe | 0.61 | 9.93 | 0.52 | 3.14 | [243] |
ZnO | CdS/CdSe | 0.68 | 10.48 | 0.62 | 4.46 | [244] |
ZnO (Al doped) | CdS/CdSe | 0.60 | 12.86 | 0.69 | 5.32 | [209] |
ZnO NP | CdS/CdSe | 0.50 | 15.40 | 0.44 | 3.35 | [245] |
ZnO/TiO2 | CdS | 0.46 | 7.80 | 0.68 | 2.44 | [246] |
ZnTi | CdS | 0.63 | 10.14 | 0.61 | 3.92 | [247] |
ZnTiO3 | CdS/CdSe | 0.59 | 5.96 | 0.56 | 1.95 | [248] |
QD Sensitizer | Photoanode | Counter Electrodes | η (%) | Refs. |
---|---|---|---|---|
CdSe/CdS | TiO2 | Au | 4.8 | [269] |
CdSe | TiO2–SeO2 | CoS2 | 3.45 | [270] |
PbS/CdS/CdSe | TiO2 | CuS | 4.58 | [271] |
CdSe | TiO2 | Cu2S | 2 | [272] |
CdSe | TiO2 | Pt-coated FTO | 1.7 | [273] |
CdSe | TiO2: Mg+2 | Cu2S/brass | 6.9 | [274] |
Zn–Cu–In–Se (ZCISe) | TiO2: Mg+2 | Cu2S/brass | 9.02 | |
CdS | TiO2 | CuS/PbS | 1.13 | [253] |
PbS/CdS | TiO2 | CuS/PbS | 1.84 | |
CdSe | TiO2 | CuS/PbS | 2.84 | |
CdS/CdSe | TiO2 | CuS/PbS | 3.63 | |
CdTe/CdS | TiO2 | CuSNP | 2.5 | [249] |
PbS CQD with PBDB-T(F) | ZnO | MoO3/Ag | 11.2 | [255] |
PbSE CQD | SnO2 | Au | 10.4 | [250] |
CIS–CuInS2 | TiO2 | Au | 0.75 | [258] |
CdS–Bi2S3 | TiO2 | CuI | 1.01 | [257] |
CuBiS2 | TiO2 | Cu2S | 0.62 | [260] |
CdS/CdSe | ZnTi MMO | Cu2S | 2.85 | [266] |
CdS/Ag2S–ZnS | TiO2 | CuS | 3 | [262] |
Bi2S3/Sb2S3 | TiO2 | Pt | 0.67 | [263] |
ZnS coated InP | TiO2 | Brass | 0.351 | [268] |
Cd1-XZnXTe/CdS | TiO2 | Cu2S | 3.27 | [261] |
Co+2 (3%) doped CdS | TiO2 | Pt | 1.21 | [275] |
Mn+2 doped CdS | ZnO | Al | 2.09 | [276] |
PbS:Hg | TiO2 (NP/NF) | Cu2S | 4.72 | [277] |
CdSe:Ag+ | TiO2 | Cu2S | 2.72 | [278] |
Cu–CdS | TiO2 | Pt | 1.04 | [279] |
In–CdS | TiO2 | Pt | 0.65 | |
Mg-doped CdSe | TiO2 | Pt-ITO | 0.67 | [280] |
CdS/CdSe | TiO2 (NCs) | CuS | 6.80 | [281] |
CdS/CdSe | TiO2 | CuS | 5.07 | [282] |
PbS | ZnO | Au | 9.40 | [283] |
Gradient-band-gap PbS | TiO2 | – | 4.08 | [284] |
CdS | TiO2 | Au | 0.80 | [285] |
CdS/CdSe/ZnS | TiO2 | CoO | 6.02 | [286] |
CdTe/CdS | TiO2 | Cu2S | 2.44 | [287] |
CIS-Z and (CuInS2 (CIS) QDs) | TiO2 | Cu2S on brass foil | 7.04 | [288] |
CIS | TiO2 | Cu2S on brass foil | 5.05 | |
CuInSexS2−x | TiO2 | CuS | 5.51 | [289] |
ZCISe | TiO2 | MC/Ti | 12.65 | [290] |
ZCISe/ZnSe | TiO2 | MC/Ti | 13.84 | |
CISe | TiO2 | Cu2S/brass | 7.56 | [291] |
CIGSe | TiO2 | Cu2S/brass | 9.30 | |
CISe | TiO2 | MC/Ti | 9.18 | |
CIGSe | TiO2 | MC/Ti | 11.30 | |
Cu2ZnSnS4 (CZTS) | TiO2 | Cu2S | 3.29 | [292] |
CAIS(Cu2AgInS4) | TiO2 | Cu2S/FTO | 4.89 | [293] |
