An Overview of Carbon Emission Mitigation in the Food Industry: Efforts, Challenges, and Opportunities
Abstract
:1. Introduction
2. Carbon Market: A Way to Support Climate Action
3. Emission Hotspots in the Food Industry
4. Efforts in GHG Emissions Mitigation
4.1. Emissions from Scope 1, Scope 2, and Scope 3 Downstream
4.1.1. Energy Management
Strategies for Achieving Energy Decarbonization
Improving Energy Efficiency in Processing
Improving Logistics Strategies and Energy Efficiency in Transportation
4.1.2. Environmental Impact of Food Packaging Choices
4.1.3. Carbon Capture and Utilization during Food Processing
4.2. Emissions from Scope 3 Upstream
4.2.1. Environmental Considerations of Plant-Based Food
4.2.2. Pros and Cons of Cultured Meat Development
4.2.3. Exploitation of Microbial Protein
4.2.4. Mitigation Measures Taken by Agricultural Producers
4.3. Possible Concerns during Implementing GHG Mitigation Measures
5. Challenges in GHG Verification for the Food Industry
5.1. Unraveling the Veil of Uncertainties in Carbon Footprint
5.2. Reporting Integrity of Scope 3 Emissions
6. Pathways and Realities in Achieving Carbon Neutrality
6.1. Journey towards Carbon-Neutral Food
6.2. Carbon-Neutral Foods: Fact or Fiction?
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hansen, A.D.; Kuramochi, T.; Wicke, B. The status of corporate greenhouse gas emissions reporting in the food sector: An evaluation of food and beverage manufacturers. J. Clean. Prod. 2022, 361, 132279. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A.J.N.F. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Reavis, M.; Ahlen, J.; Rudek, J.; Naithani, K. Evaluating Greenhouse Gas Emissions and Climate Mitigation Goals of the Global Food and Beverage Sector. Front. Sustain. Food Syst. 2022, 5, 530. [Google Scholar] [CrossRef]
- COP26: Participants Recognise Need for Sustainable Food Systems to Ensure Global Food Security and Achieve Climate Objectives. Available online: https://agriculture.ec.europa.eu/news/cop26-participants-recognise-need-sustainable-food-systems-ensure-global-food-security-and-achieve-2021-11-09_en (accessed on 22 June 2023).
- Demir, E.; Bektaş, T.; Laporte, G. A comparative analysis of several vehicle emission models for road freight transportation. Transp. Res. Part D Transp. Environ. 2011, 16, 347–357. [Google Scholar] [CrossRef]
- Prakash, J.; Habib, G.A. technology-based mass emission factors of gases and aerosol precursor and spatial distribution of emissions from on-road transport sector in India. Atmos. Environ. 2018, 180, 192–205. [Google Scholar] [CrossRef]
- Jóhannesson, S.E.; Heinonen, J.; Davíðsdóttir, B. Data accuracy in Ecological Footprint’s carbon footprint. Ecol. Indic. 2020, 111, 105983. [Google Scholar] [CrossRef]
- VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A review of climate change, mitigation and adaptation. Renew. Sustain. Energy Rev. 2012, 16, 878–897. [Google Scholar] [CrossRef]
- Climate Change 2022: Impacts, Adaptation and Vulnerability. Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (accessed on 15 May 2023).
- AR4 Climate Change 2007: The Physical Science Basis. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-spm-1.pdf (accessed on 18 April 2023).
- Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 14 May 2023).
- Carbon Border Adjustment Mechanism. Available online: https://taxation-customs.ec.europa.eu/green-taxation-0/carbon-border-adjustment-mechanism_en. (accessed on 8 May 2023).
- 2022 Global Food Policy Report: Climate Change and Food Systems. Available online: https://reliefweb.int/report/world/2022-global-food-policy-report-climate-change-and-food-systems (accessed on 21 February 2023).
- Steamy Relationships: How Atmospheric Water Vapor Amplifies Earth’s Greenhouse Effect. Available online: https://climate.nasa.gov/explore/ask-nasa-climate/3143/steamy-relationships-how-atmospheric-water-vapor-amplifies-earths-greenhouse-effect (accessed on 19 May 2023).
