Matrix Compressibility and Its Controlling Factors of the Marine Shale Gas Reservoir: A Case Study of the Ning228 Well in the Southwest Sichuan Basin, China
Abstract
:1. Introduction
2. Samples and Methodology
2.1. Regional Overview and Sample Analysis
2.2. Mercury Intrusion Porosimetry and Nitrogen Adsorption/Desorption
2.3. Shale Matrix Compressibility
2.4. Brittleness Index Calculation and Lithofacies Classification
2.4.1. Shale Brittleness Index
2.4.2. Shale Lithofacies Classification
3. Results
3.1. Shale Characteristics
3.2. Pore Structure Characteristics from Mercury Intrusion Porosimetry
3.3. Pore Structure Characteristics from N2 Adsorption/Desorption at 77 K
3.4. Calculated Shale Matrix Compressibility
3.5. Shale Brittleness and Lithofacies Characteristics
4. Discussion
4.1. Effect of TOC on Shale Matrix Compressibility
4.2. Effect of Minerals on Shale Matrix Compressibility
4.3. Effect of Pore Structure on Shale Matrix Compressibility
4.4. Relationship between Brittleness Index and Matrix Compressibility
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.J.; Zeng, Q.Q.; Yin, X.Y.; Li, H.B.; Jiang, R.; Huang, J.Q.; Zhang, L.Q.; Zhang, G.Z.; Gu, Y.P. Multiple-porosity variable critical porosity model and pore structure characterization. Chin. J. Geophys. 2021, 64, 724–734. [Google Scholar]
- Sun, L.D.; Liu, H.; He, W.Y.; Li, G.X.; Zhang, S.C.; Zhu, R.K.; Jin, X.; Meng, S.W.; Jiang, H. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Pet. Explor. Dev. 2021, 48, 527–540. [Google Scholar] [CrossRef]
- Tang, J.P.; Qi, T.; Dai, S.H.; Pan, Y.S.; Lu, J.W. Experimental study on crack propagation of coal shale under stress transformation of cyclic water injection based on acoustic emission energy. J. Exp. Mech. 2020, 35, 639–649. [Google Scholar]
- Zhuang, Z.; Liu, Z.L.; Wang, Y.L. Fundamental Theory and Key Mechanical Problems of Shale Oil Gas Effective Extraction. Chin. Q. Mech. 2015, 36, 11–25. [Google Scholar]
- Cao, C.; Li, T.T.; Zhang, L.; Gao, C.; Wang, H. Shale gas dual porosity-dual permeability model with matrix shrinking. Nat. Gas Geosci. 2015, 26, 2381–2387. [Google Scholar] [CrossRef]
- Liu, D.M.; Yao, Y.B.; Wang, H. Structural compartmentalization and its relationships with gas accumulation and gas production in the Zhengzhuang Field, southern Qinshui Basin. Int. J. Coal Geol. 2022, 259, 104055. [Google Scholar] [CrossRef]
- Shi, J.T.; Zhang, L.; Li, Y.S.; Yu, W.; He, X.N.; Liu, N.; Li, X.F.; Wang, T. Diffusion and Flow Mechanisms of Shale Gas through Matrix Pores and Gas Production Forecasting. In Proceedings of the Forecasting, SPE Canadian Unconventional Resources Conference, Calgary, AL, Canada, 5–7 November 2013. [Google Scholar]
- Zhang, N.; Wang, S.D.; Xun, X.J.; Wang, H.Y.; Sun, X.M.; He, M.C. Pore Structure and Fractal Characteristics of Coal-Measure Sedimentary Rocks Using Nuclear Magnetic Resonance (NMR) and Mercury Intrusion Porosimetry (MIP). Energies 2023, 16, 3812. [Google Scholar] [CrossRef]
- Wang, X.M.; Jiang, Z.; Jiang, S.; Chang, J.Q.; Zhu, L.; Li, X.H.; Li, J.T. Full-Scale Pore Structure and Fractal Dimension of the Longmaxi Shale from the Southern Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Mercury Intrusion Porosimetry. Minerals 2019, 9, 543. [Google Scholar] [CrossRef] [Green Version]
- Han, B.B.; Qin, Y.; Zhang, Z.; Wang, G.; Yu, P. Study on coal compressibility and correction of compression amount based on compressibility of mercury injection test. Coal Sci. Technol. 2015, 43, 68–72. [Google Scholar]
