Pressurized Liquid Extraction (PLE) in an Intermittent Process as an Alternative for Obtaining Passion Fruit (Passiflora edulis) Leaf Hydroalcoholic Extract (Tincture)
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Characterization of the Raw Material
2.3. Experimental Design
2.4. Extraction of Passiflora Leaves
2.4.1. Percolation Extraction (PER)
2.4.2. PLE in the Intermittent Process
2.5. Total Phenolic Content (TPC)
2.6. Flavonoid Content (FC)
2.7. Monitoring Energy Consumption (EC)
2.8. Mathematical Modeling of Extraction Kinetics
2.8.1. Case Study 1: Semi-Continuous Process or General Extraction Curve
2.8.2. Case Study 2: Extraction with the Intermittent Purge of the Solvent
2.9. Quantification of the Crude Extracts of Passiflora Leaves by UPLC-MS/MS
2.10. Antioxidant Activity of the Hydroalcoholic Extract of P. edulis
2.10.1. Scavenging of DPPH Radicals
2.10.2. Ferric Ion Reduction (FRAP)
2.10.3. Oxygen Radical Absorbance Capacity (ORAC)
3. Results and Discussion
3.1. Characterization of the Raw Material
3.2. Extraction Yield
3.2.1. Percolation Extraction (PER)
3.2.2. Pressurized Liquid (PLE) in the Intermittent Process
3.3. Process Kinetics and Modeling
3.3.1. Extraction Kinetics of the Semi-Continuous Process
3.3.2. PLE in the Intermittent Process
3.4. Quantification of the Crude Extracts of Passiflora Leaves by UPLC-MS/MS
3.5. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Conte, E.; Milani, R.; Morali, G.; Abballe, F. Comparison between accelerated solvent extraction and traditional extraction methods for the analysis of the herbicide diflufenican in soil. J. Chromatogr. A 1997, 765, 121–125. [Google Scholar] [CrossRef]
- Hu, J.; Guo, Z.; Glasius, M.; Kristensen, K.; Xiao, L.; Xu, X. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: An efficient and sustainable approach. J. Chromatogr. A 2011, 1218, 5765–5773. [Google Scholar] [CrossRef] [PubMed]
- Barrales, F.M.; Silveira, P.; Barbosa, P.D.P.M.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J. Recovery of phenolic compounds from citrus by-products using pressurized liquids—An application to orange peel. Food Bioprod. Process. 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Verma, H.N. Extraction of phenolic compounds by conventional and green innovative techniques. In Green Sustainable Process for Chemical and Environmental Engineering and Science; 2023rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2023; pp. 355–394. [Google Scholar] [CrossRef]
- Martín-garcía, B.; Pimentel-moral, S.; Gómez-caravaca, A.M.; Arráez-román, D.; Segura-carretero, A. Box-Behnken experimental design for a green extraction method of phenolic compounds from olive leaves. Ind. Crop. Prod. 2020, 154, 112741. [Google Scholar] [CrossRef]
- Pól, J.; Ostrá, E.V.; Karásek, P.; Roth, M.; Benešová, K.; Kotlaříková, P.; Čáslavský, J. Comparison of two different solvents employed for pressurised fluid extraction of stevioside from Stevia rebaudiana: Methanol versus water. Anal. Bioanal. Chem. 2007, 388, 1847–1857. [Google Scholar] [CrossRef]
- Claude, B.; Morin, P.; Lafosse, M.; Belmont, A.S.; Haupt, K. Selective solid-phase extraction of a triterpene acid from a plant extract by molecularly imprinted polymer. Talanta 2008, 75, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Vardanega, R.; Fuentes, F.S.; Palma, J.; Bugue, W.; Cerezal-mezquita, P.; Ruiz-domínguez, M.C. Valorization of granadilla waste (Passiflora ligularis, Juss.) by sequential green extraction processes based on pressurized fluids to obtain bioactive compounds. J. Supercrit. Fluids 2023, 194, 105833. [Google Scholar] [CrossRef]