- Wang, J.; Jin, S.; Bai, W.; Li, Y.; Jin, Y. Comparative analysis of the international carbon verification policies and systems. Nat. Hazards 2016, 84, 381–397. [Google Scholar] [CrossRef] [Green Version]
- Tubiello, F.N.; Karl, K.; Flammini, A.; Gütschow, J.; Obli-Laryea, G.; Conchedda, G.; Pan, X.; Qi, S.Y.; Heiðarsdóttir, H.H.; Wanner, N.; et al. Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data 2022, 14, 1795–1809. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Laryea, G.O.; Wanner, N.; Qiu, S.Y.; Barros, J.D.; et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Energy. Available online: https://www.fao.org/energy/home/en (accessed on 19 May 2023).
- ISO 14064-1:2018. Available online: https://www.iso.org/standard/66453.html (accessed on 4 June 2023).
- ISO 14067:2018. Available online: https://www.iso.org/standard/71206.html (accessed on 21 March 2023).
- Wang, S.; Wang, W.; Yang, H. Comparison of product carbon footprint protocols: Case study on medium-density fiberboard in China. Int. J. Environ. Res. Public Health 2018, 15, 2060. [Google Scholar] [CrossRef] [Green Version]
- PAS 2060 Carbon Neutrality. Available online: https://www.bsigroup.com/en-GB/pas-2060-carbon-neutrality/ (accessed on 24 June 2023).
- Carbon Neutral Verification. Available online: https://www.carbontrust.com/what-we-do/assurance-and-labelling/carbon-neutral-verification (accessed on 13 May 2023).
- Ladha-Sabur, A.; Bakalis, S.; Fryer, P.J.; Lopez-Quiroga, E. Mapping energy consumption in food manufacturing. Trends Food Sci. Technol. 2019, 86, 270–280. [Google Scholar] [CrossRef]
- Szczepaniak, I.; Szajner, P. Challenges of Energy Management in the Food Industry in Poland in the Context of the Objectives of the European Green Deal and the “Farm to Fork” Strategy. Energies 2022, 15, 9090. [Google Scholar] [CrossRef]
- Shabir, I.; Dash, K.K.; Dar, A.H.; Pandey, V.K.; Fayaz, U.; Srivastava, S.; Nisha, R. Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods 2023, 7, 100215. [Google Scholar] [CrossRef]
- Glasgow Climate Pact. Available online: https://unfccc.int/sites/default/files/resource/cop26_auv_2f_cover_decision.pdf (accessed on 17 April 2023).
- Acampora, A.; Ruini, L.; Mattia, G.; Pratesi, C.A.; Lucchetti, M.C. Towards carbon neutrality in the agri-food sector: Drivers and barriers. Resour. Conserv. Recycl. 2023, 189, 106755. [Google Scholar] [CrossRef]
- Nestlé and European Clean Trucking Alliance Call for More Sustainable Road Freight. Available online: https://www.nestle.com/media/news/nestle-european-clean-trucking-alliance-sustainable-road-freight (accessed on 15 July 2020).
- Cargill Songyuan is Ushering in a Greener Energy Future with Rice Husk and Renewables. Available online: https://www.cargill.com/sustainability/cargill-songyuan-is-ushering-in-a-greener-energy-future (accessed on 9 May 2023).
- Renewable Energy. Available online: https://www.pepsico.com/our-impact/esg-topics-a-z/renewable-energy (accessed on 23 November 2022).
- Renewable Electricity. Available online: https://betterdays.kelloggcompany.com/renewable-electricity (accessed on 16 June 2023).