ZCISSe | TiO2 | – | 14.70 | [294] |
N2-CQDs | TiO2 | Pt | 0.45 | [295] |
CAISe (Cu2AgInSe4) | TiO2 | Cu2S | 4.24 | [236] |
QDs | Device Structure | VOC (V) | JSC (mA cm−2) | FF (%) | η (%) | Refs. |
---|---|---|---|---|---|---|
CQDs | FTO/c-TiO2/m-TiO2:CQDs/MAPbClxI3−x/Spiro-OMeTAD/Au | 1.02 | 22.64 | 71.6 | 16.40 | [303] |
CQDs | ITO/TiO2:CQDs/MAPbI3Cl3−x/Spiro-OMeTAD/Au | 1.14 | 21.36 | 78 | 18.89 | [304] |
CQDs | FTO/PEDOT:PSS/MAPbI3/PCBM:CQDs/BCP/Ag | 0.97 | 22.30 | 79.6 | 18.10 | [305] |
g-C3N4 QDs | ITO/SnO2:g-C3N4 QDs/CsFAMA/Spiro-OMeTAD/Au | 1.18 | 24.03 | 78.3 | 22.13 | [306] |
Red CQDs | ITO/SnO2:RCQs/Cs0.05FA0.81MA0.14PbI2.25Br0.45/Spiro-OMeTAD/MoO3/Au | 1.14 | 24.1 | 82.9 | 22.77 | [307] |
GQDs | FTO/Au/SnO2:GQDs/ZnO/Perovskite/Spiro-OMeTAD/Au | 1.17 | 22.85 | 74 | 19.81 | [308] |
GQDs | ITO/SnO2:GQDs/MAPbI3/Spiro-OMeTAD/Au | 1.13 | 23.05 | 78 | 20.31 | [309] |
GQDs | FTO/SnO2:GQDs/CsFAMA/Spiro-OMeTAD/Ag | 1.10 | 21.62 | 78 | 18.55 | [310] |
GQDs | ITO/c-TiO2/m-TiO2:GQDs/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/Spiro-OMeTAD/Au | 0.97 | 21.92 | 67 | 14.36 | [311] |
GQDs | ITO/PCBM:GQDs/MAPbI3/Spiro-OMeTAD/Au | 1.09 | 22.03 | 73 | 17.56 | [312] |
GQDs | ITO/SnO2:GQDs/MAFAPbIxCl3−x/Spiro-OMeTAD/Ag | 1.11 | 24.40 | 78 | 21.10 | [313] |
QDs | FTO/c-TiO2/m-TiO2:GQDs/Perovskite/Spiro-OMeTAD/Ag | 1.08 | 24.92 | 76 | 20.45 | [314] |
GQDs | FTO/SnO2:GQDs/CsFAMA/Spiro-OMeTAD/Au | 1.08 | 23.5 | 77 | 19.6 | [315] |
CdSe QDs | ITO/PEDOT:PSS/CH3NH3PbI3−xClx/PCBM:CdSe QDs/LiF/Ag | 0.90 | 20.96 | 73.16 | 13.73 | [316] |
CdS QDs | FTO/TiO2:CdS QDs/CH3NH3PbI3/Spiro-OMeTAD/Au | 0.94 | 16.7 | 64 | 10.52 | [317] |
PbS QDs | FTO/TNTs:PbS QDs/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au | 1.14 | 23.38 | 56.03 | 14.95 | [318] |
PbS QDs | ITO/ZnO:PbS QDs-TBAI-80/MAPbI3/PCBM/Ag | 1.14 | 22.80 | 78.99 | 20.53 | [319] |
BP QDs | Glass/FTO/SnO2:BP QDs/BP QDs@A-CsFAMA/Spiro-OMeTAD/Ag | 1.22 | 23.53 | 79.6 | 22.85 | [320] |
BP QDs | FTO/SnO2:BP QDs/(FAPbI3)0.97(MAPbBr3)0.03/Spiro-OMeTAD/Ag | 1.13 | 24.4 | 76.1 | 21.0 | [321] |
SnO2 QDs | FTO/c-TiO2/m-TiO2:SnO2 QDs/MAPbI3/Spiro-OMeTAD/Ag | 1.13 | 22.36 | 75.67 | 19.09 | [322] |
QDs | Device Structure | VOC (V) | JSC (mA cm−2) | FF (%) | η (%) | Refs. |
---|---|---|---|---|---|---|
CQDs | FTO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/Spiro-OMeTAD:GQDs/Ag | 1.06 | 24.17 | 79.41 | 20.41 | [323] |
