Study on the Coalescence-Induced Jumping of Droplets with Different Radii on Superhydrophobic Surface
Abstract
:1. Introduction
2. Model and Validation
3. Results and Discussion
3.1. Dynamic Coalescence and Jumping of Two Unequal Sized Droplets
3.2. Energy Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
v* | dimensionless jumping velocity |
vj | measured jumping velocity, m·s−1 |
uic | inertial-capillary velocity, m·s−1 |
σl | surface tension, N·m−1 |
r | distance between particles, Å |
ρ | density, kg·m−3 |
Vij | potential energy between particles, eV |
R | droplet radius, m |
σ | particle spacing when the potential is zero, Å |
cij | energy parameter |
ε | the minimum value of the potential, meV |
T | temperature, K |
vz | vertical velocity, m·s−1 |
t | time, ps |
rb | width of the liquid bridge, Å |
Δτ | space of time, ps |
Cb | a constant |
τ | inertia time, s |
Rs | radius of the small droplet, Å |
Rl | radius of the large droplet, Å |
Rc | radius of the coalesced droplet, Å |
μ | viscosity, Pa·s |
n | number of atoms |
m0 | mass of each argon atom, kg |
ΔEs | excess surface energy, eV |
ΔEvis | viscous dissipation, eV |
Ej | kinetic energy, eV |
η | conversion efficiency of energy |
References
- Edalatpour, M.; Murphy, K.R.; Mukherjee, R.; Boreyko, J.B. Bridging-droplet thermal diodes. Adv. Funct. Mater. 2020, 30, 2004451. [Google Scholar] [CrossRef]
- Foulkes, T.; Sett, S.; Sokalski, P.; Oh, J.; Miljkovic, N. Fundamental limits of jumping droplet heat transfer. Appl. Phys. Lett. 2020, 116, 093701. [Google Scholar] [CrossRef]
- Dalawai, S.P.; Aly, M.A.S.; Latthe, S.S.; Xing, R.M.; Sutar, R.S.; Nagappan, S.; Ha, C.S.; Sadasivuni, K.K.; Liu, S.H. Recent advances in durability of superhydrophobic self-cleaning technology: A critical review. Prog. Org. Coat. 2020, 138, 105381. [Google Scholar] [CrossRef]
- Yu, C.; Sasic, S.; Liu, K.; Salameh, S.; Ras, R.H.A.; Ommen, J.R.V. Nature-inspired self-cleaning surfaces: Mechanisms, modelling, and manufacturing. Chem. Eng. Res. Des. 2020, 155, 48–65. [Google Scholar] [CrossRef]
- Geyer, F.; D’Acunzi, M.; Sharifi-Aghili, A.; Saal, A.; Gao, N.; Kaltbeitze, A.; Sloot, T.F.; Berger, R.; Butt, H.J.; Vollmer, D. When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 2020, 6, 9727. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Zhang, Z.; Li, J.; Qu, Y.; Xing, D.D.; Gao, X.F.; Zhang, Z.Y.; Wen, Y.H.; Ma, Y.J.; Ye, J.J.; et al. A bioinspired, highly transparent surface with dry-style antifogging, antifrosting, antifouling, and moisture self-cleaning properties. Macromol. Rapid Commun. 2018, 40, 1800708. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zou, G.; Wang, W.; Geng, R.K.; Yan, X.; He, Z.Y.; Liu, L.; Zhou, X.; Lv, J.Y.; Wang, J.J. Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance. Soft Matter 2020, 16, 4462–4476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zou, G.; Wang, W.; Geng, R.K.; Yan, X.; He, Z.Y.; Liu, L.; Zhou, X.; Lv, J.Y.; Wang, J.J. Competing effects between condensation and self-removal of water droplets determine antifrosting performance of superhydrophobic surfaces. ACS Appl. Mater. Interfaces 2020, 12, 7805–7814. [Google Scholar] [CrossRef] [PubMed]
- Boreyko, J.B.; Chen, C.-H. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 2009, 103, 184501. [Google Scholar] [CrossRef] [Green Version]
- Ölçeroğlu, E.; Hsieh, C.Y.; Rahman, M.M.; Lau, K.K.S.; McCarthy, M. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces. Langmuir 2014, 30, 7556–7566. [Google Scholar] [CrossRef]
- Li, G.; Alhosani, M.H.; Yuan, S.; Liu, H.R.; Ghaferi, A.A.; Zhang, T.J. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Langmuir 2014, 30, 14498–14511. [Google Scholar] [CrossRef]