- Li, Y.H.; Lu, G.Q.; Rudolph, V. Compressibility and Fractal Dimension of Fine Coal Particles in Relation to Pore Structure Characterisation Using Mercury Porosimetry. Part. Part. Syst. Charact. 1999, 16, 25–31. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, T.W.; Loucks, R.G.; Shultz, J. Application of mercury injection capillary pressure to mudrocks: Conformance and compression corrections. Mar. Pet. Geol. 2017, 88, 30–40. [Google Scholar] [CrossRef]
- Guo, X.Q.; Liu, D.M.; Yao, Y.B.; Cai, Y.D.; Li, J.Q. Influence of Pressure on Application of Mercury Injection Capillary Pressure for Determining Coal Compressibility. Appl. Mech. Mater. 2013, 295, 2726–2731. [Google Scholar] [CrossRef]
- Cai, Y.D.; Li, Q.; Liu, D.M.; Zhou, Y.F.; Lv, D.W. Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption. Int. J. Coal Geol. 2018, 200, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Harpalani, S. Compressibility of sorptive porous media: Part 1. Background and theory. AAPG Bull. 2014, 98, 1761–1772. [Google Scholar] [CrossRef]
- Guo, X.Q.; Yao, Y.B.; Liu, D.M. Characteristics of Coal Matrix Compressibility: An Investigation by Mercury Intrusion Porosimetry. Energy Fuel 2014, 28, 3673–3678. [Google Scholar] [CrossRef]
- Toda, Y.; Toyoda, S. Application of mercury porosimetry to coal. Fuel 1972, 51, 199–201. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zheng, S.; Luo, Z.; Sheng, Y.; Wang, X. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale. J. Nat. Gas. Sci. Eng. 2019, 67, 134–146. [Google Scholar] [CrossRef]
- He, J.W.; Xie, Y.; Hou, M.C.; Liu, J.Q.; He, L.; Lu, Y.F. Geochemical characteristics and geological significance of the Silurian Longmaxi Formation shale in Yanjin area, southwestern Sichuan Basin. J. Palaeogeogr. Chin. Ed. 2021, 23, 1174–1191. [Google Scholar]
- Wang, Z.F.; Zhang, Y.F.; Liang, X.L.; Cheng, F.; Jing, Q.H.; Liu, W.; Zhang, H.B.; Li, H.P. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng—Longmaxi Formation, Sichuan Basin. Acta Pet. Sin. 2014, 35, 623–632. [Google Scholar]
- Guo, W.; Liu, H.L.; Li, X.B.; Xue, H.Q. Reservoir characteristics and factors controlling gas-bearing capacity of black rocks in the northeastern Yunnan province. Nat. Gas Ind. 2012, 9, 22–27. [Google Scholar]
- Zhang, X.; Liu, C.L.; Zhu, Y.M.; Wang, Y.; Fu, C.Q. Geological Conditions Evaluation and Favorable Areas Selection of the Shale Gas from Longmaxi Formation in the Northeast of Yunnan. Nat. Gas Geosci. 2015, 26, 1190–1199. [Google Scholar]
- SY/T 5124-2012. Method for Determining the Reflectance of Specular Body in Sedimentary Rocks. China National Petroleum Corporation: Beijing, China, 2012.
- GB/T 19145-2022. Determination of Total Organic Carbon in Sedimentary Rocks. China National Petroleum Corporation: Beijing, China, 2022.
- SY/T 5163-2010. X-ray Diffraction Analysis Method of Clay Minerals and Common Non-Clay Minerals in Sedimentary Rocks. China National Petroleum Corporation: Beijing, China, 2010.
- Cai, Y.D.; Liu, D.M.; Pan, Z.J.; Che, Y.; Liu, Z.H. Investigating the Effects of Seepage-Pores and Fractures on Coal Permeability by Fractal Analysis. Transp. Porous Med. 2016, 111, 479–497. [Google Scholar] [CrossRef]
- GB/T 29171-2012. Determination of Rock Capillary Pressure Curve. China National Petroleum Corporation: Beijing, China, 2012.