CQDs | ITO/GO:CQDs/CH3NH3PbI3/PCBM/BCP/Ag | 0.95 | 21.0 | 80.1 | 16.2 | [324] |
CQDs | ITO/NiO:CQDs/CH3NH3PbI3/PCBM/BCP/Ag | 1.08 | 20.22 | 77.15 | 16.91 | [325] |
GQDs | FTO/PEDOT:PSS/GQDs/CH3NH3PbI3/PCBM/BCP/Ag | 1.00 | 21.41 | 75.31 | 16.16 | [326] |
AGQDs | ITO/NiO:AGQDs/(FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3/PCBM/BCP/Ag | 1.07 | 22.5 | 81.5 | 19.55 | [327] |
Graphdiyne QDs | FTO/TiO2/GD QDs/CH3NH3PbI3:GD QDs/Spiro-OMeTAD:GD QDs/Au | 1.12 | 22.48 | 78.7 | 19.89 | [328] |
Graphdiyne QDs | FTO/TiO2/CH3NH3PbI3/P3HT:GD QDs/Au | 0.94 | 21.7 | 71.3 | 14.58 | [329] |
PbSO4(PbO)4 QDs | ITO/SnO2/CsFAMA/Spiro-OMeTAD:PbSO4(PbO)4 QDs/Au | 1.14 | 24.80 | 80 | 22.66 | [330] |
QDs | Device Structure | VOC (V) | JSC (mA cm−2) | FF (%) | η (%) | Refs. |
---|---|---|---|---|---|---|
ZnO QDs | ITO-PET/Graphene/ZnO QDs (Apjet)/CH3NH3PbI3/Spiro-OMeTAD/Ag | 0.94 | 16.80 | 62 | 9.73 | [331] |
ZnO/rGO QDs | FTO/ZnO/rGO QDs/CH3NH3PbI3/Spiro-OMeTAD/Au | 1.03 | 21.7 | 68 | 15.2 | [332] |
TiO2 QDs | FTO/TiO2 QDs/m-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au | 1.06 | 22.48 | 71 | 16.97 | [333] |
SnO2 QDs | ITO/SnO2 QDs/MAPbI3/Spiro-OMeTAD/Ag | 1.08 | 21.85 | 74.28 | 17.66 | [334] |
SnO2 QDs | FTO/SnO2 QDs/MA0.7FA0.3PbI3/Spiro-OMeTAD/Au | 1.08 | 23.40 | 74 | 20.1 | [335] |
SnO2 QDs | FTO/Al:SnO2 QDs/MAPbI3/Spiro-OMeTAD/Ag | 1.06 | 22.78 | 75.41 | 18.20 | [336] |
SnO2 QDs | FTO/SnO2 QDs/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/Spiro-OMeTAD/Ag | 1.13 | 23.05 | 79.8 | 20.79 | [337] |
SnO2 QDs | ITO/SnO2 QDs/MAPbI3/Li-doped Spiro-OMeTAD/Au | 1.12 | 21.61 | 77 | 18.71 | [338] |
SnO2 QDs | ITO/SnO2 QDs/Cs0.05FA0.81MA0.14PbI2.25Br0.45/Spiro-OMeTAD/Carbon | 1.08 | 22.19 | 56.64 | 13.64 | [339] |
BP QDs | ITO-PEN/BP QDs/FA0.85MA0.15PbI0.25Br0.5/Spiro-OMeTAD/Au | 1.03 | 16.77 | 65.2 | 11.26 | [340] |
QDs | Device Structure | VOC (V) | JSC (mA cm−2) | FF (%) | η (%) | Refs. |
---|---|---|---|---|---|---|
PbS QDs | ITO/PbS QDs/MAPbI3/PCBM/Al | 0.86 | 12.10 | 72 | 7.5 | [341] |
PbS QDs | FTO/c-TiO2/m-TiO2/CH3NH3PbI3/PbS QDs/Au | 0.87 | 18.69 | 49 | 7.88 | [342] |
CQDs | FTO/c-TiO2/m-TiO2/MAPbI3/CQDs/Au | 0.52 | 7.83 | 74 | 3 | [343] |
PbS QDs | FTO/c-TiO2/m-TiO2/CH3NH3PbI3/PbS QDs/Au | 0.97 | 19.03 | 61.34 | 11.32 | [344] |
PbS QDs | FTO/TiO2/m-TiO2/CH3NH3PbI3/PbS QDs/Au | 0.80 | 29.3 | 83 | 19.52 | [345] |