- Ongkowijoyo, P.; Luna-Vital, D.A.; de Mejia, E.G. Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chem. 2018, 250, 113–126. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Kovačević, D.B. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food Bioprod. Process. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Castejón, N.; Luna, P.; Señoráns, F.J. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents. Food Chem. 2018, 244, 75–82. [Google Scholar] [CrossRef]
- Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Huamán-Castilla, N.; Pedreschi, F.; Iglesias-Rebolledo, N.; Pérez-Correa, J.R. Impact of an integrated process of hot pressurised liquid extraction–macroporous resin purification over the polyphenols, hydroxymethylfurfural and reducing sugars content of Vitis vinifera ‘Carménère’ pomace extracts. Int. J. Food Sci. Technol. 2018, 53, 1072–1078. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Liu, C.; Liu, C.; Li, S. Screening and isolation of potential neuraminidase inhibitors from leaves of Ligustrum lucidum Ait. based on ultrafiltration, LC/MS, and online extraction-separation methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1083, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cabo, T.; Rodríguez, I.; Ramil, M.; Cela, R. Assessment of alcoholic distillates for the extraction of bioactive polyphenols from grapevine canes. Ind. Crops Prod. 2018, 111, 99–106. [Google Scholar] [CrossRef]
- Ferreira, W.S.; Viganó, J.; Veggi, P.C. Economic assessment of emerging extraction techniques: Hybridization of high-pressure extraction and low-frequency ultrasound to produce piceatannol-rich extract from passion fruit bagasse. Chem. Eng. Process. Process. Intensif. 2022, 174, 108850. [Google Scholar] [CrossRef]
- Herbst, G.; Hamerski, F.; Errico, M.; Corazza, M.L. Pressurized liquid extraction of brewer’s spent grain: Kinetics and crude extracts characterization. J. Ind. Eng. Chem. 2021, 102, 370–383. [Google Scholar] [CrossRef]
- Brasil, Formulário de Fitoterápicos Farmacopeia Brasileira—Primeiro Suplemento. 2011. Available online: http://portal.anvisa.gov.br/documents/33832/259456/Suplemento+FFFB.pdf/478d1f83-7a0d-48aa-9815-37dbc6b29f9a (accessed on 2 November 2019).
- Petry, R.D.; Reginatto, F.; De-Paris, F.; Gosmann, G.; Salgueiro, J.B.; Quevedo, J.; Kapczinski, F.; Ortega, G.G.; Schenkel, E.P. Comparative pharmacological study of hydroethanol extracts of Passiflora alata and Passiflora edulis leaves. Phyther. Res. 2001, 15, 162–164. [Google Scholar] [CrossRef]
- Benincá, J.P.; Montanher, A.B.; Zucolotto, S.M.; Schenkel, E.P.; Fröde, T.S. Evaluation of the anti-inflammatory efficacy of Passiflora edulis. Food Chem. 2007, 104, 1097–1105. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, Y.; Bai, M.; Li, H.; Li, L. Anxiolytic and sedative activities of Passiflora edulis f. flavicarpa. J. Ethnopharmacol. 2010, 128, 148–153. [Google Scholar] [CrossRef]
- Ożarowski, M.; Karpiński, T.M. Extracts and Flavonoids of Passiflora Species as Promising Anti-inflammatory and Antioxidant Substances. Curr. Pharm. Des. 2021, 27, 2582–2604. [Google Scholar] [CrossRef]
- Gomes, C.S.; Campos, A.C.L.; Torres, O.J.M.; De Vasconcelos, P.R.L.; Moreira, A.T.R.; Tenório, S.B.; Tambara, E.M.; Sakata, K.; Júnior, H.M.; Ferrer, A.L.S. Passiflora edulis extract and the healing of abdominal wall of rats: Morphological and tensiometric study. Acta Cir. Bras. 2006, 21, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.L.A.; Salles, B.C.C.; Duarte, S.M.D.S.; Rodrigues, M.R.; Paula, F.B.D.A. Passion fruit (Passiflora edulis) leaf extract modulates the oxidative metabolism of rat peritoneal neutrophils in a model of inflammation. Braz. J. Pharm. Sci. 2020, 56. [Google Scholar] [CrossRef]
