Impact of Microplastics on the Fate and Behaviour of Arsenic in the Environment and Their Significance for Drinking Water Supply
Abstract
:1. Introduction
2. Materials and Methods
- NIT: (microplastic OR nanoplastic OR polystyrene OR “polyvinyl chloride” OR polypropylene OR polyethylene OR “polyethylene terephthalate”) AND (arsenic)
- allintitle: (microplastic OR nanoplastic OR polystyrene OR “polyvinyl chloride” OR polypropylene OR polyethylene OR “polyethylene terephthalate”) AND (arsenic OR metals OR contaminants OR pollutants OR carry OR interaction OR adsorption)
- allintitle: (microplastic OR nanoplastic OR polystyrene OR “polyvinyl chloride” OR polypropylene OR polyethylene OR “polyethylene terephthalate”) AND (water OR aqua OR sediment)
3. Microplastics and Arsenic in the Environment
3.1. Direct Human Exposure Routes for MPs and Arsenic
3.2. Freshwater Environments
3.3. Marine Environments
Sample Type | Type of Microplastic | Particle Size (mm) | Proportion of Total MPs (%) | As conc. in Water (µg/L) | Conc. of MPs (Items/L) | As Adsorbed on MPs (µg/g) | Location | Ref. |
---|---|---|---|---|---|---|---|---|
River estuary | PP | 0.56–4.5 | 22 | 20.56–32.12 | 7.8 (max 19.9) | 0.42–0.96 | Punnakayal estuary, India | [30] |
PE | 30 | 0.12 | ||||||
Polyamide | 38 | - | ||||||
PVC | 5 | - | ||||||
Cellulose | 5 | - | ||||||
Groundwater | PE | 0.11–3.6 | 55 | - | 4.2 (max 10.1) | - | ||
Polyester | 10 | |||||||
Polyamide(nylon) | 35 | |||||||
Coastal water | PE | <1 | 26.2–33.4 | 0.009–0.32 | 24 ± 9–96 ± 57 | 3.7–1.24 | Rameswaram Island, India | [36] |
PET | 17.1–18.9 | |||||||
PA | ||||||||
PEST | ||||||||
North Atlantic | PE | - | - | - | - | 0.1–0.8 | North Atlantic gyre | [16] |
North Atlantic | PP PE | <1 <1 | - - | - | - | <10 - | North Atlantic gyre | [37] |
Beach (from sea) | PE PP PS PET | 1–5 | 53 35 7 2 | - | - | 0.04–1.53 | Entire coast of Australia | [40] |
Sample Type | Microplastic Abundance | Type of Plastic (Percent of Total) | As conc. in Sediments (mg/kg) | As Associated with MPs (mg/kg) | Correlation of As and MPs | Area | Ref. |
---|---|---|---|---|---|---|---|
River sediment | - | PE (70) | - | - | 0.131 | Brisbane, Australia | [31] |
PA (12) | |||||||
PP (10) | |||||||
Coastal sediment | 59–217 items/200 g | - | 4.56 ± 2.77 | - | p < 0.01 | Khark Island, Iran | [38] |
Coastal sediments | 3542–33,561 items/m2 | - | 122 | - | −0.733 * | Bandar Abbas, Iran | [39] |
220 | |||||||
120 | |||||||
Coastal Sediments | - | Cellophane | 3.01–12.42 | 0.35–2.89 | −0.381 ** | China | [42] |
Polyester | |||||||
PP | |||||||
PE | |||||||
Coastal sediment | 490–1170 items/500 g | PE | 5.84–8.68 | 0.64–6.53 | p > 0.05 | Fujian, China | [35] |
PP | |||||||
PET | |||||||
Coastal sediment | 55 ± 21–259 ± 88 items/kg | PP | 0.077–0.487 | 3.7–1.24 | p > 0.05 | Rameswaram Island, India | [36] |
PET | |||||||
PA | |||||||
PEST |
3.4. Soils
4. Interactions between Microplastics and Arsenic during Water Treatment