CuInS2 QDs | FTO/c-TiO2/m-TiO2/MAPbI3/CuInS2/ZnS QDs/Au | 0.92 | 18.6 | 48.7 | 8.38 | [346] |
CuIn1.5Se3 QDs | ITO/SnO2/MAPbBr3/CuIn1.5Se3 QDs/Au | 0.98 | 20.46 | 68.5 | 13.72 | [347] |
CuInSe2 QDs | ITO/SnO2/FAMAPbI3BrCl/CuInSe2 QDs/Au | 0.86 | 22.5 | 66 | 12.8 | [348] |
SnS QDs | FTO/c-TiO2/(CsPbI3)0.05(FAPbI3)0.79(MAPbI3)0.16/SnS QDsn/Au | 0.94 | 22.96 | 63.3 | 13.72 | [349] |
MoS2 QDs | FTO/c-TiO2/m-TiO2/CsPbBr3/MoS2 QDs/Carbon | 1.31 | 6.55 | 79.4 | 6.80 | [350] |
Cu2O QDs | FTO/c-TiO2/m-TiO2/Cs0.05FA0.81MA0.14PbI2.55Br0.45/Cu2O QDs/Au | 1.15 | 22.2 | 74.2 | 18.90 | [351] |
CsSnBr3 QDs | FTO/SnO2 QDs/CsPbBr3/CsSnBr3 QDs/Carbon | 1.61 | 7.8 | 84.4 | 10.60 | [352] |
Ag-In-Ga-S QDs | FTO/c-TiO2/m-TiO2/CsPbBr3/AIGS QDs/Carbon | 1.46 | 7.43 | 80.31 | 8.46 | [353] |
Cu12Sb4S13 QDs | FTO/c-TiO2/CH3NH3PbI3/Cu12Sb4S13 QDs/Au | 1.05 | 21.85 | 61.6 | 14.13 | [354] |
Cu12Sb4S13 QDS | FTO/c-TiO2/m-TiO2/CsPbI3 QDs/Cu12Sb4S13 QDs/Au | 1.04 | 18.28 | 52.9 | 10.02 | [355] |
Cu12Sb4S13 QDs | FTO/c-TiO2/CH3NH3PbI3/Cu12Sb4S13 QDs/Au | 0.80 | 18.08 | 45 | 6.50 | [356] |
Cu2ZnSnS4 QDs | FTO/c-TiO2/CH3NH3PbI3/Cu2ZnSnS4 QDs/Au | 1.06 | 20.54 | 58.7 | 12.75 | [357] |
Cu2ZnSnS4 QDs | FTO/m-TiO2/c-TiO2/CsPbBr3/Cu2ZnSnS4 QDs/Ag | 0.94 | 7.36 | 70.01 | 4.84 | [358] |
Cu2ZnSnS4 QDs | ITO/Cu2ZnSnS4-LF QDs/Perovskite/PCBM/Ag | 0.92 | 20.7 | 81 | 15.40 | [359] |
Cu2ZnSnSe4 QDs | FTO/TiO2/CH3NH3PbI3/Cu2ZnSnSe4 QDs/Au | 0.81 | 19.37 | 62.1 | 9.72 | [360] |
CuIn0.1Ga0.9(S0.9Se0.1)2 QDs | FTO/c-TiO2/m-TiO2/CH3NH3PbI3/CIGSSe QDs/Au | 0.94 | 17.66 | 54.88 | 9.15 | [361] |
CsSnBr2I QDs | FTO/c-TiO2/m-TiO2/CsPbBr3/CsSnBr2I QDs/Carbon | 1.39 | 8.70 | 76 | 9.13 | [362] |
Top Cell (TC) | Bottom Cell (BC) | ETL | VOC (V) | JSC (mA cm−2) | FF (%) | Area (cm2) | η (%) | T.C η (%) | B.C η (%) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
CH3NH3PbI3 | C-Si | C60 | – | – | – | – | 24.6 | 16.23 | 8.37 | [376] |
CsFAMA | n-Si | SnO2 | – | 39.50 | – | – | 28.2 | 19.00 | 24.00 | [377] |
(MAPb(I0.95 Br 0.05)3 | C-Si | PCBM/Z nO | 1.67 | 18.29 | 77.00 | – | 23.50 | – | – | [378] |
FA0.83Cs0.17 Pb(I0.80Br0.20)3 | C-Si | SnO2- LiCl | 1.90 | 16.90 | 77.90 | 0.50 | 25.40 | – | – | [379] |
Cs0.05MA0.15FA0.8Pb(I0.85Br0.15)3 | C-Si | C60 Anchored /a-NbOx | 1.80 | 19.50 | 75.90 | – | 27 | – | – | [380] |
CsFAMABrI | C-Si | TiO2 | 1.80 | 18.81 | 75.60 | 1.20 | 26.30 | – | – | [381] |
CsMAPbBr | C-Si | C60 | 1.82 | 19.20 | 74.40 | – | 26 | – | – | [382] |
