Enhanced Photo-Electrochemical Responses through Photo-Responsive Ruthenium Complexes on ITO Nanoparticle Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Materials
2.3. Synthesis
2.4. Film Preparation
2.5. Electrochemistry and Photo-Electrochemistry
2.6. Spectro-Electrochemistry
2.7. Gas Measurements
2.8. IPCE Measurements
2.9. Theoretical Calculation
3. Results and Discussion
3.1. Synthesis and Characterizations
3.2. Photo-Induced Ligand Exchange
3.3. Electrochemistry on nanoITO Surface
3.4. Photo-Electrochemistry on nanoITO Surface
3.5. Plausible Photo-Electrochemical Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yao, T.; An, X.; Han, H.; Chen, J.Q.; Li, C. Photoelectrocatalytic Materials for Solar Water Splitting. Adv. Energy Mater. 2018, 8, 1800210. [Google Scholar] [CrossRef]
- Jiang, C.; Moniz, S.J.A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting—Materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Hamann, T.; Wang, D. Thin film photoelectrodes for solar water splitting. Chem. Soc. Rev. 2019, 48, 2182–2215. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Y.; Su, J.; Liu, M.; Liu, Y. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow. Energy 2019, 172, 1079–1086. [Google Scholar] [CrossRef]
- Kanan, M.W.; Nocera, D.G. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science 2008, 321, 1072–1075. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.-H.; Richter, M.H.; May, M.M.; Ohlmann, J.; Lackner, D.; Dimroth, F.; Hannappel, T.; Atwater, H.A.; Lewerenz, H.-J. Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency. ACS Energy Lett. 2018, 3, 1795–1800. [Google Scholar] [CrossRef] [Green Version]
- Ager, J.W.; Shaner, M.R.; Walczak, K.A.; Sharp, I.D.; Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 2015, 8, 2811–2824. [Google Scholar] [CrossRef] [Green Version]
- May, M.M.; Lewerenz, H.-J.; Lackner, D.; Dimroth, F.; Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 2015, 6, 8286. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Liu, R.; Chen, Y.; Verlage, E.; Lewis, N.S.; Xiang, C. A Stabilized, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting Cell Incorporating Earth-Abundant Electrocatalysts with Steady-State pH Gradients and Product Separation Enabled by a Bipolar Membrane. Adv. Energy Mater. 2016, 6, 1600379. [Google Scholar] [CrossRef] [Green Version]
- Safaei, J.; Ullah, H.; Mohamed, N.A.; Noh, M.F.M.; Soh, M.F.; Tahir, A.A.; Ludin, N.A.; Ibrahim, M.A.; Isahak, W.N.R.W.; Teridi, M.A.M. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B Environ. 2018, 234, 296–310. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Ullah, H.; Safaei, J.; Ismail, A.F.; Noh, M.F.M.; Soh, M.F.; Ibrahim, M.A.; Ludin, N.A.; Teridi, M.A.M. Efficient Photoelectrochemical Performance of γ Irradiated g-C3N4 and Its g-C3N4@BiVO4 Heterojunction for Solar Water Splitting. J. Phys. Chem. C 2019, 123, 9013–9026. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Tahir, A.A.; Mallick, T.K. Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4(001) thin film for the applications of photocatalysis. Appl. Catal. B Environ. 2018, 224, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Nasir, S.N.F.M.; Ullah, H.; Ebadi, M.; Tahir, A.A.; Sagu, J.S.; Teridi, M.A.M. New Insights into Se/BiVO4 Heterostructure for Photoelectrochemical Water Splitting: A Combined Experimental and DFT Study. J. Phys. Chem. C 2017, 121, 6218–6228. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Wang, X.; Zhang, Y.; Huang, W. Nanoporous MoO3−x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting. Nano Res. 2022, 15, 7026–7033. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, D.; Wang, H.; Zheng, H.; Ren, L.; Wei, K.; Ma, W.; Dai, Y.; Luo, D.; Zhang, X.; et al. Band gap modulation of nanostructured WO3 nanoplate film by Ti doping for enhanced photoelectrochemical performance. J. Cent. South Univ. 2022, 29, 2968–2979. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhu, S.; Liu, Y.; Zhang, X.; Wang, J.; Braun, A. Covalent S-O Bonding Enables Enhanced Photoelectrochemical Performance of Cu2S/Fe2O3 Heterojunction for Water Splitting. Small 2021, 17, 2100320. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, A.A.; Bibi, S.; Mallick, T.K.; Karazhanov, S.Z. Electronic properties of β-TaON and its surfaces for solar water splitting. Appl. Catal. B Environ. 2018, 229, 24–31. [Google Scholar] [CrossRef]
- Yuan, S.-Y.; Jiang, L.-W.; Hu, J.-S.; Liu, H.; Wang, J.-J. Fully Dispersed IrOx Atomic Clusters Enable Record Photoelectrochemical Water Oxidation of Hematite in Acidic Media. Nano Lett. 2023, 23, 2354–2361. [Google Scholar] [CrossRef]
- Wang, S.; He, T.; Yun, J.; Hu, Y.; Xiao, M.; Du, A.; Wang, L. New Iron-Cobalt Oxide Catalysts Promoting BiVO4 Films for Photoelectrochemical Water Splitting. Adv. Funct. Mater. 2018, 28, 1802685. [Google Scholar] [CrossRef]
- Humayun, M.; Ullah, H.; Cheng, Z.-E.; Tahir, A.A.; Luo, W.; Wang, C. Au surface plasmon resonance promoted charge transfer in Z-scheme system enables exceptional photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2022, 310, 121322. [Google Scholar] [CrossRef]
- Shen, S.; Lindley, S.A.; Chen, X.; Zhang, J.Z. Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ. Sci. 2016, 9, 2744–2775. [Google Scholar] [CrossRef]
- Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. J. Am. Chem. Soc. 2010, 132, 7436–7444. [Google Scholar] [CrossRef]
- Abdi, F.F.; Han, L.; Smets, A.H.M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195. [Google Scholar] [CrossRef] [Green Version]
- Jeon, T.H.; Choi, W.; Park, H. Cobalt–phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. Phys. Chem. Chem. Phys. 2011, 13, 21392–21401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Li, J.; Wu, H.-L.; Liu, W.-Q.; Jiang, X.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO4 Photoanode. ACS Appl. Mater. Interfaces 2016, 28, 18577–18583. [Google Scholar] [CrossRef] [PubMed]
- Suryani, O.; Higashino, Y.; Mulyana, J.Y.; Kaneko, M.; Hoshi, T.; Shigaki, K.; Kubo, Y. A near-infrared organic photosensitizer for use in dye-sensitized photoelectrochemical water splitting. Chem. Commun. 2017, 53, 6784–6787. [Google Scholar] [CrossRef]
- Lyon, L.A.; Hupp, J.T. Energetics of the Nanocrystalline Titanium Dioxide/Aqueous Solution Interface: Approximate Con-duction Band Edge Variations between H0 = −10 and H- = +26. J. Phys. Chem. B 1999, 103, 4623–4628. [Google Scholar] [CrossRef]
- Rothenberger, G.; Fitzmaurice, D.; Grätzel, M. Spectroscopy of conduction band electrons in transparent metal oxide semi-conductor films: Optical determination of the flatband potential of colloidal titanium dioxide films. J. Phys. Chem. 1992, 96, 5983–5986. [Google Scholar] [CrossRef]
- She, C.; Guo, J.; Lian, T. Comparison of Electron Injection Dynamics from Re-bipyridyl Complexes to TiO2 Nanocrystalline Thin Films in Different Solvent Environments. J. Phys. Chem. B 2007, 111, 6903–6912. [Google Scholar] [CrossRef]
- Zigler, D.F.; Morseth, Z.A.; Wang, L.; Ashford, D.L.; Brennaman, M.K.; Grumstrup, E.M.; Brigham, E.C.; Gish, M.K.; Dillon, R.J.; Alibabaei, L.; et al. Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO2. J. Am. Chem. Soc. 2016, 138, 4426–4438. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zhang, L.; Wang, Y.; Liu, A.; Gao, Y. Design of photoanode-based dye-sensitized photoelectrochemical cells assembling with transition metal complexes for visible light-induced water splitting. Coord. Chem. Rev. 2018, 357, 130–143. [Google Scholar] [CrossRef]