5. Current and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, D.; Singh, A.; Ramanathan, A.; Kumar, M. The Combined Exposure of Microplastics and Toxic Contaminants in the Floodplains of North India: A Review. J. Environ. Manag. 2021, 279, 111557. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xing, Y.; Lv, M.; Zhang, T.; Ya, H.; Jiang, B. Recent Advances on the Effects of Microplastics on Elements Cycling in the Environment. Sci. Total Environ. 2022, 849, 157884. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, J.; Xing, B. Environmental Source, Fate, and Toxicity of Microplastics. J. Hazard. Mater. 2021, 407, 124357. [Google Scholar] [CrossRef]
- Kumar, M.; Chen, H.; Sarsaiya, S.; Qin, S.; Liu, H.; Awasthi, M.K.; Kumar, S.; Singh, L.; Zhang, Z.; Bolan, N.S.; et al. Current Research Trends on Micro- and Nano-Plastics as an Emerging Threat to Global Environment: A Review. J. Hazard. Mater. 2021, 409, 124967. [Google Scholar] [CrossRef]
- Sarkar, B.; Dissanayake, P.D.; Bolan, N.S.; Dar, J.Y.; Kumar, M.; Haque, M.N.; Mukhopadhyay, R.; Ramanayaka, S.; Biswas, J.K.; Tsang, D.C.W.; et al. Challenges and Opportunities in Sustainable Management of Microplastics and Nanoplastics in the Environment. Environ. Res. 2022, 207, 112179. [Google Scholar] [CrossRef] [PubMed]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of Microplastics in Raw and Treated Drinking Water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef]
- Chu, X.; Zheng, B.; Li, Z.; Cai, C.; Peng, Z.; Zhao, P.; Tian, Y. Occurrence and Distribution of Microplastics in Water Supply Systems: In Water and Pipe Scales. Sci. Total Environ. 2022, 803, 150004. [Google Scholar] [CrossRef] [PubMed]
- Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Low Numbers of Microplastics Detected in Drinking Water from Ground Water Sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef] [PubMed]
- European Council. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast); European Council: Brussels, Belgium, 2020. [Google Scholar]
- UNICEF. The Arsenic Primer; Guidance on the Investigation and Mitigation of Arsenic Contamination; United Nations Children’s Fund (UNICEF): New York, NY, USA, 2018; ISBN 978-92-806-4980-2. [Google Scholar]
- Raju, N.J. Arsenic in the Geo-Environment: A Review of Sources, Geochemical Processes, Toxicity and Removal Technologies. Environ. Res. 2022, 203, 111782. [Google Scholar] [CrossRef]
- Fatoki, J.O.; Badmus, J.A. Arsenic as an Environmental and Human Health Antagonist: A Review of Its Toxicity and Disease Initiation. J. Hazard. Mater. Adv. 2022, 5, 100052. [Google Scholar] [CrossRef]
- Sarkar, D.J.; Das Sarkar, S.; Das, B.K.; Sahoo, B.K.; Das, A.; Nag, S.K.; Manna, R.K.; Behera, B.K.; Samanta, S. Occurrence, Fate and Removal of Microplastics as Heavy Metal Vector in Natural Wastewater Treatment Wetland System. Water Res. 2021, 192, 116853. [Google Scholar] [CrossRef]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Interactions between Trace Metals and Plastic Production Pellets under Estuarine Conditions. Mar. Chem. 2014, 167, 25–32. [Google Scholar] [CrossRef]
- Ricardo, I.A.; Alberto, E.A.; Silva Júnior, A.H.; Macuvele, D.L.P.; Padoin, N.; Soares, C.; Gracher Riella, H.; Starling, M.C.V.M.; Trovó, A.G. A Critical Review on Microplastics, Interaction with Organic and Inorganic Pollutants, Impacts and Effectiveness of Advanced Oxidation Processes Applied for Their Removal from Aqueous Matrices. Chem. Eng. J. 2021, 424, 130282. [Google Scholar] [CrossRef]