- Müller, H.; Brandmayr, S.; Zörner, W. Development of an evaluation methodology for the potential of solar-thermal energy use in the food industry. Energy Procedia 2014, 48, 1194–1201. [Google Scholar] [CrossRef] [Green Version]
- González-Ramírez, J.E.; Leducq, D.; Arellano, M.; Alvarez, G. Energy consumption optimization of a continuous ice cream process. Energy Convers. Manag. 2013, 70, 230–238. [Google Scholar] [CrossRef]
- Muster-Slawitsch, B.; Brunner, C.; Fluch, J. Application of an advanced pinch methodology for the food and drink production. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 561–574. [Google Scholar] [CrossRef]
- Pask, F.; Sadhukhan, J.; Lake, P.; McKenna, S.; Perez, E.B.; Yang, A. Systematic approach to industrial oven optimisation for energy saving. Appl. Therm. Eng. 2014, 71, 72–77. [Google Scholar] [CrossRef]
- Ahmed, J.; Rahman, M.S. Handbook of Food Process Design, 2nd ed; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 299–333. [Google Scholar]
- Walmsley, T.G.; Atkins, M.J.; Walmsley, M.R.; Philipp, M.; Peesel, R.H. Process and utility systems integration and optimisation for ultra-low energy milk powder production. Energy 2018, 146, 67–81. [Google Scholar] [CrossRef]
- Meyers, S.; Schmitt, B.; Chester-Jones, M.; Sturm, B. Energy efficiency, carbon emissions, and measures towards their improvement in the food and beverage sector for six European countries. Energy 2016, 104, 266–283. [Google Scholar] [CrossRef]
- Singh, S.; Dasgupta, M.S. CO2 heat pump for waste heat recovery and utilization in dairy industry with ammonia based refrigeration. Int. J. Refrig. 2017, 78, 108–120. [Google Scholar] [CrossRef]
- Celma, A.R.; Blázquez, F.C.; López-Rodríguez, F. Feasibility analysis of CHP in an olive processing industry. J. Clean. Prod. 2013, 42, 52–57. [Google Scholar] [CrossRef]
- Barba, F.J.; Orlien, V.; Mota, M.J.; Lopes, R.P.; Pereira, S.A.; Saraiva, J.A. Implementation of emerging technologies. In Innovation Strategies in the Food Industry, 1st ed.; Charis, M.G., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 12345, pp. 130–139. [Google Scholar]
- Atuonwu, J.C.; Leadley, C.; Bosman, A.; Tassou, S.A.; Lopez-Quiroga, E.; Fryer, P.J. Comparative assessment of innovative and conventional food preservation technologies: Process energy performance and greenhouse gas emissions. Innov. Food Sci. Emerg. Technol. 2018, 50, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Xanthakis, E.; Huen, J.; Eliasson, L.; Jha, P.K.; Le-Bail, A.; Shrestha, M. Evaluation of microwave assisted freezing (MAF) impact on meat and fish matrices. In Proceedings of the 5th IIR Conference on Sustainability and the Cold Chain, Beijing, China, 6–8 May 2018. [Google Scholar]
- Mundler, P.; Rumpus, L. The energy efficiency of local food systems: A comparison between different modes of distribution. Food Policy 2012, 37, 609–615. [Google Scholar] [CrossRef]
- Torquati, B.; Taglioni, C.; Cavicchi, A. Evaluating the CO2 emission of the milk supply chain in Italy: An exploratory study. Sustainability 2015, 7, 7245–7260. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.K.; Bazilian, M.; Griffiths, S.; Kim, J.; Foley, A.; Rooney, D. Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renew. Sustain. Energy Rev. 2021, 143, 110856. [Google Scholar] [CrossRef]
- Cleveland, D.A.; Radka, C.N.; Müller, N.M.; Watson, T.D.; Rekstein, N.J.; Van, M. Wright, H.; Hollingshead, S.E. Effect of localizing fruit and vegetable consumption on greenhouse gas emissions and nutrition, Santa Barbara County. Environ. Sci. Technol. 2011, 45, 4555–4562. [Google Scholar] [CrossRef]
- Paciarotti, C.; Torregiani, F. The logistics of the short food supply chain: A literature review. Sustain. Prod. Consum. 2021, 26, 428–442. [Google Scholar] [CrossRef]
- Coronavirus vs. Climate Change. Available online: https://spectrum.ieee.org/covid19-pandemic-reduce-greenhouse-gas-emissions (accessed on 22 March 2023).
