Growth Process, Structure and Electronic Properties of Cr2GeC and Cr2-xMnxGeC Thin Films Prepared by Magnetron Sputtering
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Phase Composition and Morphology
3.2. Optical and Transport Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C 2017, 5, 11992–12022. [Google Scholar] [CrossRef]
- Shi, Y.; Li, H.; Li, L.J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744–2756. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Sokol, M.; Natu, V.; Kota, S.; Barsoum, M.W. On the chemical diversity of the MAX phases. Trends Chem. 2019, 1, 210–223. [Google Scholar] [CrossRef]
- Novoselova, I.P.; Petruhins, A.; Wiedwald, U.; Ingason Á, S.; Hase, T.; Magnus, F.; Kapaklis, V.; Palisaitis, J.; Spasova, M.; Farle, M.; et al. Large uniaxial magnetostriction with sign inversion at the first order phase transition in the nanolaminated Mn2GaC MAX phase. Sci. Rep. 2018, 8, 2637. [Google Scholar] [CrossRef] [Green Version]
- Flatten, T.; Matthes, F.; Petruhins, A.; Salikhov, R.; Wiedwald, U.; Farle, M.; Rosen JBürgler, D.E.; Schneider, C.M. Direct measurement of anisotropic conductivity in a nanolaminated (Mn0.5Cr0.5)2GaC thin film. Appl. Phys. Lett. 2019, 115, 094101. [Google Scholar] [CrossRef] [Green Version]
- Jubert, P.O.; Santos, T.; Le, T.; Ozdol, B.; Papusoi, C. Anisotropic Heatsinks for Heat-Assisted Magnetic Recording. IEEE Trans. Magn. 2020, 57, 1–5. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Radovic, M. Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 2011, 41, 195–227. [Google Scholar] [CrossRef]
- Tunes, M.A.; Imtyazuddin, M.; Kainz, C.; Pogatscher, S.; Vishnyakov, V.M. Deviating from the pure MAX phase concept: Radiation-tolerant nanostructured dual-phase Cr2AlC. Sci. Adv. 2021, 7, eabf6771. [Google Scholar] [CrossRef]
- Imtyazuddin, M.; Mir, A.H.; Tunes, M.A.; Vishnyakov, V.M. Radiation Resistance and Mechanial Properties of Magnetron-Sputtered Cr2AlC Thin Films. J. Nucl. Mater. 2019, 526, 151742. [Google Scholar] [CrossRef]
- Liu, Z.; Waki, T.; Tabata, Y.; Nakamura, H. Mn-doping-induced itinerant-electron ferromagnetism in Cr2GeC. Phys. Rev. B 2014, 89, 054435. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Huang, Y.; Zu, L.; Kan, X.; Lin, J.; Song, W.; Tong, P.; Zhu, X.; Sun, Y. Alloying effects on structural, magnetic, and electrical/thermal transport properties in MAX-phase Cr2− xMxGeC (M = Ti, V, Mn, Fe, and Mo). J. Alloys Compd. 2016, 680, 452–461. [Google Scholar] [CrossRef]
- Tao, Q.Z.; Hu, C.F.; Lin, S.; Zhang, H.B.; Li, F.Z.; Qu, D.; Wu, M.L.; Sun, Y.; Sakka, Y. Coexistence of Ferromagnetic and a Re-entrant Cluster Glass State in the Layered Quaternary (Cr1-x,Mnx)2GeC. Mater. Res. Lett. 2014, 2, 192–198. [Google Scholar] [CrossRef]
- Rivin, O.; Caspi, E.N.; Pesach, A.; Shaked, H.; Hoser, A.; Georgii, R.; Tao, Q.; Rosén, J.; Barsoum, M.W. Evidence for ferromagnetic ordering in the MAX phase (Cr0.96Mn0.04)2GeC. Mater. Res. Lett. 2017, 5, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Ingason, A.S.; Mockute, A.; Dahlqvist, M.; Magnus, F.; Olafsson, S.; Arnalds, U.B.; Alling, B.; Abrikosov, I.A.; Hjörvarsson, B.; Persson, P.O.; et al. Magnetic self-organized atomic laminate from first principles and thin film synthesis. Phys. Rev. Lett. 2013, 110, 195502. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Natu, V.; Puthirath, A.B. Thin-film growth of MAX phases as functional materials. Oxf. Open Mater. Sci. 2021, 1, itab020. [Google Scholar] [CrossRef]