- Prunier, J.; Maurice, L.; Perez, E.; Gigault, J.; Pierson Wickmann, A.-C.; Davranche, M.; Halle, A.T. Trace Metals in Polyethylene Debris from the North Atlantic Subtropical Gyre. Environ. Pollut. 2019, 245, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. Adsorption Mechanism of As(III) on Polytetrafluoroethylene Particles of Different Size. Environ. Pollut. 2019, 254, 112950. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. As(III) Adsorption onto Different-Sized Polystyrene Microplastic Particles and Its Mechanism. Chemosphere 2020, 239, 124792. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Adsorption of Arsenite to Polystyrene Microplastics in the Presence of Humus. Environ. Sci. Process. Impacts 2020, 22, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Zhao, J.; Chen, Y.; Wang, M.; Wang, X.; Wang, S.; Chen, X.; Lu, A.; Zha, S. Coexistence and Adsorption Properties of Heavy Metals by Polypropylene Microplastics. Adsorpt. Sci. Technol. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Effects of Microplastic on Arsenic Accumulation in Chlamydomonas Reinhardtii in a Freshwater Environment. J. Hazard. Mater. 2021, 405, 124232. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Effect of Microplastics and Arsenic on Nutrients and Microorganisms in Rice Rhizosphere Soil. Ecotoxicol. Environ. Saf. 2021, 211, 111899. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. Microplastic Particles Increase Arsenic Toxicity to Rice Seedlings. Environ. Pollut. 2020, 259, 113892. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Uptake of Microplastics by Carrots in Presence of As (III): Combined Toxic Effects. J. Hazard. Mater. 2021, 411, 125055. [Google Scholar] [CrossRef] [PubMed]
- Sathish, M.N.; Jeyasanta, I.; Patterson, J. Microplastics in Salt of Tuticorin, Southeast Coast of India. Arch. Environ. Contam. Toxicol. 2020, 79, 111–121. [Google Scholar] [CrossRef]
- Wu, B.; Wu, X.; Liu, S.; Wang, Z.; Chen, L. Size-Dependent Effects of Polystyrene Microplastics on Cytotoxicity and Efflux Pump Inhibition in Human Caco-2 Cells. Chemosphere 2019, 221, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, X.; Gu, W.; Yu, J.; Wu, B. Influence of the Digestive Process on Intestinal Toxicity of Polystyrene Microplastics as Determined by in Vitro Caco-2 Models. Chemosphere 2020, 256, 127204. [Google Scholar] [CrossRef] [PubMed]
- Järlskog, I.; Strömvall, A.-M.; Magnusson, K.; Galfi, H.; Björklund, K.; Polukarova, M.; Garção, R.; Markiewicz, A.; Aronsson, M.; Gustafsson, M.; et al. Traffic-Related Microplastic Particles, Metals, and Organic Pollutants in an Urban Area under Reconstruction. Sci. Total Environ. 2021, 774, 145503. [Google Scholar] [CrossRef]
- Issac, M.N.; Kandasubramanian, B. Effect of Microplastics in Water and Aquatic Systems. Environ. Sci. Pollut. Res. 2021, 28, 19544–19562. [Google Scholar] [CrossRef]
- Selvam, S.; Jesuraja, K.; Venkatramanan, S.; Roy, P.D.; Jeyanthi Kumari, V. Hazardous Microplastic Characteristics and Its Role as a Vector of Heavy Metal in Groundwater and Surface Water of Coastal South India. J. Hazard. Mater. 2021, 402, 123786. [Google Scholar] [CrossRef]