- Xu, Z.; Sun, D.W.; Zeng, X.A.; Liu, D.; Pu, H. Research developments in methods to reduce the carbon footprint of the food system: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1270–1286. [Google Scholar] [CrossRef]
- Humbert, S.; Rossi, V.; Margni, M.; Jolliet, O.; Loerincik, Y. Life cycle assessment of two baby food packaging alternatives: Glass jars vs. plastic pots. Int. J. Life Cycle Assess. 2009, 14, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Poovarodom, N.; Ponnak, C.; Manatphrom, N. Comparative carbon footprint of packaging systems for tuna products. Packag. Technol. Sci. 2012, 25, 249–257. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.A.; Araújo, A.R.; Graça, A.; Caetano, N.S.; Mata, T.M. Towards sustainable wine: Comparison of two Portuguese wines. J. Clean. Prod. 2018, 183, 662–676. [Google Scholar] [CrossRef]
- Point, E.; Tyedmers, P.; Naugler, C. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J. Clean. Prod. 2012, 27, 11–20. [Google Scholar] [CrossRef]
- Schenker, U.; Chardot, J.; Missoum, K.; Vishtal, A.; Bras, J. Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydr. Polym. 2021, 254, 117248. [Google Scholar] [CrossRef]
- Mikulčić, H.; Skov, I.R.; Dominković, D.F.; Alwi, S.R.W.; Manan, Z.A.; Tan, R.; Duić, N.; Hidayah Mohamad, S.N.; Wang, X. Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2. Renew. Sustain. Energy Rev. 2019, 114, 109338. [Google Scholar] [CrossRef]
- CO2 Carbon Capture and Utilisation. Available online: https://www.iea.org/reports/co2-capture-and-utilisation (accessed on 13 May 2023).
- Aresta, M.; Dibenedetto, A. Artificial carbon sinks: Utilization of carbon dioxide for the synthesis of chemicals and technological applications. In Greenhouse Gas Sinks, 1st ed.; Reay, D.S., Hewitt, C.N., Smith, K.A., Grace, J., Eds.; CABI: Wallingford, UK, 2007; pp. 98–114. [Google Scholar]
- The Beverage Industry Is the Largest User of the Carbon Dioxide Market. Available online: https://ccu-news.info/the-beverage-industry-is-the-largest-user-of-the-carbon-dioxide-market (accessed on 28 November 2022).
- Food and Drink Processing and Packing. Available online: https://www.processsensing.com/en-us/industries/food-and-beverage-processing.htm (accessed on 1 October 2022).
- Spigarelli, B.P.; Kawatra, S.K. Opportunities and challenges in carbon dioxide capture. J. CO2 Util. 2013, 1, 69–87. [Google Scholar] [CrossRef]
- IL Recupero della CO2 di Fermentazione (CO2 recovery from fermentation). Available online: http://www.viten.net/files/d6d/d6def1c7bdc441b61e9f82a986286ca3.pdf (accessed on 19 June 2022).
- Galileo. Available online: https://www.enomet.it/prodotti-enomet/galileo (accessed on 23 September 2020).
- Zhang, Q.; Cheng, C.L.; Nagarajan, D.; Chang, J.S.; Hu, J.; Lee, D.J. Carbon capture and utilization of fermentation CO2: Integrated ethanol fermentation and succinic acid production as an efficient platform. Appl. Energy 2017, 206, 364–371. [Google Scholar] [CrossRef]
- What the CO2 Shortage Means for Beer, Hard Seltzer and Other Drinks? Available online: https://www.winemag.com/2022/11/02/carbon-dioxide-shortage (accessed on 26 December 2022).
- Short CO₂ Supply May Complicate COVID-19 Vaccine Rollout. Available online: https://cen.acs.org/business/Short-CO2-supply-complicate-COVID/98/i45 (accessed on 7 February 2023).
- New System to Capture and Reuse CO2 from Fermentations. Available online: https://www.internationalwinechallenge.com/Canopy-Articles/new-system-to-capture-and-reuse-co2-from-fermentations.html (accessed on 23 December 2022).
- New Zealand Breweries See CO2 Rationing as Shortage Hits. Available online: https://www.reuters.com/business/new-zealand-breweries-see-co2-rationing-shortage-hits-2023-01-10/ (accessed on 20 January 2023).
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Macdiarmid, J.I. The food system and climate change: Are plant-based diets becoming unhealthy and less environmentally sustainable? Proc. Nutr. Soc. 2022, 81, 162–167. [Google Scholar] [CrossRef]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magrach, A.; Sanz, M.J. Environmental and social consequences of the increase in the demand for ‘superfoods’ world-wide. People Nat. 2020, 2, 267–278. [Google Scholar] [CrossRef]
- Post, M.J. Cultured meat from stem cells: Challenges and prospects. Meat Sci. 2012, 92, 297–301. [Google Scholar] [CrossRef]
- Munteanu, C.; Mireşan, V.; Răducu, C.; Ihuţ, A.; Uiuiu, P.; Pop, D.; Neacşu, A.; Cenariu, M.; Groza, I. Can cultured meat be an alternative to farm animal production for a sustainable and healthier lifestyle? Front. Nutr. 2021, 8, 749298. [Google Scholar] [CrossRef] [PubMed]
- Stephens, N.; Di Silvio, L.; Dunsford, I.; Ellis, M.; Glencross, A.; Sexton, A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 2018, 78, 155–166. [Google Scholar] [CrossRef]
- Growing Beef. Available online: https://mosameat.com/growing-beef (accessed on 11 April 2023).