CH3NH3PbI3 | p-Si | ZnO | 1.77 | 20.19 | 82.22 | – | 28.50 | – | – | [383] |
TC | BC | HTL | Configuration | VOC (V) | JSC (mA cm−2) | FF (%) | Area (cm2) | η (%) | T.C η (%) | B.C η (%) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|
CH3NH3PbI3 | C-Si | Spiro- OMeTAD | p-i-n | – | – | – | 23.70 | – | – | [384] | |
(FAPbI3)0.95 (MAPbBr3)0.05 | P-Si | PTAA | p-i-n | 0.65 | 13.50 | 80.10 | – | 26.0 | 18.90 | 7.10 | [385] |
(Cs0.05(FA0.83 MA0.17)0.95 Pb(I0.83 Br 0.17)3) | C-Si | Spiro- OMeTAD | n-i-p | – | – | – | – | 17.10 | 11.70 | 5.40 | [386] |
CsmFAnMA1- m-nPbIxBr3-x | C-Si | NiOx/poly- TPD | p-i-n | 1.88 | 19.12 | 75.30 | 1 | 27.00 | – | – | [387] |
Cs0.05(FA0.83 MA0.17)0.95 Pb(I0.8Br0.2)3 | C-Si | Poly TPD and NPD | p-i-n | 1.74 | 17.93 | 74.31 | – | 25.20 | – | – | [388] |
CH3NH3PbI3 | C-Si | PEDOT: PSS | n-i-p | 1.78 | 14.70 | 80.40 | – | 21 | – | – | [389] |
Acceptor | HOMO/LUMO (eV) | Donor | JSC (mA/cm2) | VOC (V) | FF (%) | PCE (%) | Refs. |
---|---|---|---|---|---|---|---|
ITIC | −5.48/−3.83 | PTB7-Th | 14.21 | 0.81 | 59.1 | 6.80 | [409] |
ITIC | −5.51/−3.78 | PBDB-T | 16.81 | 0.899 | 74.2 | 11.21 | [419] |
ITIC | −5.48/−3.83 | PBDTS-TDZ | 17.78 | 1.10 | 65.4 | 12.80 | [420] |
ITIC-Th | −5.66/−3.93 | PDBT-T1 | 16.24 | 0.88 | 67.1 | 9.6 | [421] |
IT-M | −5.58/−3.98 | PBDB-T | 17.44 | 0.94 | 73.5 | 12.05 | [422] |
IT-4F | −5.66/−4.14 | PBDB-T-SF | 20.50 | 0.88 | 71.9 | 12.97 | [410] |
SeTIC4Cl | −5.65/−4.08 | PM6 | 22.92 | 0.78 | 75 | 13.32 | [423] |
IDIC | −5.7/−3.9 | FTAZ | 20.8 | 0.84 | 71.8 | 12.5 | [424] |
IOIC3 | −5.38/−3.84 | PTB7-Th | 22.9 | 0.762 | 74.9 | 13.1 | [425] |
FOIC | −5.36/−3.92 | PTB7-Th | 24.0 | 0.743 | 67.1 | 12.0 | [426] |
Y6 | −5.65/−4.10 | PM6 | 25.2 | 0.82 | 76.1 | 15.7 | [411] |
Y6 | −5.7/−4.1 | PM6 | 27.43 | 0.845 | 73.8 | 17.1 | [427] |
Y6 | −5.65/−4.10 | D18 | 27.70 | 0.859 | 76.6 | 18.22 | [403] |
BTP-4Cl | −5.65/−4.02 | PM6 | 25.4 | 0.867 | 75 | 16.5 | [428] |
BTP-eC9 | −5.64/−4.05 | PM6 | 26.2 | 0.839 | 81.1 | 17.8 | [429] |
Y6Se | −5.70/−4.15 | D18 | 27.98 | 0.839 | 75.3 | 17.7 | [430] |
m-BTP-PhC6 | −5.51/−3.46 | PTQ10 | 25.3 | 0.883 | 79.3 | 17.7 | [431] |
L8-BO | −5.68/−3.90 | PM6 | 25.72 | 0.87 | 81.5 | 18.32 | [432] |
L8-BO | -/- | PM6 | 26.03 | 0.893 | 80.0 | 18.60 | [433] |
Donor | HOMO/LUMO (eV) | Acceptor | JSC (mA/cm2) | VOC (V) | FF (%) | PCE (%) | Refs. |
---|---|---|---|---|---|---|---|