- Soares, R.D.F.; Ribeiro, G.P.; Salles, B.C.C.; Cardoso, N.S.; Ribeiro, J.R.; Souza, R.M.; Leme, K.C.; Soares, C.B.; De Oliveira, C.M.; Elston, L.B.; et al. Development of a chitosan hydrogel containing flavonoids extracted from Passiflora edulis leaves and the evaluation of its antioxidant and wound healing properties for the treatment of skin lesions in diabetic mice. J. Biomed. Mater. Res. Part A 2019, 108, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, P.; Yang, Q.; Shen, Y.; Deng, J.; Li, L.; Zhao, D. Comparative studies on anxiolytic activities and flavonoid compositions of Passiflora edulis “edulis” and Passiflora edulis “flavicarpa”. J. Ethnopharmacol. 2011, 133, 1085–1090. [Google Scholar] [CrossRef]
- Da Silva, J.K.; Cazarin, C.B.B.; Colomeu, T.C.; Batista, G.; Meletti, L.M.; Paschoal, J.A.R.; Júnior, S.B.; Furlan, M.F.; Reyes, F.G.R.; Augusto, F.; et al. Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: In vitro and in vivo study. Food Res. Int. 2013, 53, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.M.; Huang, S.T.; Liang, Y.C.; Lin, M.S.; Shih, C.M.; Chang, Y.C.; Chen, T.Y.; Chen, C.T. Isovitexin suppresses lipopolysaccharide-mediated inducible nitric oxide synthase through inhibition of NF-kappa B in mouse macrophages. Planta Med. 2005, 71, 748–753. [Google Scholar] [CrossRef]
- Choo, C.Y.; Sulong, N.Y.; Man, F.; Wong, T.W. Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. J. Ethnopharmacol. 2012, 142, 776–781. [Google Scholar] [CrossRef]
- Ramirez, V.; Arango, S.S.; Maldonado, M.E.; Uribe, D.; Aguillon, J.; Quintero, J.P.; Loango, N. Biological activity of Passiflora edulis f. Flavicarpa ethanolic leaves extract on human colonic adenocarcinoma cells. J. Appl. Pharm. Sci. 2019, 9, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, D.; Jose, S.M.; Jomy, A.; Joseph, A.; Pradeep, A.; Geoji, A.S. Antiglycation property of Passiflora edulis f. Flavicarpa deg. foliage in type 2 diabetic patients. Clin. Epidemiol. Glob. Health 2018, 7, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Salles, B.C.C.; Silva, M.A.D.; Taniguthi, L.; Ferreira, J.N.; Rocha, C.Q.D.; Vilegas, W.; Dias, P.H.; Pennacchi, P.C.; Duarte, S.M.D.S.; Rodrigues, M.R.; et al. Passiflora edulis Leaf Extract: Evidence of Antidiabetic and Antiplatelet Effects in Rats. Biol. Pharm. Bull. 2020, 43, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, S.V.F.; Portugal, L.A.; Anjos, J.P.D.; Jesus, O.N.D.; Oliveira, E.J.D.; David, J.P.; David, J.M. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem. J. 2017, 132, 28–35. [Google Scholar] [CrossRef]
- Gadioli, I.L.; Cunha, M.D.S.B.D.; de Carvalho, M.V.O.; Costa, A.M.; Pineli, L.D.L.D.O. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Crit. Rev. Food Sci. Nutr. 2018, 58, 785–807. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Destandau, E.; Fougère, L.; Lafosse, M. Isolation by pressurised fluid extraction (PFE) and identification using CPC and HPLC/ESI/MS of phenolic compounds from Brazilian cherry seeds (Eugenia uniflora L.). Food Chem. 2014, 145, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Rosa, R.H.; Von Atzingen, G.V.; Belandria, V.; Oliveira, A.L.; Bostyn, S.; Rabi, J.A. Lattice Boltzmann simulation of cafestol and kahweol extraction from green coffee beans in high-pressure system. J. Food Eng. 2016, 176, 88–96. [Google Scholar] [CrossRef]
- Colivet, J.; Oliveira, A.L.; Carvalho, R.A. Influence of the bed height on the kinetics of watermelon seed oil extraction with pressurized ethanol. Sep. Purif. Technol. 2016, 169, 187–195. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, M.A.A. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Secco, M.C.; Cansian, R.L.; Fischer, B.; Paroul, N.; Fernandes, I.A.; Junges, A. Valorization of Blueberry By-Products (Vaccinium spp.): Antioxidants by Pressurized Liquid Extraction (PLE) and Kinetics Models. Biointerface Res. Appl. Chem. 2022, 12, 1692–1704. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC INTERNATIONAL, Aoac. 2005. Available online: https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367 (accessed on 2 November 2019).