- Wilhelmsson, O.; Palmquist, J.P.; Lewina, E.; Emmerlich, J.; Eklund, P.; Persson, P.; Högberg, H.; Li, S.; Ahuja, R.; Eriksson, O.; et al. Deposition and characterization of ternary thin films within the Ti–Al–C system by DC magnetron sputtering. J. Crys. Growth 2006, 291, 290–300. [Google Scholar] [CrossRef]
- Rosen, J.; Ryves, L.; Persson, P.O.A.; Bilek, M.M.M. Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc. J. Appl. Phys. 2007, 101, 056101. [Google Scholar] [CrossRef]
- Frodelius, J.; Eklund, P.; Beckers, M.; Persson, P.; Högberg, H.; Hultman, L. Sputter deposition from a Ti2AlC target: Process characterization and conditions for growth of Ti2AlC. Thin Solid Films 2010, 518, 1621–1626. [Google Scholar] [CrossRef] [Green Version]
- Högberg, H.; Hultman, L.; Emmerlich, J.; Joelsson, T.; Eklund, P.; Molina-Aldareguia, J.M.; Palmquist, J.P.; Wilhelmsson, O.; Jansson, U. Growth and characterization of MAX-phase thin films. Surf. Coat Technol. 2005, 193, 6–10. [Google Scholar] [CrossRef]
- Azina, C.; Eklund, P. Effects of temperature and target power on the sputter-deposition of (Ti,Zr)n+1AlCn MAX-phase thin films. Results Mater 2021, 9, 100159. [Google Scholar] [CrossRef]
- Petruhins, A.; Ingason, A.S.; Lu, J.; Magnus, F.; Olafsson, S.; Rosen, J. Synthesis and characterization of magnetic (Cr0.5Mn0.5)2 GaC thin films. J. Mater. Sci. 2015, 50, 4495–4502. [Google Scholar] [CrossRef] [Green Version]
- Eklund, P.; Bugnet, M.; Mauchamp, V.; Dubois, S.; Tromas, C.; Jensen, J.; Piraux, L.; Gence, L.; Jaouen, M.; Cabioc’h, T. Epitaxial growth and electrical transport properties of Cr2GeC thin films. Phys. Rev. B 2011, 84, 075424. [Google Scholar] [CrossRef] [Green Version]
- Mockuté, A.; Dahlqvist, M.; Emmerlich, J.; Hultman, L.; Schneider, J.M.; Persson, P.O.; Rosén, J. Synthesis and ab initio calculations of nanolaminated (Cr, Mn)2AlC compounds. Phys. Rev. B 2013, 87, 094113. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.; Pazniak, H.; Jemiola, A.; Felek, M.; Farle, M.; Wiedwald, U. Pulsed laser deposition of epitaxial Cr2AlC MAX phase thin films on MgO(111) and Al2O3(0001). Mater. Res. Lett. 2021, 9, 343–349. [Google Scholar] [CrossRef]
- Pazniak, H.; Stevens, M.; Dahlqvist, M.; Zingsem, B.; Kibkalo, L.; Felek, M.; Varnakov, S.; Farle, M.; Rosen, J.; Wiedwald, U. Phase Stability of Nanolaminated Epitaxial (Cr1–x Fe x)2AlC MAX Phase Thin Films on MgO (111) and Al2O3 (0001) for Use as Conductive Coatings. ACS Appl. Nano Mater. 2021, 4, 13761–13770. [Google Scholar] [CrossRef]
- Rousseau, R.V. The fundamental algorithm: A natural extension of the Sherman equation Part 1: Theory/R.M. Rousseau, J.A. Boivin. Rigaku J. 1998, 15, 13–27. [Google Scholar]
- Der Pauw, L.V. A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape. Philips Res. Rep 1991, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shevtsov, D.V.; Lyaschenko, S.A.; Varnakov, S.N. An ultrahigh-vacuum multifunctional apparatus for synthesis and in situ investigation of lowdimensional structures by spectral magnetoellipsometry in the temperature range of 85–900 K. Instrum. Ex Tech. 2017, 60, 759–763. [Google Scholar] [CrossRef]