PDBT-T1 | −5.36/−3.43 | ITIC-Th | 16.24 | 0.88 | 67.1 | 9.6 | [421] |
PBDB-T | −5.33/−2.92 | ITIC | 16.81 | 0.899 | 74.2 | 11.21 | [419] |
PBDB-T | −5.39/−3.50 | Y1 | 22.44 | 0.87 | 69.1 | 13.42 | [436] |
PBDB-T-SF | −5.40/−3.60 | IT-4F | 20.88 | 0.88 | 71.3 | 13.10 | [410] |
PBDB-T-2F (PM6) | −5.47/- | IT-4F | 20.81 | 0.84 | 76 | 13.2 | [437] |
PM6 | −5.56/−3.50 | Y6 | 25.2 | 0.82 | 76.1 | 15.7 | [411] |
PM6 | −5.47/−3.56 | BTP-eC9 | 26.2 | 0.839 | 81.1 | 17.8 | [429] |
PBDB-T-2Cl (PM7) | −5.51/- | IT-4F | 21.80 | 0.86 | 77 | 14.4 | [436] |
PM7 | −5.52/−3.57 | Y6 | 25.644 | 0.897 | 74.0 | 17.037 | [437] |
T1 | −5.48/−3.63 | IT-4F | 21.5 | 0.899 | 78 | 15.1 | [438] |
J61 | −5.32/−3.08 | ITIC | 17.43 | 0.89 | 61.48 | 9.53 | [439] |
J91 | −5.50/−3.02 | m-ITIC | 18.03 | 0.984 | 65.54 | 11.63 | [440] |
D16 | −5.48/−2.83 | Y6 | 26.61 | 0.85 | 73.8 | 16.72 | [441] |
D18 | −5.51/−2.77 | Y6 | 27.70 | 0.859 | 76.6 | 18.22 | [403] |
D18 | -/- | N3 | 27.44 | 0.862 | 78.5 | 18.56 | [442] |
Technology | Efficiency | Advantages | Limitations |
---|---|---|---|
DSSC | 15.2% [24] | Low cost, operate in low light and wider angles, work at lower internal temperature conditions, robustness and long life | Temperature stability issues, toxic and volatile compound |
PVSC | 25.7% [UNIST]1 | Cheap and simple in construction, lightweight, flexible, high efficiency, low production cost | Unstable |
QDS | 18.1% [UNIST] | Low production cost, low power consumption | Highly toxic in nature, degradation |
TSC | 32.5% [NREL] | High efficiency | Complex, costly |
OSC | 18.20% [433] | Low processing cost, light weight, flexible, thermally stable | Low efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, N.; Shah, A.A.; Leung, P.K.; Khan, S.; Sun, K.; Zhu, X.; Liao, Q. A Review of Third Generation Solar Cells. Processes 2023, 11, 1852. https://doi.org/10.3390/pr11061852
Shah N, Shah AA, Leung PK, Khan S, Sun K, Zhu X, Liao Q. A Review of Third Generation Solar Cells. Processes. 2023; 11(6):1852. https://doi.org/10.3390/pr11061852
Chicago/Turabian StyleShah, N., A. A. Shah, P. K. Leung, S. Khan, K. Sun, X. Zhu, and Q. Liao. 2023. "A Review of Third Generation Solar Cells" Processes 11, no. 6: 1852. https://doi.org/10.3390/pr11061852
APA StyleShah, N., Shah, A. A., Leung, P. K., Khan, S., Sun, K., Zhu, X., & Liao, Q. (2023). A Review of Third Generation Solar Cells. Processes, 11(6), 1852. https://doi.org/10.3390/pr11061852