- He, B.; Duodu, G.O.; Rintoul, L.; Ayoko, G.A.; Goonetilleke, A. Influence of Microplastics on Nutrients and Metal Concentrations in River Sediments. Environ. Pollut. 2020, 263, 114490. [Google Scholar] [CrossRef]
- Sabilillah, A.M.; Palupi, F.R.; Adji, B.K.; Nugroho, A.P. Health Risk Assessment and Microplastic Pollution in Streams through Accumulation and Interaction by Heavy Metals. Glob. J. Environ. Sci. Manag. 2023, 9, 1–22. [Google Scholar]
- Bakaraki Turan, N.; Sari Erkan, H.; Onkal Engin, G. Microplastics in Wastewater Treatment Plants: Occurrence, Fate and Identification. Process Saf. Environ. Prot. 2021, 146, 77–84. [Google Scholar] [CrossRef]
- Koutnik, V.S.; Alkidim, S.; Leonard, J.; DePrima, F.; Cao, S.; Hoek, E.M.V.; Mohanty, S.K. Unaccounted Microplastics in Wastewater Sludge: Where Do They Go? ACS EST Water 2021, 1, 1086–1097. [Google Scholar] [CrossRef]
- Deng, J.; Guo, P.; Zhang, X.; Su, H.; Zhang, Y.; Wu, Y.; Li, Y. Microplastics and Accumulated Heavy Metals in Restored Mangrove Wetland Surface Sediments at Jinjiang Estuary (Fujian, China). Mar. Pollut. Bull. 2020, 159, 111482. [Google Scholar] [CrossRef] [PubMed]
- Jeyasanta, K.I.; Patterson, J.; Grimsditch, G.; Edward, J.K.P. Occurrence and Characteristics of Microplastics in the Coral Reef, Sea Grass and near Shore Habitats of Rameswaram Island, India. Mar. Pollut. Bull. 2020, 160, 111674. [Google Scholar] [CrossRef]
- El Hadri, H.; Gigault, J.; Mounicou, S.; Grassl, B.; Reynaud, S. Trace Element Distribution in Marine Microplastics Using Laser Ablation-ICP-MS. Mar. Pollut. Bull. 2020, 160, 111716. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Moore, F.; Keshavarzi, B.; Moeinpour, A. Microplastics and Potentially Toxic Elements in Coastal Sediments of Iran’s Main Oil Terminal (Khark Island). Environ. Pollut. 2017, 220, 720–731. [Google Scholar] [CrossRef]
- Yazdani Foshtomi, M.; Oryan, S.; Taheri, M.; Darvish Bastami, K.; Zahed, M.A. Composition and Abundance of Microplastics in Surface Sediments and Their Interaction with Sedimentary Heavy Metals, PAHs and TPH (Total Petroleum Hydrocarbons). Mar. Pollut. Bull. 2019, 149, 110655. [Google Scholar] [CrossRef]
- Carbery, M.; MacFarlane, G.R.; O’Connor, W.; Afrose, S.; Taylor, H.; Palanisami, T. Baseline Analysis of Metal(Loid)s on Microplastics Collected from the Australian Shoreline Using Citizen Science. Mar. Pollut. Bull. 2020, 152, 110914. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, G.; Song, W.; Ye, C.; Lin, H.; Li, Z.; Liu, W. Plastics in the Marine Environment Are Reservoirs for Antibiotic and Metal Resistance Genes. Environ. Int. 2019, 123, 79–86. [Google Scholar] [CrossRef]
- Mohsen, M.; Wang, Q.; Zhang, L.; Sun, L.; Lin, C.; Yang, H. Heavy Metals in Sediment, Microplastic and Sea Cucumber Apostichopus Japonicus from Farms in China. Mar. Pollut. Bull. 2019, 143, 42–49. [Google Scholar] [CrossRef]
- Kang, H.-M.; Byeon, E.; Jeong, H.; Lee, Y.; Hwang, U.-K.; Jeong, C.-B.; Yoon, C.; Lee, J.-S. Arsenic Exposure Combined with Nano- or Microplastic Induces Different Effects in the Marine Rotifer Brachionus Plicatilis. Aquat. Toxicol. 2021, 233, 105772. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, C.; Díaz Baños, F.G.; Esteban, M.Á.; Cuesta, A. Functionalized Nanoplastics (NPs) Increase the Toxicity of Metals in Fish Cell Lines. Int. J. Mol. Sci. 2021, 22, 7141. [Google Scholar] [CrossRef] [PubMed]