- Ashford, D.L.; Gish, M.K.; Vannucci, A.K.; Brennaman, M.K.; Templeton, J.L.; Papanikolas, J.M.; Meyer, T.J. Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chem. Rev. 2015, 115, 13006–13049. [Google Scholar] [CrossRef] [PubMed]
- Purnama, I.; Salmahaminati; Abe, M.; Hada, M.; Kubo, Y.; Mulyana, J.Y. Factors influencing the photoelectrochemical device performance sensitized by ruthenium polypyridyl dyes. Dalton Trans. 2019, 48, 688–695. [Google Scholar] [CrossRef]
- Salmahaminati; Abe, M.; Purnama, I.; Mulyana, J.Y.; Hada, M. Density Functional Study of Metal-to-Ligand Charge Transfer and Hole-Hopping in Ruthenium(II) Complexes with Alkyl-Substituted Bipyridine Ligands. ACS Omega 2021, 6, 55–64. [Google Scholar] [CrossRef]
- Pratomo, U.; Purnama, I.; Mulyana, J.Y. Photo-induced water oxidation via cascade charge transfer on nanostructured Bi-VO4/TiO2 modified with dye and co-catalyst molecules. Inorg. Chim. Acta 2020, 500, 119223. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Angelis, F.D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835–16847. [Google Scholar] [CrossRef]
- Hanson, K.; Brennaman, M.K.; Luo, H.; Glasson, C.R.K.; Concepcion, J.J.; Song, W.; Meyer, T.J. Photostability of Phos-phonate-Derivatized, RuII Polypyridyl Complexes on Metal Oxide Surfaces. ACS Appl. Mater. Interfaces 2012, 4, 1462–1469. [Google Scholar] [CrossRef]
- Purnama, I.; Kubo, Y.; Mulyana, J.Y. A robust ruthenium complex with nonyl-substituted bpy ligand for dye-sensitized photoelectrochemical cell application. Inorg. Chim. Acta. 2018, 471, 467–474. [Google Scholar] [CrossRef]
- Hoertz, P.G.; Chen, Z.; Kent, C.A.; Meyer, T.J. Application of High Surface Area Tin-Doped Indium Oxide Nanoparticle Films as Transparent Conducting Electrodes. Inorg. Chem. 2010, 49, 8179–8181. [Google Scholar] [CrossRef]
- Farnum, B.H.; Morseth, Z.A.; Lapides, A.M.; Rieth, A.J.; Hoertz, P.G.; Brennaman, M.K.; Papanikolas, J.M.; Meyer, T.J. Photoinduced Interfacial Electron Transfer within a Mesoporous Transparent Conducting Oxide Film. J. Am. Chem. Soc. 2014, 136, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
- Farnum, B.H.; Morseth, Z.A.; Brennaman, M.K.; Papanikolas, J.M.; Meyer, T.J. Driving force dependent, photoinduced electron transfer at degenerately doped, optically transparent semiconductor nanoparticle surface. J. Am. Chem. Soc. 2014, 136, 15869–15872. [Google Scholar] [CrossRef] [PubMed]
- Farnum, B.H.; Nakada, A.; Ishitani, O.; Meyer, T.J. Bias-dependent oxidative or reductive quenching of a molecular excited-state assembly bound to a transparent conductive oxide. J. Phys. Chem. C 2015, 119, 25180–25187. [Google Scholar] [CrossRef]
- Hamberg, I.; Granqvist, C.G.; Berggren, K.F.; Sernelius, B.E.; Engström, L. Band-gap widening in heavily Sn-doped In2O3. Phys. Rev. B 1984, 30, 3240–3249. [Google Scholar] [CrossRef] [Green Version]
- Masaoki, F.; Toshiyuki, Y.; Shuichi, K.; Takashi, K.; Shunichi, N.; Mikiharu, K. Intramolecular Energy Transfer in Covalently Linked Polypyridine Ruthenium(II)/Osmium(II) Binuclear Complexes. Ru(II)(bpy)2Mebpy–(CH2)n–MebpyOs(II)(bpy)2 (n = 2, 3, 5, and 7). Bull. Chem. Soc. Jpn. 1991, 64, 1632–1640. [Google Scholar]
- Mulyana, Y.; Weber, D.K.; Buck, D.P.; Motti, C.A.; Collins, J.G.; Keene, F.R. Oligonuclear polypyridylruthenium(ii) complexes incorporating flexible polar and non-polar bridges: Synthesis, DNA-binding and cytotoxicity. Dalton Trans. 2011, 40, 1510–1523. [Google Scholar] [CrossRef]
