Lacustrine Shale Diagenesis—A Case Study of the Second Member of the Funing Formation in the Subei Basin
Abstract
:1. Introduction
2. Overview of the Study Area
3. Methods
4. Results
4.1. Shale Petrological Characteristics
4.2. Types of Shale Diagenesis
4.2.1. Compaction
4.2.2. Dissolution
4.2.3. Cementation
4.2.4. Metasomatism
4.2.5. Dolomitization
4.2.6. Dehydration/Shrinkage and Transformation of Clay Minerals
4.2.7. Thermal Evolution of Organic Matter
5. Discussion
5.1. Diagenetic Stages of Shale
5.1.1. Thermal Evolution of Organic Matter
5.1.2. Clay Mineral Transformation
5.2. Diagenetic Evolution Sequence of Shale
5.3. Pore Evolution of Shale
6. Conclusions
- (1)
- The shale diagenesis types in the second member of the Funing Formation (Fu-2) in the Subei Basin included compaction, dissolution, cementation, metasomatism, dolomitization, dehydration/shrinkage, transformation of clay minerals, and thermal evolution of organic matter.
- (2)
- The diagenetic stages of shale were determined by considering the thermal evolution of organic matter and the transformation of clay minerals. The middle diagenetic stage A is dominant in the Fu-2 in the Subei Basin; some parts of the formation are in the early diagenetic stage B and the middle diagenetic stage B.
- (3)
- A diagenetic evolution model of the shale in the Fu-2 in the North Jiangsu Basin was established by considering the diagenetic changes in organic matter maturity and the contents of the clay, clastic, and carbonate minerals during diagenesis. The diagenetic evolution sequences included interlayer collapse and shrinkage of montmorillonite in the early stage; rapid formation and transformation of mixed layers, massive hydrocarbon generation and dissolution of unstable components of organic matter in the middle stage; and fracture generation and filling by authigenic minerals, such as gypsum, quartz, or iron calcite in the later stage.
- (4)
- The diagenetic events and pore evolution of the Fu-2 were summarized. Primary intergranular pores and mineral intercrystalline pores were the dominant reservoir spaces during early diagenesis. Solution pores and fractures were the most prevalent in the middle diagenetic stage A, followed by organic pores and mineral intercrystalline pores. Organic pores were the main reservoir spaces in the middle diagenetic stage B. Dissolution pores and fractures still represented key reservoir spaces, but many were completely or semifilled by authigenic minerals, such as gypsum, quartz, or iron calcite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, X.; Pang, M. Study on Diagenesis of Clastic Reservoir Rocks; China University of Geosciences Press: Beijing, China, 1989. [Google Scholar]
- Liu, J.; Lai, X.; Yu, B.; Chen, X.; Sui, C. The current situation and developing tendency of the study on diagenesis. Pet. Geol. Exp. 2006, 28, 65–72. [Google Scholar]
- Quasim, M.A.; Khan, S.; Srivastava, V.K.; Ghaznavi, A.A.; Ahmad, A.H.M. Role of cementation and compaction in controlling the reservoir quality of the Middle to Late Jurassic Sandstones, Jara dome, Kachchh Basin, western India. Geol. J. 2021, 56, 976–994. [Google Scholar] [CrossRef]
- Dong, D.; Zou, C.; Li, J.; Wang, S.; Li, X.; Wang, Y.; Li, D.; Huang, J. Resource potential, exploration and development prospect of shale gas in the whole world. Geol. Bull. China 2011, 30, 324–336. [Google Scholar]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Feng, Q. Black rock series from the early cambrian Hetang formation in Zhitang Section, west Zhejiang province. Geol. Sci. Technol. Inf. 2012, 31, 110–117. [Google Scholar]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T. Organic matter-hosted pore system, Marcllus Formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, Z.; Yang, D.; Kang, Z. Study of pyrolysis and internal structural variation of oil shale based on 3D CT images. Chin. J. Rock Mech. Eng. 2014, 33, 112–117. [Google Scholar]