- Urban, F.K., III; Barton, D.; Tiwald, T. Numerical ellipsometry: Analysis of thin metal layers using n–k plane methods with multiple incidence angles. Thin Solid Film. 2009, 518, 1411. [Google Scholar] [CrossRef]
- Stephens, R.E.; Malitson, I.H. Index of Refraction of Magnesium Oxide. Res. Nat. Bur. Stand. 1952, 49, 249. [Google Scholar] [CrossRef]
- An, N.; Wang, K.; Wei, H.; Song, Q.; Xiao, S. Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces. MRS Commun. 2016, 6, 77–83. [Google Scholar] [CrossRef]
- Liu, J.-G.; Ueda, M. High refractive index polymers: Fundamental research and practical applications. J. Mater. Chem. 2009, 19, 8907–8919. [Google Scholar] [CrossRef]
- Poobalan, R.K.; Barshilia, H.C.; Basu, B. Recent trends and challenges in developing boride and carbide-based solar absorbers for concentrated solar power. Sol. Energy Mater. Sol. Cells 2022, 245, 111876. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Scabarozi, T.H.; Amini, S.; Hettinger, J.D.; Lofland, S.E. Electrical and thermal properties of Cr2GeC. J. Am. Ceram. Soc. 2011, 94, 4123–4126. [Google Scholar] [CrossRef]
- Klotz, J.; Götze, K.; Förster, T.; Bruin, J.A.N.; Wosnitza, J.; Weber, K.; Schmidt, M.; Schnelle, W.; Geibel, C.; Rößler, U.K.; et al. Electronic band structure and proximity to magnetic ordering in the chiral cubic compound CrGe. Phys. Rev. B 2019, 99, 085130. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in glasses containing transition metal ions. Non-Cryst. Solids 1968, 1, 1–17. [Google Scholar] [CrossRef]
- Lee, A.; Ramakrishnan, T.V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287–337. [Google Scholar] [CrossRef]
- Li, P.; Zhang, L.T.; Mi, W.B.; Jiang, E.Y.; Bai, H.L. Origin of the butterfly-shaped magnetoresistance in reactive sputtered epitaxial Fe3O4 films. J. Appl. Phys. 2009, 106, 033908. [Google Scholar] [CrossRef]
- Ouisse, T.; Shi, L.; Piot, B.A.; Hackens, B.; Mauchamp, V.; Chaussende, D. Magnetotransport properties of nearly-free electrons in two-dimensional hexagonal metals and application to the Mn+1AXn phases. Phys. Rev. B 2015, 92, 045133. [Google Scholar] [CrossRef]
- Ouisse, T.; Barsoum, M.W. Magnetotransport in the MAX phases and their 2D derivatives: MXenes. Mater. Res. Lett. 2017, 5, 365–378. [Google Scholar] [CrossRef] [Green Version]
# | Atomic Stoichiometry, % | D, nm | Deposition Method | |||
---|---|---|---|---|---|---|
Cr | Mn | Ge | C | |||
1 | 49.7 | - | 25.6 | 24.6 | 10 | continuous |
2 | 50 | - | 25.2 | 24.8 | ||
3 | 50.1 | - | 19.7 | 30.2 | ||
4 | 54.4 | - | 20.3 | 25.3 | ||
5 | 54.4 | - | 20.3 | 25.3 | 40 | |
6 | 54.4 | - | 20.3 | 25.3 | 100 | |
7 | 55 | - | 16.8 | 28.2 | 40 | |
8 | 55 | - | 16.8 | 28.2 | 40.6 | 15 cycles of 2.7 nm with pauses of 1 min between sublayers |
9 | 40.6 | 14.1 | 17 | 28.3 | 40.6 |
# | Atomic Stoichiometry, % | D, nm | Deposition Method | RHEED | XRD | AFM | XRF Cr/Ge Atomic Ratio | |||
---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Ge | C | |||||||