- Yu, Y.X.; Luo, X.R.; Wang, Z.X.; Cheng, M.; Lei, Y.H.; Zhang, L.K.; Yin, J.T. A new correction method for mercury injection capillary pressure (MICP) to characterize the pore structure of shale. J. Nat. Gas Sci. Eng. 2019, 68, 102896. [Google Scholar] [CrossRef]
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef] [Green Version]
- GB/T 19587-2017. Determination of Specific Surface Area of Solids by Gas Adsorption BET Method. China National Petroleum Corporation: Beijing, China, 2017.
- IUPAC. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Meng, F.Z.; Wong, L.N.Y.; Zhou, H. Rock brittleness indices and their applications to different fields of rock engineering: A review. J. Rock Mech. Geotech. 2021, 13, 221–247. [Google Scholar] [CrossRef]
- Qin, Z.Y.; Wen, X.T.; Pan, S.L.; Chen, J.Y.; Gou, Q.Y. Study on selection and direct inversion method of brittleness index for shale reservoir. Acta Geophys. 2023, 71, 1–12. [Google Scholar] [CrossRef]
- Sui, L.L.; Yang, Y.M.; Yang, W.G.; Liu, P.; Zhang, S.C.; Han, Y.L. Comprehensive evaluation of shale fracability in Dongying subsidence zone of Shengli oil-field. J. China Coal Soc. 2015, 40, 1588–1594. [Google Scholar]
- Kahraman, S.S.Y.C.; Altindag, R. A brittleness index to estimate fracture toughness. Int. J. Rock Mech. Min. 2004, 41, 343–348. [Google Scholar] [CrossRef]
- Diao, H.Y. Rock mechanical properties and brittleness evaluation of shale reservoir. Acta Petrol. Sin. 2013, 29, 3300–3306. [Google Scholar]
- Wang, Y.M.; Wang, S.F.; Dong, D.Z.; Li, X.J.; Huang, J.L.; Zhang, C.C.; Guan, Q.Z. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan. Earth Sci. Front. 2016, 23, 119–133. [Google Scholar]
- Cheng, P.; Xiao, X.M. Gas content of organic-rich shales with very high maturities. J. China Coal Soc. 2013, 38, 737–741. [Google Scholar]
- Liang, P.P.; Wang, H.Y.; Zhao, Q.; Zhang, Q.; Wang, N.; Xiao, Q.H. Accumulation condition for Wufeng-Longmaxi Formation shale gas of Yanjin-Gongxian area. Chin. J. Eng. 2016, 38, 224–231. [Google Scholar]
- Lu, L.F.; Liu, W.X.; Wei, Z.H.; Pan, A.Y.; Zhang, Q.Z.; Teng, G.E. Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation. Acta Sedimentol. Sin. 2022, 40, 73–87. [Google Scholar]
- Wu, Y.J.; Wang, Y.; Li, J. Sedimentary characteristics and main reservoir control factors of deep shale in the Sichuan Basin: A case study on the Longmaxi Formation in the eastern Weiyuan area. Nat. Gas Ind. 2021, 41, 55–65. [Google Scholar]
- Yuan, J.Z.; Ye, Y.H.; Xu, F.H.; Fang, L.Y.; Chen, H.; Ma, S.G.; Jiao, K. Lithofacies and pore characteristics of Wufeng—Longmaxi deep buried shale gas reservoirs in western Chongqing-southern Sichuan area, China. Mineral. Petrol. 2022, 42, 104–115. [Google Scholar]
- Liu, C.; Ding, W.G.; Zhang, J.; Chen, X.; Wu, P.; Liu, X.Q.; Li, Y.B.; Ma, L.T.; Hu, W.Q.; Kong, W.; et al. Qualitative-quantitative multi scale characteristics of shale pore structure from Upper Paleozoic coal-measures in Linxing area. Coal Geol. Explor. 2021, 49, 46–57. [Google Scholar]