- Milliken, K.L.; Esch, W.L.; Reed, R.M.; Zhang, T. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas Properties of Siliceous Mudrocks, Barnett Shale, Texas. AAPG Bull. 2012, 96, 1553–1578. [Google Scholar] [CrossRef]
- Aplin, A.C.; Macquaker, J.H.S. Mudstone diversity: Origin and implication for source, seal and reservoir properties in petroleum system. AAPG Bull. 2011, 95, 2031–2059. [Google Scholar] [CrossRef]
- Lu, L.; Liu, W.; Wei, Z.; Pan, A.; Zhang, Q.; Teng, G. Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation. Acta Pet. Sin. 2022, 40, 73–87. [Google Scholar]
- Zhao, J.; Jin, Z. Mudstone diagenesis: Research advances and prospects. Acta Pet. Sin. 2021, 39, 58–72. [Google Scholar]
- Potter, P.E.; Maynard, J.B.; Depetris, P.J. Mud and Mudstone: Introduction and Review. Clay Clay Miner. 2005, 53, 550–552. [Google Scholar]
- Huang, Z.; Guo, X.; Liu, B.; Zhang, D.; Zhang, J.; Qi, Y.; Wang, R. The Reservoir Space Characteristics and Origins of Lucaogou Formation Source Rock Oil in the Malang Sag. Acta Sedimentol. Sin. 2012, 30, 1115–1122. [Google Scholar]
- Jiang, Z.; Liang, C.; Wu, J.; Zhang, Z.; Zhang, W.; Wang, Y.; Liu, H.; Chen, X. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Pet. Sin. 2013, 34, 1031–1039. [Google Scholar]
- Milliken, K.A. Compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks. J. Sediment. Res. 2014, 84, 1185–1199. [Google Scholar] [CrossRef]
- Dong, C.; Ma, C.; Luan, G.; Lin, C.; Zhang, X.; Ren, L. Pyrolysis simulation experiment and diagenesis evolution pattern of shale. Acta Pet. Sin. 2015, 33, 1053–1061. [Google Scholar]
- Camp, W.K.; Milliken, K.L.; Fishman, N.S.; Hackley, P.C. Depth of burial for lithification and diagenesis of muds and sands on early Mars. In Proceedings of the SEPM-AAPG Mudstone Diagenesis Hedberg Research Conference Summary, Santa Fe, NM, USA, 16–19 October 2016. [Google Scholar]
- Beloborodov, R.; Pervukhina, M.; Luzin, V.; Delle Piane, C.; Clennell, M.B.; Zandi, S.; Lebedev, M. Compaction of quartz-kaolinite mixtures: The influence of the pore fluid composition on the development of their microstructure and elastic anisotropy. Mar. Pet. Geol. 2016, 78, 426–438. [Google Scholar] [CrossRef]
- Goulty, N.R.; Sargent, C.; Andras, P.; Aplin, A.C. Compaction of diagenetically altered mudstones—Part 1: Mechanical and chemical contributions. Mar. Pet. Geol. 2016, 77, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Van de Kamp, P.C. Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales. Clays Clay Miner. 2008, 56, 66–81. [Google Scholar] [CrossRef]
- Peltonen, C.; Marcussen, Ø.; Bjørlykke, K.; Jahren, J. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties. Mar. Pet. Geol. 2009, 26, 887–898. [Google Scholar] [CrossRef]
- Baruch, E.T.; Kennedy, M.J.; Löhr, S.C.; Dewhurst, D.N. Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bull. 2015, 99, 1745–1770. [Google Scholar] [CrossRef]
- Macquaker, J.H.; Taylor, K.G.; Keller, M.; Polya, D. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones. AAPG Bull. 2014, 98, 587–603. [Google Scholar] [CrossRef]
- Camp, W.K. Diagenetic evolution of organic matter cements in unconventional shale reservoirs. In Proceedings of the AAPG 2015 Annual Convention and Exhibition, Denver, CO, USA, 31 May–3 June 2015. [Google Scholar]
- Wu, L.; Li, X.; Guo, X.; Luo, Q.; Liu, X.; Chen, X.; Jiang, Z. Diagenetic evolution and formation mechanism of dissolved pore of shale oil reservoirs of Lucaogou formation in Malang sag. J. China Univ. Pet. Ed. Nat. Sci. 2012, 36, 38–43. [Google Scholar]
- Dong, C.; Ma, C.; Lin, C.; Sun, X.; Yuan, M. A method of classification of shale set. J. China Univ. Pet. Ed. Nat. Sci. 2015, 39, 1–7. [Google Scholar]
- Zhang, S.; Liu, H.; Wang, M.; Fu, A.; Bao, Y.; Wang, W.; Teng, J.; Fang, Z. Pore evolution of shale oil reservoirs in Dongying Sag. Acta Pet. Sin. 2018, 39, 754–766. [Google Scholar]
- Macquaker, J.H.; Curtis, C.D.; Coleman, M.L. The role of iron in mudstone diagenesis; comparison of Kimmeridge Clay Formation mudstones from onshore and offshore (UKCS) localities. J. Sediment. Res. 1997, 67, 871–878. [Google Scholar]