- Xie, J.; Xu, J.; Shang, W.; Zhang, K. Dropwise condensation on superhydrophobic nanostructure surface, part II: Mathematical model. Int. J. Heat Mass Transf. 2018, 127, 1170–1187. [Google Scholar] [CrossRef]
- Hou, Y.M.; Yu, M.; Chen, X.M.; Wang, Z.K.; Yao, S.H. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano 2015, 9, 71–81. [Google Scholar] [CrossRef]
- Miljkovic, N.; Wang, E.N. Condensation heat transfer on superhydrophobic surfaces. MRS Bull. 2013, 38, 397–406. [Google Scholar] [CrossRef]
- Miljkovic, N.; Enright, R.; Nam, Y.; Lopez, K.; Dou, N.; Sack, J.; Wang, E.N. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 2013, 13, 179–187. [Google Scholar] [CrossRef]
- Liu, F.J.; Ghigliotti, G.; Feng, J.J.; Chen, C.H. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J. Fluid Mech. 2014, 752, 39–65. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.-C.; Yang, F.; Zhao, Y.-P. Size effect on the coalescence-induced self-propelled droplet. Appl. Phys. Lett. 2011, 98, 053112. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.L.; Wang, S.F.; Lan, Z.; Xu, W.; Wen, R.F.; Ma, X.H. Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence. Appl. Phys. Lett. 2013, 102, 151601. [Google Scholar]
- Lv, C.J.; Hao, P.F.; Yao, Z.H.; Song, Y.; Zhang, X.W.; He, F. Condensation and jumping relay of droplets on lotus leaf. Appl. Phys. Lett. 2013, 103, 021601. [Google Scholar] [CrossRef] [Green Version]
- Farokhirad, S.; Morris, J.F.; Lee, T. Coalescence-induced jumping of droplet: Inertia and viscosity effects. Phys. Fluids 2015, 27, 102102. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Cheng, P.; Quan, X.J. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface. Int. J. Heat Mass Transf. 2014, 73, 195–200. [Google Scholar] [CrossRef]
- Attarzadeh, R.; Dolatabadi, A. Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces. Phys. Fluids 2017, 29, 012104. [Google Scholar] [CrossRef]
- Liang, Z.; Keblinski, P. Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces. Appl. Phys. Lett. 2015, 107, 143105. [Google Scholar] [CrossRef]
- Xie, F.F.; Lu, G.; Wang, X.D.; Wang, B.B. Coalescence-induced jumping of two unequal sized nanodroplets. Langmuir 2018, 34, 2734–2740. [Google Scholar] [CrossRef] [PubMed]
- Enright, R.; Miljkovic, N.; Sprittles, J.; Nolan, K.; Mitchell, R.; Wang, E.N. How coalescing droplets jump. ACS Nano 2014, 8, 10352–10362. [Google Scholar] [CrossRef]
- Liu, T.Q.; Sun, W.; Sun, X.Y.; Ai, H.R. Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf. A 2012, 414, 366–374. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef]
- Pothier, J.C.; Lewis, L.J. Molecular-dynamics Study of the Viscous to Inertial Crossover in Nanodroplet Coalescence. Phys. Rev. B 2012, 85, 115447. [Google Scholar] [CrossRef]
- Eggers, J.; Lister, J.R.; Stone, H.A. Coalescence of Liquid Drops. J. Fluid Mech. 1999, 401, 293–310. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, M.-J.; Ren, X.-Q.; Liu, Z.-H.; Hong, W.-P.; Xie, F.-F. Study on the Coalescence-Induced Jumping of Droplets with Different Radii on Superhydrophobic Surface. Processes 2023, 11, 1865. https://doi.org/10.3390/pr11071865
Liao M-J, Ren X-Q, Liu Z-H, Hong W-P, Xie F-F. Study on the Coalescence-Induced Jumping of Droplets with Different Radii on Superhydrophobic Surface. Processes. 2023; 11(7):1865. https://doi.org/10.3390/pr11071865
Chicago/Turabian StyleLiao, Ming-Jun, Xin-Quan Ren, Zi-Han Liu, Wen-Peng Hong, and Fang-Fang Xie. 2023. "Study on the Coalescence-Induced Jumping of Droplets with Different Radii on Superhydrophobic Surface" Processes 11, no. 7: 1865. https://doi.org/10.3390/pr11071865
APA StyleLiao, M. -J., Ren, X. -Q., Liu, Z. -H., Hong, W. -P., & Xie, F. -F. (2023). Study on the Coalescence-Induced Jumping of Droplets with Different Radii on Superhydrophobic Surface. Processes, 11(7), 1865. https://doi.org/10.3390/pr11071865