1 | 49.7 | - | 25.6 | 24.6 | 10 | continuous | - | - | Spherical grains Dg = 20 ÷ 50 nm, hg = 4.28 ± 0.64 nm; Sq = 1.024 nm | 1.66 ± 0.40 |
2 | 50.0 | - | 25.2 | 24.8 | Cr2GeC [100] Cr23C6 [210] | - | Spherical grains Dg = 15 ÷ 45hm, hg = 5.64 ± 0,30 nm; Sq = 1.549 nm | 1.92 ± 0.58 | ||
3 | 50.1 | - | 19.7 | 30.2 | Cr2GeC [001] Cr2GeC [100] + stripes | - | Spherical grains Dg = 20 ÷ 50 nm, hg = 13.37 ± 1.97 nm; Sq = 3.110 nm | 2.01 ± 0.52 | ||
4 | 54.4 | - | 20.3 | 25.3 | Cr2GeC [100] CrGe [100] | Cr3Ge(002) | Spherical grains Dg = 20 ÷ 70 nm, hg = 8.52 ± 1.46 nm; Sq = 2.304 nm | 7.47 ± 2.38 | ||
5 | 54.4 | - | 20.3 | 25.3 | 40 | Cr2GeC [001] Cr2GeC [100] + stripes | Cr2GeC(00L) + CrGe(012) + weak Cr2GeC(013) | Spherical grains Dg = 15 ÷ 30 nm; Rods Lr = 100 ÷ 150hm, Dr = 40 ÷ 100 nm, ϕr = N ∙ 30°; hg = 1 ÷ 1.5 nm; Sq = 4.031 nm | 1.88 ± 0.31 | |
6 | 54.4 | - | 20.3 | 25.3 | 100 | Cr2GeC | Cr2GeC(00L) + CrGe(012) + Cr2GeC(013) | Incline plates Dp = 100 ÷ 300 nm, hp = 30 nm; bars Lb = 100 ÷ 150 nm Db = 40 ÷ 100 nm, ϕb = N ∙ 30°; Sq = 8.553 nm | 1.47 ± 0.37 | |
7 | 55.0 | - | 16.8 | 28.2 | 40 | Cr2GeC [100]; CrGe [100] | Cr2GeC(00L) + Cr2GeC(013) | Elongated grains Dg = 40 ÷ 90 nm, hg = 2 ÷ 20 nm; Sq = 8.490 nm | 2.59 ± 0.48 | |
8 | 55.0 | - | 16.8 | 28.2 | 40.6 | 15 cycles of 2.7 nm with pauses of 1 min between sublayers | Cr2GeC [100]; CrGe [100] | Cr3Ge(002) + CrGe(012) + Cr2GeC(013) | Elongated grains Dg = 40 ÷ 100 nm, hg = 4 ÷ 12 nm; Sq = 9.329 nm | 2.17 ± 0.41 |
9 | 40.6 | 14.1 | 17.0 | 28.3 | 40.6 | dots and stripes Cr2GeC + dots CrGe | Cr2GeC(00L) + Cr2GeC(013) | Spherical grains Dg = 30 ÷ 70 nm, hg = 25.32 ± 2.35 nm; Sq = 2.864 nm | 2.95 ± 0.53 (Cr + Mn)/Ge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, A.S.; Lyaschenko, S.A.; Rautskii, M.V.; Lukyanenko, A.V.; Andryushchenko, T.A.; Solovyov, L.A.; Yakovlev, I.A.; Maximova, O.A.; Shevtsov, D.V.; Bondarev, M.A.; et al. Growth Process, Structure and Electronic Properties of Cr2GeC and Cr2-xMnxGeC Thin Films Prepared by Magnetron Sputtering. Processes 2023, 11, 2236. https://doi.org/10.3390/pr11082236
Tarasov AS, Lyaschenko SA, Rautskii MV, Lukyanenko AV, Andryushchenko TA, Solovyov LA, Yakovlev IA, Maximova OA, Shevtsov DV, Bondarev MA, et al. Growth Process, Structure and Electronic Properties of Cr2GeC and Cr2-xMnxGeC Thin Films Prepared by Magnetron Sputtering. Processes. 2023; 11(8):2236. https://doi.org/10.3390/pr11082236
Chicago/Turabian StyleTarasov, Anton S., Sergey A. Lyaschenko, Mikhail V. Rautskii, Anna V. Lukyanenko, Tatiana A. Andryushchenko, Leonid A. Solovyov, Ivan A. Yakovlev, Olga A. Maximova, Dmitriy V. Shevtsov, Mikhail A. Bondarev, and et al. 2023. "Growth Process, Structure and Electronic Properties of Cr2GeC and Cr2-xMnxGeC Thin Films Prepared by Magnetron Sputtering" Processes 11, no. 8: 2236. https://doi.org/10.3390/pr11082236
APA StyleTarasov, A. S., Lyaschenko, S. A., Rautskii, M. V., Lukyanenko, A. V., Andryushchenko, T. A., Solovyov, L. A., Yakovlev, I. A., Maximova, O. A., Shevtsov, D. V., Bondarev, M. A., Bondarev, I. A., Ovchinnikov, S. G., & Varnakov, S. N. (2023). Growth Process, Structure and Electronic Properties of Cr2GeC and Cr2-xMnxGeC Thin Films Prepared by Magnetron Sputtering. Processes, 11(8), 2236. https://doi.org/10.3390/pr11082236