Quantitative Characteristics of Micro Bedding Fractures in the Wufeng–Longmaxi Formation Based on High-Resolution Map Imaging Technology
Abstract
:1. Introduction
2. Samples and Experiment Methods
2.1. Geological Setting and Samples
2.2. Experiment Methods
2.2.1. Sample Preparation
2.2.2. Methods
- (1)
- Two-dimensional multiscale resolution imaging of backscattering
- (2)
- High-Resolution Map Imaging
- (3)
- Statistical method for quantitative characteristics of microfractures
3. Results
3.1. Bedding Fracture Length
3.2. Bedding Fracture Aperture
3.3. Porosity and Linear Density of Bedding Fractures
4. Discussion
4.1. The Relationship between the Aperture and the Length of the Bedding Fracture
4.2. Influence of Bedding Fracture on Physical Properties
4.3. Logging Prediction Method for Bedding Fractures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gale, J.F.W.; Reed, R.M.; Holder, J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull. 2007, 91, 603–622. [Google Scholar]
- Ju, W.; Sun, W. Tectonic fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China Part one: Characteristics and controlling factors. J. Pet. Sci. Eng. 2016, 146, 617–625. [Google Scholar]
- Fu, X.; Gong, L.; Su, X.; Liu, B.; Gao, S.; Yang, J.; Qin, X. Characteristics and Controlling Factors of Natural Fractures in Continental Tight-Oil Shale Reservoir. Minerals 2022, 12, 1616. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, L.; Tian, H.; Ling, K.; Che, S.; Yu, X.; Shu, Z.; Dong, S. Controlling factors of lamellation fractures in marine shales: A case study of the Fuling Area in Eastern Sichuan Basin, China. J. Pet. Sci. Eng. 2021, 207, 109091. [Google Scholar] [CrossRef]
- Bisdom, K.; Gauthier, B.; Bertotti, G.; Hardebol, N. Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: Implications for naturally fractured reservoir modeling. AAPG Bull. 2014, 98, 1351–1376. [Google Scholar] [CrossRef]
- Schultz, R.A.; Soliva, R.; Fossen, H.; Okubo, C.H.; Reeves, D.M. Dependence of displacement–length scaling relations for fractures and deformation bands on the volumetric changes across them. J. Struct. Geol. 2008, 30, 1405–1411. [Google Scholar] [CrossRef]
- Zeeb, C.; Gomez-Rivas, E.; Bons, P.D.; Blum, P. Evaluation of Sampling Methods for Fracture Network Characterization Using Out-crops. AAPG Bull. 2013, 31, 291–295. [Google Scholar]
- Reif, D.; Grasemann, B.; Faber, R. Quantitative Structural Analysis using Remote Sensing Data (Kurdistan, NE Iraq). AAPG Bull. 2011, 95, 941–956. [Google Scholar]
- Bourne, S.J.; Rijkels, L.; Stephenson, B.J.; Willemse, E.J. Predictive Modelling of Naturally Fractured Reservoirs Using Geomechanics and Flow Simulation; Society of Petroleum Engineers: Abu Dhabi, United Arab Emirates, 2000. [Google Scholar]
- Guiton, M.L.; Sassi, W.; Leroy, Y.M.; Gauthier, B.D. Mechanical constraints on the chronology of fracture activation in folded Devonian sandstone of the western Moroccan Anti-Atlas. J. Struct. Geol. 2003, 25, 1317–1330. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Hu, Z.; Nie, H.; Li, S.; Xu, J. Characterization of shale gas enrichment in the Wufeng Formation–Longmaxi Formation in the Sichuan Basin of China and evaluation of its geological construction–transformation evolution sequence. J. Nat. Gas Geosci. 2017, 2, 724–733. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Y.; Gong, Y.; Fang, H. Influential Factors and Forecast of Microfracture Development Degree of Longmaxi Formation Shales in Nanchuan Region, Chongqing. Nat. Gas Geosci. 2015, 26, 1579–1586. [Google Scholar]
