Vibration Scale Model of a Converter Transformer Based on the Finite Element and Similarity Principle and Its Preparation
Abstract
:1. Introduction
2. Similarity Principle
2.1. Geometric Similarity
2.2. Similarity of Structural Mechanics
2.3. Similarity of Electromagnetic Field
2.4. Similarity of Solid Mechanics
3. Finite Element Physical Model and Its Similarity Process
3.1. Finite Element Model of Electric-Magnetic-Force Multi-Field Coupling for Converter Transformer
3.2. Vibration Scale Model of Converter Transformer
4. Analysis and Discussion on Simulation Results of Finite Element Scale Model of Converter Transformer
4.1. Similarity of Modal Shapes
4.2. Distribution Characteristics of Electromagnetic Fields in Similar Processes
4.3. Stress and Displacement Distribution Characteristics in Similar Processes
5. Preparation of Scale Prototype
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, P.; Li, L.; Cheng, Z.; Tian, C.; Liu, Y. Simulation and experimental comparison of core vibration of shunt reactor and transformer model. J. Electrotech. 2018, 33, 9. [Google Scholar]
- Makmud, M.Z.H. Optimal Design of Corona Ring for 132 kV Insulator at High Voltage Transmission Lines Based on Optimisation Techniques. Energies 2023, 16, 778. [Google Scholar]
- Kell, D. HVDC to Grow Rapidly. Nat. Gas Electr. 2015, 31, 11–18. [Google Scholar] [CrossRef]
- Ghilman, R.; Al-Majali, H.D. Performance analysis of multi-level high voltage direct current converter. Int. J. Electr. Comput. Eng. 2022, 12, 1368–1376. [Google Scholar]
- Mohan, M. A comprehensive review of DC fault protection methods in HVDC transmission systems. Prot. Control Mod. Power Syst. 2021, 6, 1–20. [Google Scholar]
- Yang, B.; Liu, B.; Zhou, H.; Wang, J.; Yao, W.; Wu, S.; Shu, H.; Ren, Y. A critical survey of technologies of large offshore wind farm integration: Summary, advances, and perspectives. Prot. Control Mod. Power Syst. 2022, 7, 233–264. [Google Scholar] [CrossRef]
- Husin, H.; Zaki, M. A critical review of the integration of renewable energy sources with various technologies. Prot. Control Mod. Power Syst. 2021, 6, 37–54. [Google Scholar]
- Acarolu, H.; Márquez, G.; Pedro, F. High voltage direct current systems through submarine cables for offshore wind farms: A life-cycle cost analysis with voltage source converters for bulk power transmission. Energy 2022, 249, 123713. [Google Scholar] [CrossRef]
- Zhao, Y.; Crossley, P. Impact of dc bias on differential protection of converter transformers. Int. J. Electr. Power Energy Syst. 2020, 115, 105426.1–105426.10. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Jiang, F.; Wang, Y.; Zhang, C.; Hui, Y. Electromagneto-mechanical numerical analysis and experiment of transformer influenced by DC bias considering core magnetostriction. J. Mater. Sci. Mater. Electron. 2020, 31, 16420–16428. [Google Scholar] [CrossRef]
- Weiser, B.; Pfützner, H.; Anger, J. Relevance of magnetostriction and forces for the generation of audible noise of transformer cores. IEEE Trans. Magn. 2000, 36, 3759–3777. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, Z.; Dong, Z.; Wu, Y.; Xiao, R.; Deng, J.; Pan, Z. Research on distribution characteristics of vibration signals of ±500 kV HVDC converter transformer winding based on load test. Int. J. Electr. Power Energy Syst. 2021, 132, 107200. [Google Scholar] [CrossRef]
- Weiser, B.; Hasenzagl, A.; Booth, T.; Pfützner, H. Mechanisms of noise generation of model transformer cores. J. Magn. Magn. Mater. 1996, 160, 207–209. [Google Scholar] [CrossRef]