- Yammine, S.; Brianceau, S.; Manteau, S.; Turk, M.; Ghidossi, R.; Vorobiev, E.; Mietton-Peuchot, M. Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1375–1390. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Rajha, H.N.; Ziegler, W.; Louka, N.; Hobaika, Z.; Vorobiev, E.; Boechzelt, H.G.; Maroun, R.G. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction. Int. J. Mol. Sci. 2014, 15, 18640–18658. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion. J. Am. Chem. Soc. 1957, 79, 1267–1268. [Google Scholar] [CrossRef]
- Ramos, P.E.; Cerqueira, M.A.; Cook, M.T.; Bourbon, A.I.; Khutoryanskiy, V.V.; Charalampoulos, D.; Teixeira, J.A.; Vicente, A.A. Development of an immobilization system for in situ micronutrients release. Food Res. Int. 2016, 90, 121–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto-Schalch, N.O.; Pinho, S.G.B.; de Barros-Alexandrino, T.T.; Dacanal, G.C.; Assis, O.B.G.; Martelli-Tosi, M. Production and characterization of chitosan-TPP/cellulose nanocrystal system for encapsulation: A case study using folic acid as active compound. Cellulose 2020, 27, 5855–5869. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 73, 366–369. [Google Scholar] [CrossRef] [Green Version]
- Chisté, R.C.; Mercadante, A.Z.; Gomes, A.; Fernandes, E.; Lima, J.L.F.D.C.; Bragagnolo, N. In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species. Food Chem. 2011, 127, 419–426. [Google Scholar] [CrossRef]
- Tadini, C.C.; Telis, V.R.N.; de Almeida Meirelles, A.J. Operações Unitárias na Indústria de Alimentos; LCT-Livros Técnicos e Científicos Editora Ltda.: Rio de Janeiro, Brazil, 2016; pp. 167–208. ISBN 978-85-216-3032-6. [Google Scholar]
- Bittencourt, G.M.; Firmiano, D.M.; Fachini, R.P.; Lacaz-Ruiz, R.; Fernandes, A.M.; Oliveira, A.L. Application of Green Technology for the Acquisition of Extracts of Araçá (Psidium grandifolium Mart. ex DC.) Using Supercritical CO2 and Pressurized Ethanol: Characterization and Analysis of Activity. J. Food Sci. 2019, 84, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, N.A.; Mazzali, M.R.; Fukumasu, H.; Gonçalves, C.B.; de Oliveira, A.L. Composition and physical properties of babassu seed (Orbignya phalerata) oil obtained by supercritical CO2 extraction. J. Supercrit. Fluids 2019, 150, 21–29. [Google Scholar] [CrossRef]
- Santos, K.C.D.; Borges, T.V.; Olescowicz, G.; Ludka, F.K.; Santos, C.A.D.M.; Molz, S. Passiflora actinia hydroalcoholic extract and its major constituent, isovitexin, are neuroprotective against glutamate-induced cell damage in mice hippocampal slices. J. Pharm. Pharmacol. 2016, 68, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta. 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Mendiola, J.A.; Jaime, L.; Santoyo, S.; Reglero, G.; Cifuentes, A.; Ibañez, E.; Señoráns, F.J. Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem. 2007, 102, 1357–1367. [Google Scholar] [CrossRef]
- De Oliveira, N.A.; Cornelio-santiago, H.P.; Fukumasu, H.; de Oliveira, A.L. Green coffee extracts rich in diterpenes e Process optimization of pressurized liquid extraction using ethanol as solvent. J. Food Eng. 2018, 224, 148–155. [Google Scholar] [CrossRef]
- Reverchon, E.; Marrone, C. Supercritical extraction of clove bud essential oil: Isolation and mathematical modeling. Chem. Eng. Sci. 1997, 52, 3421–3428. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Z.F.; Yao, H.Q. Fractal diffusion model used for diffusion in porous material within limited volume of stiff container. Chem. Eng. Sci. 2009, 64, 1318–1325. [Google Scholar] [CrossRef]
- Mezzomo, N.; Martínez, J.; Ferreira, S.R.S. Supercritical fluid extraction of peach (Prunus persica) almond oil: Kinetics, mathematical modeling and scale-up. J. Supercrit. Fluids 2009, 51, 10–16. [Google Scholar] [CrossRef]
- Beraldo, J. Estudo farmacognóstico de Passiflora edulis Sims. (Passifloraceae). Master’s Thesis, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil, 2008. Available online: https://www.teses.usp.br/teses/disponiveis/9/9138/tde-14092017-125247/publico/Josseara_Beraldo_Mestrado.pdf (accessed on 2 November 2019).