- Lebordais, M.; Gutierrez-Villagomez, J.M.; Gigault, J.; Baudrimont, M.; Langlois, V.S. Molecular Impacts of Dietary Exposure to Nanoplastics Combined with Arsenic in Canadian Oysters (Crassostrea Virginica) and Bioaccumulation Comparison with Caribbean Oysters (Isognomon Alatus). Chemosphere 2021, 277, 130331. [Google Scholar] [CrossRef] [PubMed]
- Turner, A. Mobilisation Kinetics of Hazardous Elements in Marine Plastics Subject to an Avian Physiologically-Based Extraction Test. Environ. Pollut. 2018, 236, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, Z.; Zhang, Y.; Fan, P.; Xi, B.; Tan, W. Metal Type and Aggregate Microenvironment Govern the Response Sequence of Speciation Transformation of Different Heavy Metals to Microplastics in Soil. Sci. Total Environ. 2021, 752, 141956. [Google Scholar] [CrossRef]
- Chai, B.; Wei, Q.; She, Y.; Lu, G.; Dang, Z.; Yin, H. Soil Microplastic Pollution in an E-Waste Dismantling Zone of China. Waste Manag. 2020, 118, 291–301. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Sheng, Y.; Xiang, Q.; Zhou, Y.; Cizdziel, J.V. Effect of Prothioconazole on the Degradation of Microplastics Derived from Mulching Plastic Film: Apparent Change and Interaction with Heavy Metals in Soil. Environ. Pollut. 2020, 260, 113988. [Google Scholar] [CrossRef]
- Li, H.-Q.; Shen, Y.-J.; Wang, W.-L.; Wang, H.-T.; Li, H.; Su, J.-Q. Soil PH Has a Stronger Effect than Arsenic Content on Shaping Plastisphere Bacterial Communities in Soil. Environ. Pollut. 2021, 287, 117339. [Google Scholar] [CrossRef]
- Zhu, D.; Li, G.; Wang, H.-T.; Duan, G.-L. Effects of Nano- or Microplastic Exposure Combined with Arsenic on Soil Bacterial, Fungal, and Protistan Communities. Chemosphere 2021, 281, 130998. [Google Scholar] [CrossRef]
- Wang, H.-T.; Ding, J.; Xiong, C.; Zhu, D.; Li, G.; Jia, X.-Y.; Zhu, Y.-G.; Xue, X.-M. Exposure to Microplastics Lowers Arsenic Accumulation and Alters Gut Bacterial Communities of Earthworm Metaphire Californica. Environ. Pollut. 2019, 251, 110–116. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Liu, X.; Qiu, W.; Song, Z. The Mechanism of Polystyrene Microplastics to Affect Arsenic Volatilization in Arsenic-Contaminated Paddy Soils. J. Hazard. Mater. 2020, 398, 122896. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Yadav, H.K.; Naz, A.; Koul, M.; Chowdhury, A.; Shekhar, S. Arsenic Removal Technologies for Middle- and Low-Income Countries to Achieve the SDG-3 and SDG-6 Targets: A Review. Environ. Adv. 2022, 9, 100262. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in Freshwaters and Drinking Water: Critical Review and Assessment of Data Quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Novotna, K.; Cermakova, L.; Pivokonska, L.; Cajthaml, T.; Pivokonsky, M. Microplastics in Drinking Water Treatment–Current Knowledge and Research Needs. Sci. Total Environ. 2019, 667, 730–740. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, L.; Arulmani, S.R.B.; Yan, J.; Wu, L.; Wu, T.; Zhang, H.; Xiao, T. Adsorption of Different Pollutants by Using Microplastic with Different Influencing Factors and Mechanisms in Wastewater: A Review. Nanomaterials 2022, 12, 2256. [Google Scholar] [CrossRef]