- Lynch, J.; Pierrehumbert, R. Climate impacts of cultured meat and beef cattle. Front. Sustain. 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.B.G.; Egbejimba, J.; Throup, J.; Matassa, S.; Pearce, J.M.; Denkenberger, D.C. Potential of microbial protein from hydrogen for preventing mass starvation in catastrophic scenarios. Sustain. Prod. Consum. 2021, 25, 234–247. [Google Scholar] [CrossRef]
- Acosta, N.; Sakarika, M.; Kerckhof, F.M.; Law, C.K.Y.; De Vrieze, J.; Rabaey, K. Microbial protein production from methane via electrochemical biogas upgrading. J. Chem. Eng. 2020, 391, 123625. [Google Scholar] [CrossRef]
- Sharma, S.; Hansen, L.D.; Hansen, J.Ø.; Mydland, L.T.; Horn, S.J.; Øverland, M.; Eijsink, V.G.H.; Vuoristo, K.S. Microbial protein produced from brown seaweed and spruce wood as a feed ingredient. J. Agric. Food Chem. 2018, 66, 8328–8335. [Google Scholar] [CrossRef]
- Jahn, L.J.; Rekdal, V.M.; Sommer, M.O. Microbial foods for improving human and planetary health. Cell 2023, 186, 469–478. [Google Scholar] [CrossRef]
- Fellows, P.J. Food biotechnology. In Food Processing Technology, 4th ed.; Fellows, P.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 6; pp. 387–430. [Google Scholar]
- Durkin, A.; Finnigan, T.; Johnson, R.; Kazer, J.; Yu, J.; Stuckey, D.; Guo, M. Can closed-loop microbial protein provide sustainable protein security against the hunger pandemic? Curr. Res. Biotechnol. 2022, 4, 365–376. [Google Scholar] [CrossRef]
- Humpenöder, F.; Bodirsky, B.L.; Weindl, I.; Lotze-Campen, H.; Linder, T.; Popp, A. Projected environmental benefits of replacing beef with microbial protein. Nature 2022, 605, 90–96. [Google Scholar] [CrossRef]
- Hsu, C.C.; Tsai, H.; Huang, W.S.; Huang, S.T. Carbon Storage along with Soil Profile: An Example of Soil Chronosequence from the Fluvial Terraces on the Pakua Tableland, Taiwan. Land 2021, 10, 447. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Abowaly, M.; Abu_Alkheir, A.; Gad, A. Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena 2014, 113, 70–78. [Google Scholar] [CrossRef]
- Chiriaco, M.V.; Belli, C.; Chiti, T.; Trotta, C.; Sabbatini, S. The potential carbon neutrality of sustainable viticulture showed through a comprehensive assessment of the greenhouse gas (GHG) budget of wine production. J. Clean. Prod. 2019, 225, 435–450. [Google Scholar] [CrossRef]
- Carbon Market Incentives to Conserve, Restore and Enhance Soil Carbon. Available online: https://www.nature.org/content/dam/tnc/nature/en/documents/Carbon-Market-Incentives-Report.pdf (accessed on 8 May 2023).
- Duthie, C.A.; Rooke, J.A.; Troy, S.; Hyslop, J.J.; Ross, D.W.; Waterhouse, A.; Roehe, R. Impact of adding nitrate or increasing the lipid content of two contrasting diets on blood methaemoglobin and performance of two breeds of finishing beef steers. Animal 2016, 10, 786–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creating a Sustainable Food Future. Available online: https://www.wri.org/research/creating-sustainable-food-future (accessed on 11 May 2023).
- Why BP Carbon Footprint Calculator Is Misleading Your Eco Footprint? Available online: https://8billiontrees.com/carbon-offsets-credits/bp-carbon-footprint-calculator (accessed on 29 March 2023).