- Milliken, K.L.; Ergene, S.M.; Ozkan, A. Quartz types, authigenic and detrital, in the upper cretaceous eagle ford formation, South Texas, USA. Sediment. Geol. 2016, 339, 273–288. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, S.; Pan, R.; Tan, M.; Chen, H.; Wang, X.; Chen, F.; Zhang, M.; Hou, B.; Dong, Y. Hotspots and progress in sedimentology: A review of the 32nd international sedimentology conference. Chin. J. Palaeogeogr. 2016, 18, 699–716. [Google Scholar]
- Kokkinos, N.C.; Nkagbu, D.C.; Marmanis, D.I.; Dermentzis, K.I.; Maliaris, G. Evolution of Unconventional Hydrocarbons: Past, Present, Future and Environmental FootPrint. J. Eng. Sci. Technol. Rev. 2022, 15, 15–24. [Google Scholar] [CrossRef]
- Foscolos, A.E.; Kodama, H. Diagenesis of clay minerals from Lower Cretaceous shales of northeastern British Columbia. Clays Clay Miner. 1974, 22, 319–335. [Google Scholar] [CrossRef]
- Bjølykke, K. Clay mineral diagenesis in sedimentary basins-a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner. 1998, 33, 15–34. [Google Scholar] [CrossRef]
- Lahann, R.W.; Lahann, W.; McCarty, D.K.; Hsieh, J.C.C. Influence of clay diagenesis on shale velocities and fluid-pressure. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2001. [Google Scholar]
- Wang, X. Structural and Sedimentary Evolution of Funing Formation in West Slop of Jinhu Sag; China University of Petroleum (East China): Dongying, China, 2011. [Google Scholar]
- Wang, X. Study on the Sedimentary System of the Third Member of Paleogene Funing Formation in the Subei Basin; China University of Geosciences (Beijing): Beijing, China, 2017. [Google Scholar]
- Pommer, M.; Milliken, K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bull. 2015, 99, 1713–1744. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.; Hu, Q. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zuo, R.; Jiang, Z.; Chen, D.; Song, Y.; Luo, Q.; Wang, Q.; Zhu, H. Effect of lithofacies on pore structure and new insights into pore-preserving mechanisms of the over-mature Qiongzhusi marine shales in Lower Cambrian of the southern Sichuan Basin, China. Mar. Pet. Geol. 2018, 98, 746–762. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Song, G.; Wang, X.; Teng, J.; Wang, M.; Bao, Y.; Yao, S.; Wang, W.; Zhang, S.; et al. Effect of shale diagenesis on pores and storage capacity in the Paleogene Shahejie Formation, Dongying Depression, Bohai Bay Basin, east China. Mar. Pet. Geol. 2019, 103, 738–752. [Google Scholar] [CrossRef]
- Liang, C.; Cao, Y.; Liu, K.; Jiang, Z.; Wu, J.; Hao, F. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation. Geochim. Cosmochim. Acta 2018, 229, 112–128. [Google Scholar] [CrossRef]
- Makled, W.A.; Mostafa, T.F.; Mousa, D.A.; Abdou, A.A. Source rock evaluation and sequence stratigraphic model based on the palynofacies and geochemical analysis of the subsurface Devonian rocks in the Western Desert, Egypt. Mar. Pet. Geol. 2018, 89, 560–584. [Google Scholar] [CrossRef]
- Li, Q.; Pang, X.; Li, B.; Zhao, Z.; Shao, X.; Zhang, X.; Wang, Y.; Li, W. Discrimination of effective source rocks and evaluation of the hydrocarbon resource potential in Marsel, Kazakhstan. J. Pet. Sci. Eng. 2018, 160, 194–206. [Google Scholar] [CrossRef]
- Staplin, F.L. Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Bull. Can. Pet. Geol. 1969, 17, 47–66. [Google Scholar]
- Snowdon, L.R. Rock-Eval Tmax suppression: Documentation and amelioration. AAPG Bull. 1995, 79, 1337–1348. [Google Scholar]
- Bray, E.E.; Evans, E.D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 1961, 22, 2–15. [Google Scholar] [CrossRef]
- Lu, J.; Milliken, K.; Reed, R.M.; Hovorka, S. Diagenesis and sealing capacity of the middle Tuscaloosa mudstone at the Cranfield carbon dioxide injection site, Mississippi, USA. Environ. Geosci. 2011, 18, 35–53. [Google Scholar] [CrossRef]