- Hering, J.G.; Katsoyiannis, I.A.; Theoduloz, G.A.; Berg, M.; Hug, S.J. Arsenic Removal from Drinking Water: Experiences with Technologies and Constraints in Practice. J. Environ. Eng. 2017, 143, 03117002. [Google Scholar] [CrossRef]
- Sarkar, D.J.; Das Sarkar, S.; Das, B.K.; Praharaj, J.K.; Mahajan, D.K.; Purokait, B.; Mohanty, T.R.; Mohanty, D.; Gogoi, P.; Kumar, V.S.; et al. Microplastics Removal Efficiency of Drinking Water Treatment Plant with Pulse Clarifier. J. Hazard. Mater. 2021, 413, 125347. [Google Scholar] [CrossRef]
- Ye, S.; Cheng, M.; Zeng, G.; Tan, X.; Wu, H.; Liang, J.; Shen, M.; Song, B.; Liu, J.; Yang, H.; et al. Insights into Catalytic Removal and Separation of Attached Metals from Natural-Aged Microplastics by Magnetic Biochar Activating Oxidation Process. Water Res. 2020, 179, 115876. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Khan, M.H.; Haque, M. Arsenic Contamination in Groundwater in Bangladesh: Implications and Challenges for Healthcare Policy. Risk Manag. Healthc. Policy 2018, 11, 251–261. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Drinking-Water Quality; Fourth edition incorporating the first and second addenda; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4. [Google Scholar]
Type of Microplastics | Particle Size (µm) | BET (m2/g) | Concentration Range of Heavy Metal (mg/L) | Adsorption Capacity (mg/g) | Matrix | References |
---|---|---|---|---|---|---|
Polytetrafluoroethylene (PTFE) | 0.01–1 | 0.95 | 10–50 (As) | 1.05 | Synthetic water | [17] |
1–10 | 0.40 | 0.94 | ||||
10+ | 0.32 | 0.83 | ||||
Polystyrene (PS) | 0.01–1 | 0.95 | 10–50 (As) | 1.12 | Synthetic water | [18] |
1–10 | 0.40 | 1.047 | ||||
10+ | 0.32 | 0.92 | ||||
- | - | 50 (As) | 11.8 | Humic and fulvic acid solutions | [19] | |
Polypropylene (PP) | 850 | - | 50 (Cu) 50 (Zn) | 0.27 0.19 | Synthetic water | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, M.; Tubić, A.; Šolić, M.; Nikić, J.; Kragulj Isakovski, M.; Agbaba, J. Impact of Microplastics on the Fate and Behaviour of Arsenic in the Environment and Their Significance for Drinking Water Supply. Processes 2023, 11, 2241. https://doi.org/10.3390/pr11082241
Watson M, Tubić A, Šolić M, Nikić J, Kragulj Isakovski M, Agbaba J. Impact of Microplastics on the Fate and Behaviour of Arsenic in the Environment and Their Significance for Drinking Water Supply. Processes. 2023; 11(8):2241. https://doi.org/10.3390/pr11082241
Chicago/Turabian StyleWatson, Malcolm, Aleksandra Tubić, Marko Šolić, Jasmina Nikić, Marijana Kragulj Isakovski, and Jasmina Agbaba. 2023. "Impact of Microplastics on the Fate and Behaviour of Arsenic in the Environment and Their Significance for Drinking Water Supply" Processes 11, no. 8: 2241. https://doi.org/10.3390/pr11082241
APA StyleWatson, M., Tubić, A., Šolić, M., Nikić, J., Kragulj Isakovski, M., & Agbaba, J. (2023). Impact of Microplastics on the Fate and Behaviour of Arsenic in the Environment and Their Significance for Drinking Water Supply. Processes, 11(8), 2241. https://doi.org/10.3390/pr11082241