- Ning, C.X.; Jiang, Z.X.; Gao, Z.Y.; Li, Z.; Zhu, R.F.; Su, S.Y.; Li, T.W.; Wang, Z.; Huang, R.Z.; Cheng, L. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection: A case study of the lower section of Es_3 in Zhanhua sag. J. China Univ. Min. Technol. 2017, 46, 578–585. [Google Scholar]
- Zhang, D.Z. Characterization of microscopic pore structure of tight sandstone reservoirs through nitrogen adsorption experiment: Case study of Shahezi Formation in Xujiaweizi Fault Depression, Songliao Basin, China. Nat. Gas Geosci. 2017, 28, 898–908. [Google Scholar]
- Howard, J.J. Porosimetry measurement of shale fabric and its relationship to illite/smectite diagenesis. Clay Clay Miner. 1991, 39, 355–361. [Google Scholar] [CrossRef]
- Zhao, D.F.; Guo, Y.H.; Mao, X.X.; Lu, C.G.; Li, M.; Qian, F.C. Characteristics of macro-nanopores in anthracite coal based on mercury injection, nitrogen adsorption and FE-SEM. J. China Coal Soc. 2017, 42, 1517–1526. [Google Scholar]
- Shi, D.S.; Xu, Q.C.; Guo, R.L.; Liu, E.R.; Zhu, D.S.; Wang, Y.H.; Wang, B.Q.; Ouyang, Z.Y. Pore structure characteristics and main controlling factors of Permian organic-richshale in Lower Yangtze Region. Nat. Gas Geosci. 2022, 33, 1911–1925. [Google Scholar]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Cao, T.T.; Deng, M.; Luo, H.Y.; Liu, H.; Liu, G.X.; Hursthouse, A.S. Characteristics of organic pores in Middle and Upper Permian shale in the Lower Yangtze region. Pet. Geol. Exp. 2018, 40, 315–322. [Google Scholar]
- Rickman, R.; Mullen, M.J.; Petre, J.E.; Grieser, W.V.; Kundert, D. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008. [Google Scholar]
- Sondergeld, C.H.; Newsham, K.E.; Comisky, J.T.; Rice, M.C.; Rai, C.S. Petrophysical Considerations in Evaluating and Producing Shale Gas Resources. In Proceedings of the SPE Unconventional Gas Conference, Pittsburgh, PA, USA, 23–25 February 2010. [Google Scholar]
Sample No. | Depth (m) | Ro,m (%) | TOC (%) | Mineral Content (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Dolomite | Pyrite | Clay Minerals | ||||
N228-1 | 3365.10 | 4.45 | 1.456 | 27.10 | 9.00 | 20.00 | 3.90 | 0.60 | 39.40 |
N228-13 | 3376.81 | 4.10 | 1.46 | 25.00 | 6.30 | 28.00 | 3.50 | 0.90 | 36.30 |
N228-24 | 3387.99 | 4.18 | 2.055 | 28.30 | 4.30 | 3.60 | 0.00 | 1.00 | 62.70 |
N228-35 | 3398.71 | 4.40 | 1.729 | 30.10 | 6.90 | 18.10 | 4.20 | 0.80 | 39.90 |
N228-46 | 3409.93 | 4.20 | 1.973 | 35.60 | 5.40 | 8.90 | 0.00 | 1.70 | 48.40 |
N228-57 | 3420.96 | 4.38 | 1.531 | 36.20 | 5.80 | 6.10 | 0.00 | 0.60 | 51.50 |
N228-67 | 3431.09 | 4.18 | 1.783 | 35.60 | 10.90 | 10.90 | 0.00 | 0.80 | 41.70 |
N228-78 | 3442.25 | 4.60 | 1.642 | 42.40 | 11.40 | 10.30 | 1.60 | 0.80 | 33.30 |
N228-88 | 3452.79 | 4.32 | 4.248 | 34.00 | 4.40 | 9.00 | 0.00 | 1.40 | 51.10 |
N228-100 | 3465.08 | 4.60 | 4.233 | 63.30 | 3.90 | 11.40 | 2.40 | 1.40 | 17.60 |
Lithofacies Types | Percentage of Shale Mineral Components (%) | |||
---|---|---|---|---|
Quartz + Feldspar | Carbonate | Clay | ||