- Mulyana, Y.; Collins, G.; Keene, R. Synthesis, nucleic acid binding and cytotoxicity of oligonuclear ruthenium complexes containing labile ligands. J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 371–379. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Wasylenko, D.J.; Ganesamoorthy, C.; Koivisto, B.D.; Henderson, M.A.; Berlinguette, C.P. Insight into Water Oxidation by Mononuclear Polypyridyl Ru Catalysts. Inorg. Chem. 2010, 49, 2202–2209. [Google Scholar] [CrossRef]
- Mulyana, Y.; Keene, F.R.; Spiccia, L. Cooperative effects in homogenous water oxidation catalysis by mononuclear ruthenium complexes. Dalton Trans. 2014, 43, 6819–6827. [Google Scholar] [CrossRef] [Green Version]
- Concepcion, J.J.; Jurss, J.W.; Templeton, J.L.; Meyer, T.J. One Site is Enough. Catalytic Water Oxidation by [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+. J. Am. Chem. Soc. 2008, 130, 16462–16463. [Google Scholar] [CrossRef]
- Berardi, S.; Francàs, L.; Neudeck, S.; Maji, S.; Benet-Buchholz, J.; Meyer, F.; Llobet, A. Efficient Light-Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes. Chemsuschem 2015, 8, 3688–3696. [Google Scholar] [CrossRef] [PubMed]
- Agnès, C.; Arnault, J.-C.; Omnès, F.; Jousselme, B.; Billon, M.; Bidan, G.; Mailley, P. XPS study of ruthenium tris-bipyridine electrografted from diazonium salt derivative on microcrystalline boron doped diamond. Phys. Chem. Chem. Phys. 2009, 11, 11647–11654. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Chen, T.; Ma, L.; Wang, G.; Hu, W.-B.; Zou, Z.; Wen, K.; Yang, H. Covalent Triazine-Based Polymers with Controllable Band Alignment Matched with BiVO4 To Boost Photogeneration of Holes for Water Splitting. Chem. Mater. 2019, 31, 8062–8068. [Google Scholar] [CrossRef]
- Takijiri, K.; Morita, K.; Nakazono, T.; Sakai, K.; Ozawa, H. Highly stable chemisorption of dyes with pyridyl anchors over TiO2: Application in dye-sensitized photoelectrochemical water reduction in aqueous media. Chem. Commun. 2017, 53, 3042–3045. [Google Scholar] [CrossRef] [PubMed]
Complex | Assignment | Epa (V) | Epc (V) | E½ (V) | ΔE (mV) |
---|---|---|---|---|---|
1-Cl | RuII-Cl/RuIII-Cl | 0.90 | 0.81 | 0.86 | 90 |
1-H2O | RuII(OH2)/RuIII(OH) | 0.74 | 0.60 | 0.67 | 140 |
1-H2O | RuIII(OH)/RuIV=O | 0.88 | 0.76 | 0.82 | 120 |
2-Cl | (Cl)RuII–RuII(Cl)/(Cl)RuIII–RuIII(Cl) | 0.92 | 0.84 | 0.88 | 80 |
2-H2O | (H2O)RuII–RuII-(OH2)/(HO)RuIII–RuII(OH2) | 0.73 | 0.62 | 0.68 | 110 |
2-H2O | (HO)RuIII–RuII(OH2)/(HO)RuIII–RuIII(OH) | 0.87 | 0.77 | 0.82 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratomo, U.; Salmahaminati; Abe, M.; Hada, M.; Wyantuti, S.; Bahti, H.H.; Mulyana, J.Y. Enhanced Photo-Electrochemical Responses through Photo-Responsive Ruthenium Complexes on ITO Nanoparticle Surface. Processes 2023, 11, 2060. https://doi.org/10.3390/pr11072060
Pratomo U, Salmahaminati, Abe M, Hada M, Wyantuti S, Bahti HH, Mulyana JY. Enhanced Photo-Electrochemical Responses through Photo-Responsive Ruthenium Complexes on ITO Nanoparticle Surface. Processes. 2023; 11(7):2060. https://doi.org/10.3390/pr11072060
Chicago/Turabian StylePratomo, Uji, Salmahaminati, Minori Abe, Masahiko Hada, Santhy Wyantuti, Husein H. Bahti, and Jacob Yan Mulyana. 2023. "Enhanced Photo-Electrochemical Responses through Photo-Responsive Ruthenium Complexes on ITO Nanoparticle Surface" Processes 11, no. 7: 2060. https://doi.org/10.3390/pr11072060
APA StylePratomo, U., Salmahaminati, Abe, M., Hada, M., Wyantuti, S., Bahti, H. H., & Mulyana, J. Y. (2023). Enhanced Photo-Electrochemical Responses through Photo-Responsive Ruthenium Complexes on ITO Nanoparticle Surface. Processes, 11(7), 2060. https://doi.org/10.3390/pr11072060