- Chen, Z.; Lenthe, W.; Stinville, J.C.; Echlin, M.; Pollock, T.M.; Daly, S. High-Resolution Deformation Mapping Across Large Fields of View Using Scanning Electron Microscopy and Digital Image Correlation. Exp. Mech. 2018, 58, 1407–1421. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Ophus, C.; Voyles, P.M.; Erni, R.; Kepaptsoglou, D.; Grillo, V.; Lupini, A.R.; Oxley, M.P.; Schwenker, E.; Chan, M.K.Y.; et al. Machine learning in scanning transmission electron microscopy. Nat. Rev. Methods Prim. 2022, 2, 11. [Google Scholar] [CrossRef]
- Wang, H.; He, Z.; Zhang, Y.; Su, K.; Wang, R. Quantitative identification of microfractures in the marine shale reservoir of the Wufeng-Longmaxi Formation using water immersion tests and image characterization. Interpretation 2018, 6, SN23–SN30. [Google Scholar] [CrossRef]
- Zheng, H.; Lu, X.; He, K. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. J. Energy Chem. 2021, 68, 454–493. [Google Scholar] [CrossRef]
- Li, W.; Lu, S.; Wang, M.; Zhou, N.; Cheng, Z. Quantitative characterization of micro heterogeneity of tight reservoirs by large-view FE-SEM Msplicing technology. Oil Gas Geol. 2022, 43, 1497–1504. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Feng, X.; Liu, Y.; Li, B.; Xia, Z.; Zhang, C.; Cao, L. Application of larbe field splicinb scanninb electron microscopy on quantitatively evaluation of shale pore structure: A case study of Lonbmaxi Formation reservoir in deep western Chongqing Block to southern Sichuan. Pet. Reserv. Eval. Dev. 2021, 11, 569–576. [Google Scholar]
- Gao, D.; Duan, T.; Wang, Z.; Shang, X. Caledonian detachment deformation and deposition in the Fuling gas field of the southeastern Sichuan Basin in China: Implications for the Lower Silurian Longmaxi Shale gas exploration and production. Interpretation 2018, 6, SN119–SN132. [Google Scholar] [CrossRef]
- Liu, R.; Hao, F.; Engelder, T.; Zhu, Z.; Yi, J.; Xu, S.; Teng, C. Influence of tectonic exhumation on porosity of Wufeng–Longmaxi shale in the Fuling gas field of the eastern Sichuan Basin, China. AAPG Bull. 2020, 104, 939–959. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, Y.; Niu, S.; Wei, X.; Yang, J. Multiscale characterization of pore structure and connectivity of Wufeng-Longmaxi shale in Sichuan Basin, China. Mar. Pet. Geol. 2020, 120, 104514. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Jiang, S.; Lu, S.; Xiao, D.; Chen, G.; Zhao, J. Factors Affecting Shale Gas Accumulation in Overmature Shales Case Study from Lower Cambrian Shale in Western Sichuan Basin, South China. Energy Fuels 2018, 32, 3003–3012. [Google Scholar] [CrossRef]
- Wang, R.; Ding, W.; Gong, D.; Zeng, W.; Wang, X.; Zhou, X.; Li, A.; Xiao, Z. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, southeastern Chongqing-northern Guizhou area. Acta Pet. Sin. 2016, 37, 832. [Google Scholar] [CrossRef]
- Wang, H.; He, Z.; Jiang, S.; Zhang, Y.; Nie, H.; Bao, H.; Li, Y. Genesis of Bedding Fractures in Ordovician to Silurian Marine Shale in Sichuan Basin. Energies 2022, 15, 7738. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Hu, Q.; Hu, D.; Yi, J. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field, Sichuan Basin (China). Int. J. Coal Geol. 2017, 171, 1–11. [Google Scholar] [CrossRef]
- Ma, X.; Jun, X. The progress and prospects of shale gas exploration and development in southern Sichuan Basin, SW China. Petrol. Explorat. Develop. 2018, 45, 172–182. [Google Scholar] [CrossRef]
- Hooker, J.N.; Gale, J.F.W.; Gomez, L.A.; Laubach, S.E.; Marrett, R.; Reed, R. Aperture-size scaling variations in a low-strain aperture-mode fracture set, Cozzette Sandstone, Colorado. J. Struct. Geol. 2009, 31, 707–718. [Google Scholar]