Siliceous shale | 50~75 | <30 | 10~50 | |
Clay shale | 25~50 | <30 | 50~75 | |
Calcareous shale | <30 | 50~75 | 25~50 | |
Mixed shale facies | Clay siliceous mixed shale | 30~50 | <33 | 30~50 |
Clay calcareous mixed shale | <33 | 30~50 | 30~50 | |
Calcareous siliceous mixed shale | 30~50 | 30~50 | <33 |
Sample No. | Porosity (%) | Maximum Mercury Saturation (%) | Mercury Withdrawal Efficiency (%) | Total Pore Volume (×10−3 cm3/g) | Percentage Content of Pores in Different Pore Sizes (%) | Mercury Injection Curve Type | ||
---|---|---|---|---|---|---|---|---|
<2 nm | 2–50 nm | >50 nm | ||||||
N228-1 | 2.01 | 19.39 | 37.52 | 7.74 | 0.00 | 37.72 | 62.28 | I |
N228-13 | 1.04 | 26.00 | 25.64 | 3.95 | 0.00 | 29.64 | 70.36 | I |
N228-24 | 2.00 | 21.85 | 72.82 | 7.66 | 0.00 | 70.44 | 29.56 | II |
N228-35 | 2.64 | 10.56 | 64.86 | 10.25 | 0.00 | 62.22 | 37.78 | III |
N228-46 | 1.81 | 20.53 | 71.67 | 6.98 | 0.00 | 70.76 | 29.24 | II |
N228-57 | 1.86 | 18.28 | 67.56 | 7.13 | 0.00 | 62.84 | 37.16 | II |
N228-67 | 1.36 | 31.58 | 51.54 | 5.20 | 0.00 | 47.62 | 52.38 | II |
N228-78 | 1.17 | 18.87 | 57.57 | 4.49 | 0.00 | 62.91 | 37.09 | II |
N228-88 | 7.01 | 7.63 | 77.65 | 29.68 | 0.00 | 73.75 | 26.25 | III |
N228-100 | 1.22 | 15.28 | 31.62 | 4.83 | 0.00 | 35.40 | 64.60 | I |
Sample No. | Ro,m (%) | Vm (cm3/g) | N (×10−4) | PV (×10−3, cm3/g) | Cm (×10−4, MPa−1) |
---|---|---|---|---|---|
N228-1 | 4.45 | 0.37 | 6.00 | 14.49 | 2.42 |
N228-13 | 4.10 | 0.36 | 4.00 | 11.10 | 0.23 |
N228-24 | 4.18 | 0.37 | 10.00 | 11.13 | 16.60 |
N228-35 | 4.40 | 0.37 | 7.00 | 10.92 | 8.48 |
N228-46 | 4.20 | 0.37 | 8.00 | 13.20 | 9.14 |
N228-57 | 4.38 | 0.36 | 7.00 | 11.27 | 8.28 |
N228-67 | 4.18 | 0.36 | 9.00 | 11.47 | 13.62 |
N228-78 | 4.60 | 0.37 | 5.00 | 10.46 | 3.57 |
N228-88 | 4.32 | 0.39 | 13.00 | 12.27 | 22.03 |
N228-100 | 4.60 | 0.38 | 5.00 | 10.82 | 3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Qiu, Y.; Qian, Y.; Fang, X. Matrix Compressibility and Its Controlling Factors of the Marine Shale Gas Reservoir: A Case Study of the Ning228 Well in the Southwest Sichuan Basin, China. Processes 2023, 11, 2136. https://doi.org/10.3390/pr11072136
Chen J, Qiu Y, Qian Y, Fang X. Matrix Compressibility and Its Controlling Factors of the Marine Shale Gas Reservoir: A Case Study of the Ning228 Well in the Southwest Sichuan Basin, China. Processes. 2023; 11(7):2136. https://doi.org/10.3390/pr11072136
Chicago/Turabian StyleChen, Jiaming, Yongkai Qiu, Yujing Qian, and Xianglong Fang. 2023. "Matrix Compressibility and Its Controlling Factors of the Marine Shale Gas Reservoir: A Case Study of the Ning228 Well in the Southwest Sichuan Basin, China" Processes 11, no. 7: 2136. https://doi.org/10.3390/pr11072136
APA StyleChen, J., Qiu, Y., Qian, Y., & Fang, X. (2023). Matrix Compressibility and Its Controlling Factors of the Marine Shale Gas Reservoir: A Case Study of the Ning228 Well in the Southwest Sichuan Basin, China. Processes, 11(7), 2136. https://doi.org/10.3390/pr11072136