- Ying, F.; He, D. Diagenesis and Diagenetic Numerical Simulation of Clastic Reservoirs in China’s Petroliferous Basins; Petroleum Industry Press: Beijing, China, 2004. [Google Scholar]
- Zhu, J.; Li, S. Study on the diagenesis of clastic oil formation assemblage. Pet. Geol. Exp. 1988, 10, 223–239. [Google Scholar]
- Liu, B.; Zhang, J. Sedimentary Diagenesis; Science Press: Beijing, China, 1992. [Google Scholar]
- Seely RLiddy, T.J.; Rochelle, C.A.; Fletcher, R.S.; Rigby, S.P. Evolution of the mineralogy, pore structure and transport properties of Nordland Shale following exposure to supercritical carbon dioxide. J. Pet. Sci. Eng. 2022, 213, 110466. [Google Scholar] [CrossRef]
- Metwally, Y.M.; Chesnokov, E.M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale. Appl. Clay Sci. 2012, 55, 138–150. [Google Scholar] [CrossRef]
- Piper, D.J.W.; Hundert, T.; Pe-Piper, G.; Okwese, A.C. The roles of pedogenesis and diagenesis in clay mineral assemblages: Lower Cretaceous fluvial mudrocks, Nova Scotia, Canada. Sediment. Geol. 2009, 213, 51–63. [Google Scholar] [CrossRef]
- Sun, P.K.; Fang, H.J.; Xu, Z.H.; Wang, C.; Xu, H.M.; Lu, M. Siliciclastic depositional model within a subsurface coastal parasequence based on barriers and baffles—An application to the Donghe Sandstone Member in the Hudson Oilfield, Tarim Basin, NW China. JPSE. 2020, 195, 107947. [Google Scholar] [CrossRef]
- Cavelana, A.; Boussafira, M.; Milbeaua, C.L.; Rozenbaumd, O.; Laggoun-Défarge, F. Effect of organic matter composition on source rock porosity during confined anhydrous thermal maturation: Example of Kimmeridge-clay mudstones. Int. J. Coal Geol. 2019, 212, 10323. [Google Scholar] [CrossRef] [Green Version]
- Garagulya, I.; Vargaa, A.; Raucsika, B.; Schuberta, F.; Czupponb, G.; Frei, R. Pervasive early diagenetic dolomitization, subsequent hydrothermal alteration, and late stage hydrocarbon accumulation in a Middle Triassic carbonate sequence (Szeged Basin, SE Hungary). Mar. Pet. Geol. 2018, 98, 270–290. [Google Scholar] [CrossRef]
- Bitchong, A.M.; Bekono Ottou, J.P.; Bitjong, S.A.; Mandeng, G.N.; Adatte, T. Preliminary source rock evaluation, paleo-depositional environment and hydrocarbon generation potential of the cretaceous organic-rich outcrops of Mayo-Figuil River, Babouri-Figuil Basin, Northern Benue Trough (Yola arm) Cameroon: Insights from bulk geochemistry. J. Afr. Earth Sci. 2022, 192, 104568. [Google Scholar]
- She, M.; Shou, J.; Shen, A.; He, X.; Zhu, Y.; Wang, Y.; Zhang, T. Experimental simulation of dissolution and alteration of buried organic acid fluid on dolomite reservoir. J. China Univ. Pet. Ed. Nat. Sci. 2014, 38, 10–17. [Google Scholar]
Diagenetic Stage | Organic Matter Maturity | Ro% | Tmax/°C | Pollen Color | TAI | ||
---|---|---|---|---|---|---|---|
Early | A | Immature | <0.35 | <435 | Yellow | <2 | |
B | Semimature | 0.35–0.5 | Deep yellow | <2.5 | |||
Middle | A | A1 | Low maturity | 0.5–0.7 | 435–440 | Orange | 2.5–2.7 |
A2 | Mature | 0.7–1.3 | 440–460 | Brown | 2.7–3.7 | ||
B | High maturity | 1.3–2.0 | 460–480± | Dark brown–black | 3.7–4 | ||
Late | Post-mature | 2.0–4.0 | 500± | Black | >4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ma, C.; Sun, X.; Liu, S. Lacustrine Shale Diagenesis—A Case Study of the Second Member of the Funing Formation in the Subei Basin. Processes 2023, 11, 2009. https://doi.org/10.3390/pr11072009
Wang S, Ma C, Sun X, Liu S. Lacustrine Shale Diagenesis—A Case Study of the Second Member of the Funing Formation in the Subei Basin. Processes. 2023; 11(7):2009. https://doi.org/10.3390/pr11072009
Chicago/Turabian StyleWang, Shuping, Cunfei Ma, Xue Sun, and Shili Liu. 2023. "Lacustrine Shale Diagenesis—A Case Study of the Second Member of the Funing Formation in the Subei Basin" Processes 11, no. 7: 2009. https://doi.org/10.3390/pr11072009
APA StyleWang, S., Ma, C., Sun, X., & Liu, S. (2023). Lacustrine Shale Diagenesis—A Case Study of the Second Member of the Funing Formation in the Subei Basin. Processes, 11(7), 2009. https://doi.org/10.3390/pr11072009