- Hooker, J.N.; Laubach, S.; Marrett, R. A universal power-law scaling exponent for fracture apertures in sandstones. Geol. Soc. Am. Bull. 2014, 126, 1340–1362. [Google Scholar] [CrossRef]
- Hooker, J.; Laubach, S.; Marrett, R. Fracture-aperture size—Frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina. J. Struct. Geol. 2013, 54, 54–71. [Google Scholar] [CrossRef]
- Alzayer, Y.; Eichhubl, P.; Laubach, S.E. Non-linear growth kinematics of aperture-mode fractures. J. Struct. Geol. 2015, 74, 31–44. [Google Scholar]
- Liang, C.; Jiang, Z.; Cao, Y.; Wu, M.; Guo, L.; Zhang, C. Deep-water depositional mechanisms and significance for unconventional hydrocarbon exploration: A case study from the lower Silurian Longmaxi shale in the southeastern Sichuan Basin. AAPG Bull. 2016, 100, 773–794. [Google Scholar]
- Li, Y.; Tang, D.; Wu, P.; Niu, X.; Wang, K.; Qiao, P.; Wang, Z. Continuous unconventional natural gas accumulations of Carboniferous-Permian coal-bearing strata in the Linxing area, northeastern Ordos basin, China. J. Nat. Gas Sci. Eng. 2016, 36, 314–327. [Google Scholar] [CrossRef]
- Guo, X.; Hu, D.; Wei, X.; Li, Y. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin. Oil Gas Geol. 2016, 37, 799–808. [Google Scholar]
- Zhu, T.; Wang, F.; Yu, L.; Sun, R. Controlling factors and types of shale gas enrichment in the Sichuan Basin. Oil Gas Geol. 2016, 37, 399–407. [Google Scholar]
- Tang, X.; Li, S.; Xu, S.; Su, Y.; Zhuang, C. Acoustic Characterization and Imaging of Shale Gas Fractures in Horizontal Wells:Field Case Study in the Sichuan Basin of Southwest China. Well Logging Technol. 2017, 41, 501–505. [Google Scholar]
- Ou, C.; Li, C. 3D discrete network modeling of shale bedding fractures based on lithofacies characterization. Pet. Explor. Dev. 2017, 44, 336–345. [Google Scholar] [CrossRef]
Number | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|---|
Surface rate (%) | 0.011 | 0.012 | 0.061 | 2.873 | 0.878 | 0.005 | 0.005 | 0.004 | 0.006 |
Linear density (number/m) | 606 | 343 | 321 | 288 | 287 | 246 | 177 | 184 | 120 |
Well | Depth m | Linear Density Stricp/cm | Surface Rate % | Porosity % | Ratio % |
---|---|---|---|---|---|
JY15 | 2892.76 | 6.057 | 0.011 | 6.352 | 0.173 |
JY15 | 2883.92 | 3.433 | 0.012 | 4.3325 | 0.277 |
JY15 | 2874.02 | 3.207 | 0.061 | 3.875 | 1.574 |
JY15 | 2869.73 | 2.882 | 2.873 | 4.966 | 57.853 |
JY15 | 2864.89 | 2.873 | 0.878 | 4.553 | 19.284 |
JY15 | 2859.96 | 2.464 | 0.005 | 3.587 | 0.139 |
JY15 | 2844.08 | 1.765 | 0.005 | 4.56 | 0.110 |
JY15 | 2840.91 | 1.843 | 0.004 | 3.65 | 0.110 |
JY15 | 2836.96 | 1.2 | 0.006 | 3.54 | 0.169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Wu, D.; Hu, F.; Sun, M.; Li, T.; Wang, H. Quantitative Characteristics of Micro Bedding Fractures in the Wufeng–Longmaxi Formation Based on High-Resolution Map Imaging Technology. Processes 2023, 11, 1942. https://doi.org/10.3390/pr11071942
Zhao C, Wu D, Hu F, Sun M, Li T, Wang H. Quantitative Characteristics of Micro Bedding Fractures in the Wufeng–Longmaxi Formation Based on High-Resolution Map Imaging Technology. Processes. 2023; 11(7):1942. https://doi.org/10.3390/pr11071942
Chicago/Turabian StyleZhao, Conghui, Dong Wu, Fengbo Hu, Meng Sun, Tao Li, and Hu Wang. 2023. "Quantitative Characteristics of Micro Bedding Fractures in the Wufeng–Longmaxi Formation Based on High-Resolution Map Imaging Technology" Processes 11, no. 7: 1942. https://doi.org/10.3390/pr11071942
APA StyleZhao, C., Wu, D., Hu, F., Sun, M., Li, T., & Wang, H. (2023). Quantitative Characteristics of Micro Bedding Fractures in the Wufeng–Longmaxi Formation Based on High-Resolution Map Imaging Technology. Processes, 11(7), 1942. https://doi.org/10.3390/pr11071942