- Stępniewski, W.; Horn, R.; Martyniuk, S. Managing soil biophysical properties for environmental protection. Agric. Ecosyst. Environ. 2002, 88, 175–181. [Google Scholar] [CrossRef]
- What Is COMET-Farm? Available online: http://cometfarm.nrel.colostate.edu (accessed on 14 May 2023).
- Corporate Standard. Available online: https://ghgprotocol.org/corporate-standard (accessed on 8 May 2023).
- Birkenberg, A.; Birner, R. The world’s first carbon neutral coffee: Lessons on certification and innovation from a pioneer case in Costa Rica. J. Clean. Prod. 2018, 189, 485–501. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Wood, R. The growing importance of scope 3 greenhouse gas emissions from industry. Environ. Res. Lett. 2018, 13, 104013. [Google Scholar] [CrossRef]
- KitKat to Be Carbon Neutral by 2025, Boosting Sustainability Efforts. Available online: https://www.nestle.com/media/news/kitkat-carbon-neutral-2025-sustainability-efforts (accessed on 11 May 2023).
- Sustainable Operations. Available online: https://www.arla.com/sustainability/sustainable-operations (accessed on 17 March 2023).
- Kilian, B.; Jiménez, G.A. Dole’s carbon-neutral fruits—Teaching note. J. Bus. Res. 2012, 65, 1811–1814. [Google Scholar] [CrossRef]
- Kilian, B.; Hettinga, J.; Jiménez, G.A.; Molina, S.; White, A. Case study on Dole’s carbon-neutral fruits. J. Bus. Res. 2012, 65, 1800–1810. [Google Scholar] [CrossRef]
- Di Vita, G.; Pilato, M.; Pecorino, B.; Brun, F.; D’Amico, M. A review of the role of vegetal ecosystems in CO2 capture. Sustainability 2017, 9, 1840. [Google Scholar] [CrossRef] [Green Version]
- Specification, P.A. PAS 2050–Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. Br. Stand. Inst. 2008, 978, 580. [Google Scholar]
- Pan, S.Y.; He, K.H.; Lin, K.T.; Fan, C.; Chang, C.T. Addressing nitrogenous gases from croplands toward low-emission agriculture. NPJ Clim. Atmos. Sci. 2022, 5, 43. [Google Scholar] [CrossRef]
- Sustainability in the Coffee Growing Business: Coopedota and the Path towards Carbon Neutral Coffee. Available online: https://www.lenoirlacroix.ca/wp-content/uploads/2017/02/245_ESTUDIO_de_Caso_Caficultura_ingles_IMPRENTA_VF.pdf (accessed on 2 April 2019).
- Swedish Court Bans Arla’s Net-Zero Advertising Claim. Available online: https://www.just-food.com/news/swedish-court-bans-arlas-net-zero-advertising (accessed on 23 April 2023).
- Pinkse, J.; Busch, T. The emergence of corporate carbon norms: Strategic directions and managerial implications. Thunderbird Int. Bus. Rev. 2013, 55, 633–645. [Google Scholar] [CrossRef]
- Climate-Neutral Claims on Food Must Be Banned, Shows Consumer Groups Report. Available online: https://www.beuc.eu/press-releases/climate-neutral-claims-food-must-be-banned-shows-consumer-groups-report (accessed on 26 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-C.; Wu, Y.-C.; Chau, C.-F. An Overview of Carbon Emission Mitigation in the Food Industry: Efforts, Challenges, and Opportunities. Processes 2023, 11, 1993. https://doi.org/10.3390/pr11071993
Liu T-C, Wu Y-C, Chau C-F. An Overview of Carbon Emission Mitigation in the Food Industry: Efforts, Challenges, and Opportunities. Processes. 2023; 11(7):1993. https://doi.org/10.3390/pr11071993
Chicago/Turabian StyleLiu, Ting-Chun, Yi-Ching Wu, and Chi-Fai Chau. 2023. "An Overview of Carbon Emission Mitigation in the Food Industry: Efforts, Challenges, and Opportunities" Processes 11, no. 7: 1993. https://doi.org/10.3390/pr11071993
APA StyleLiu, T. -C., Wu, Y. -C., & Chau, C. -F. (2023). An Overview of Carbon Emission Mitigation in the Food Industry: Efforts, Challenges, and Opportunities. Processes, 11(7), 1993. https://doi.org/10.3390/pr11071993