- Bilgundi, S.K.; Sachin, R.; Pradeepa, H.; Nagesh, H.B.; Kumar, M.V.L. Grid power quality enhancement using an ANFIS optimized PI controller for DG. Prot. Control Mod. Power Syst. 2022, 7, 26–39. [Google Scholar] [CrossRef]
- Kitagawa, W.; Ishihara, Y.; Todaka, T.; Nakasaka, A. Analysis of structural deformation and vibration of a transformer core by using magnetic property of magnetostriction. Electr. Eng. Jpn. 2010, 172, 19–26. [Google Scholar] [CrossRef]
- He, J.; Chen, K.; Li, M.; Luo, Y.; Liang, C.; Xu, Y. Review of protection and fault handling for a flexible DC grid. Prot. Control Mod. Power Syst. 2020, 5, 151–165. [Google Scholar] [CrossRef]
- Guillod, T.; Kolar, J.W. Medium-frequency transformer scaling laws: Derivation, verification, and critical analysis. CPSS Trans. Power Electron. Appl. 2020, 5, 18–33. [Google Scholar] [CrossRef]
- Zhang, P.; Li, L.; Cheng, Z.; Tian, C.; Han, Y. Study on vibration of iron core of transformer and reactor based on maxwell stress and anisotropic magnetostriction. IEEE Trans. Magn. 2019, 55, 9400205. [Google Scholar] [CrossRef]
- Stephen, A.S.; Ross, C. Scale model studies of AC substation electric fields. IEEE Trans. Power Appar. Syst. 1979, 98, 926–939. [Google Scholar]
- Brubaker, M.A.; Lindgren, S.R.; Frimpong, G.; Walden, J.M. Streaming electrification measurements in a 1/4-scale transformer model. IEEE Trans. Power Deliv. 1999, 14, 978–985. [Google Scholar] [CrossRef]
- Piantini, A.; Janiszewski, J.M.; Borghetti, A.; Nucci, C.A.; Paolone, M. A Scale Model for the Study of the LEMP Response of Complex Power Distribution Networks. IEEE Trans. Power Deliv. 2007, 22, 710–720. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Zhang, L.; Lou, J.; Zou, J. Modelling methodology for transformer core vibrations based on the magnetostrictive proper-ties. IET Electr. Power Appl. 2012, 6, 604–610. [Google Scholar] [CrossRef]
- Zou, L.; Gong, P.; Zhang, L.; Zhao, T.; Li, Q. Scale reduction test and model simplification of space magnetic field of dry-type air core reactor. High Volt. Technol. 2014, 40, 8. [Google Scholar]
- Pu, Z.H.; Ruan, J.J.; Du, Z.Y.; Zhang, Y.D. Analysis of voltage distribution characteristics in hvdc converter transformer winding based on the reduced-scale model. IEEE Trans. Magn. 2014, 50, 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Guo, F.; Xiao, G.; Wang, P. Calculation of DC Bias Reactive Power Loss of Converter Transformer via Finite Element Analysis. IEEE Trans. Power Deliv. 2020, 36, 751–759. [Google Scholar] [CrossRef]
- Yao, Y.; Koh, C.S.; Ni, G.; Xie, D. 3-D nonlinear transient eddy current calculation of online power transformer under DC bias. IEEE Trans. Magn. 2005, 41, 1840–1843. [Google Scholar]
- Wang, T.; Xie, Q.; Zhang, Y.; Du, Z.; Ruan, J.; Tan, D.; Zhu, L. Research on scaling relationship of power transformer based on similarity theory. New Technol. Electr. Energy 2015, 34, 5. [Google Scholar]
- Moses, A.J.; Anderson, P.I.; Phophongviwat, T. Localized Surface Vibration and Acoustic Noise Emitted from Laboratory-Scale Transformer Cores Assembled from Grain-Oriented Electrical Steel. IEEE Trans. Magn. 2016, 52, 1–15. [Google Scholar] [CrossRef]
- Shilyashki, G.; Pfützner, H.; Hamberger, P.; Aigner, M.; Kenov, A.; Matkovic, I. Spatial distributions of magnetostriction, displacements and noise generation of model transformer cores. Int. J. Mech. Sci. 2016, 118, 188–194. [Google Scholar] [CrossRef]
- Garcia, B.; Burgos, J.C.; Alonso, A. Transformer Tank Vibration Modeling as a Method of Detecting Winding Deformations-Part I: Theoretical Foundation. IEEE Trans. Power Deliv. 2006, 21, 157–163. [Google Scholar] [CrossRef]
- Baravati, P.R.; Moazzami, M.; Hosseini, S.M.H.; Mirzaei, H.R.; Fani, B. Achieving the exact equivalent circuit of a large-scale transformer winding using an improved detailed model for partial discharge study. Int. J. Electr. Power Energy Syst. 2022, 134, 107451. [Google Scholar] [CrossRef]
- Gao, Y.; Muramatsu, K.; Hatim, M.J.; Fujiwara, K.; Ishihara, Y.; Fukuchi, S.; Takahata, T. Design of a Reactor Driven by Inverter Power Supply to Reduce the Noise Considering Electromagnetism and Magnetostriction. IEEE Trans. Magn. 2010, 46, 2179–2182. [Google Scholar] [CrossRef]
Name | Iron Core | Winding | Spacer | Insulating Oil |
---|---|---|---|---|
Density (kg/m3) | 7870 | 8940 | 1117 | 895 |
Young’s modulus (GPa) | 6 | 12.6 | 1 | - |
Poisson’s ratio | 0.45 | 0.34 | 0.38 | - |
Conductivity (S/m) | 1.12 × 107 | 5.99 × 107 | 1 | 1 |
Relative permittivity | 1 | 1 | 1 | - |
Parameters | Initial Model | Similitude Model |
---|---|---|
Yoke length (m) | 6.72 | 1.344 |
Core height (m) | 3.6 | 0.72 |
Winding wire cake height (m) | 1.764 | 0.353 |
Winding radius at grid side (m) | 0.664 | 0.133 |
Radius of valve side winding (m) | 0.468 | 0.094 |
Natural Frequency | Initial Model (Hz) | 1/2 Model (Hz) | 1/5 Model (Hz) |
---|---|---|---|
First order | 77.46 | 155.06 | 373.64 |
Second order | 114.55 | 229.28 | 563.93 |
Third order | 138.76 | 277.58 | 673.93 |
Fourth order | 240.83 | 481.99 | 1203.96 |
Fifth order | 271.62 | 548.29 | 1358.53 |
Sixth order | 316.01 | 632.02 | 1593.26 |
Natural Frequency | Initial Model (Hz) | 1/2 Model (Hz) | 1/5 Model (Hz) |
---|---|---|---|
First order | 77.53 | 155.22 | 387.62 |
Second order | 88.78 | 196.67 | 428.94 |
Third order | 115.64 | 229.58 | 573.14 |
Fourth order | 138.79 | 277.58 | 693.93 |
Fifth order | 168.62 | 337.24 | 842.95 |
Sixth order | 240.78 | 481.57 | 1203.57 |
Parameter | Name/Value | Parameter | Name/Value |
---|---|---|---|
Model | ZZD-800/100-30 | Rated voltage ratio | 100/30 kV |
Impedance | >2% | Impedance deviation | +2.5% |
Temperature rise | Winding hot spot 78 K | Temperature rise | Hot spot of iron core and metal parts 80 K |
Insulation level | Valve side neutral point LI60AC35 DC40 | Insulation level | Meshwork side LI60AC35 |
Load loss | Pk ≤ 15 kW | No load loss | Po ≤ 2 kW Io ≤ 2% |
Connection group | Ii0 (YNY0) | Noise level | 55 dB (A) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, L.; Sun, Y.; Zou, L. Vibration Scale Model of a Converter Transformer Based on the Finite Element and Similarity Principle and Its Preparation. Processes 2023, 11, 1969. https://doi.org/10.3390/pr11071969
Wang H, Zhang L, Sun Y, Zou L. Vibration Scale Model of a Converter Transformer Based on the Finite Element and Similarity Principle and Its Preparation. Processes. 2023; 11(7):1969. https://doi.org/10.3390/pr11071969
Chicago/Turabian StyleWang, Hao, Li Zhang, Youliang Sun, and Liang Zou. 2023. "Vibration Scale Model of a Converter Transformer Based on the Finite Element and Similarity Principle and Its Preparation" Processes 11, no. 7: 1969. https://doi.org/10.3390/pr11071969
APA StyleWang, H., Zhang, L., Sun, Y., & Zou, L. (2023). Vibration Scale Model of a Converter Transformer Based on the Finite Element and Similarity Principle and Its Preparation. Processes, 11(7), 1969. https://doi.org/10.3390/pr11071969