- Carmo, M.C.L.D.; Martins, I.M.; Magalhães, A.E.R.; Maróstica Júnior, M.R.; Macedo, J.A. Passion fruit (Passiflora edulis) leaf aqueous extract ameliorates intestinal epithelial barrier dysfunction and reverts inflammatory parameters in Caco-2 cells monolayer. Food Res. Int. 2020, 133, 109162. [Google Scholar] [CrossRef] [PubMed]
Range and Levels of the Independent Factors | ||||||
---|---|---|---|---|---|---|
Factors | Symbol | −α | −1 | 0 | 1 | +α |
Temperature (°C) | 46.6 | 60 | 80 | 100 | 113.4 | |
Solvent Volume (%) | 66.6 | 80 | 100 | 120 | 133.4 | |
Cycles (N) | 1.33 | 2 | 3 | 4 | 4.67 |
Compound | Precursor Ion (m/z) | Product Ion (m/z) | DP a (V) | CE b (eV) | Dwell Time (s) | RT c (min) |
---|---|---|---|---|---|---|
Isovitexin | 431 | 311 * 283 ** | 96 96 | 20 32 | 0.2 0.2 | 4.73 |
Moisture | 5.98% ± 0.02 |
Gross fiber | 13.8% ± 0.2 |
Protein | 18.1% ± 0.1 |
Non-nitrogenous extract | 52.5% ± 0.3 |
Ethereal extract | 3.2% ± 0.1 |
Ash | 12.5% ± 0.1 |
Average particle diameter | 472.15 µm |
Real density (g/cm3) | 1.30 ± 0.01 |
Apparent density (g/cm3) | 0.306 ± 0.003 |
Fixed bed porosity | 0.7646 |
Variables | Responses | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Test | T (°C) | SV (%) | Cycles (N) | Global Yield (%) | TPC (mg GAE/g Leaves) | FC (mg QE/g Leaves) | Energy Consumption (w ∗ h) | |||
R | C | R | C | R | C | |||||
1 | (60) | −1 | (80) | −1 | (2) | −1 | 22.3 | 30.2 ± 0.4 j | 36.7 ± 0.5 hi | 4.3 |
2 | (60) | −1 | (120) | 1 | (4) | 1 | 27.0 | 36.1 ± 0.6 g | 44.8 ± 0.4 f | 7.1 |
3 | (100) | 1 | (80) | −1 | (4) | 1 | 31.0 | 41.5 ± 0.3 a | 56.7 ± 0.3 b | 36.9 |
4 | (100) | 1 | (120) | 1 | (2) | −1 | 29.6 | 40.8 ± 0.8 a | 49.1 ± 0.4 d | 17.1 |
5 * | (80) | 0 | (100) | 0 | (3) | 0 | 29.0 | 36.9 ± 0.2 f | 46.5 ±0.7 e | 21.3 |
6 | (60) | −1 | (80) | −1 | (4) | 1 | 26.0 | 32.8 ± 0.4 h | 40.8 ± 0.3 g | 6.2 |
7 | (60) | −1 | (120) | 1 | (2) | −1 | 23.0 | 31.1 ± 0.7 j | 35.8 ± 0.4 i | 3.4 |
8 | (100) | 1 | (80) | −1 | (2) | −1 | 29.0 | 37.1 ± 0.2 f | 51.3 ± 0.6 c | 21.6 |
9 | (100) | 1 | (120) | 1 | (4) | 1 | 32.5 | 43.2 ± 0.6 a | 58.8 ± 0.2 a | 36.9 |
10 * | (80) | 0 | (100) | 0 | (3) | 0 | 28.4 | 37.5 ± 0.2 d | 46.0 ± 0.6 ef | 20.8 |
11 | (47) | −1.67 | (100) | 0 | (3) | 0 | 23.3 | 30.0 ± 0.2 k | 27.0 ± 0.3 j | 6.4 |
12 | (113) | 1.67 | (100) | 0 | (3) | 0 | 33.1 | 42.3 ± 0.3 a | 52.2 ± 0.7 c | 36.9 |
13 | (80) | 0 | (67) | −1.67 | (3) | 0 | 26.7 | 37.8 ± 0.1 d | 48.8 ± 0.5 d | 13.6 |
14 | (80) | 0 | (133) | 1.67 | (3) | 0 | 29.7 | 38.4 ± 0.3 c | 48.2 ± 0.6 d | 14.1 |
15 | (80) | 0 | (100) | 0 | (1) | −1.67 | 22.5 | 31.4 ± 0.5 i | 37.5 ± 0.4 h | 8.9 |
16 | (80) | 0 | (100) | 0 | (5) | 1.67 | 30.5 | 40.3 ± 0.3 b | 51.8 ± 0.3 c | 18.1 |
17 * | (80) | 0 | (100) | 0 | (3) | 0 | 28.4 | 37.1 ± 0.9 f | 46.0 ± 0.5 ef | 17.9 |
Coefficients | Global Yield (%) | TPC | FC | EC | ||||
---|---|---|---|---|---|---|---|---|
Coefficient Value | P | Coefficient Value | P | Coefficient Value | P | Coefficient Value | P | |
b0 (M) | 28.61 | 1.74 × 10−11 | 37.13 | 1.48 × 10−10 | 45.96 | 1.18 × 10−9 | 19.95 | 2.91 × 10−6 |
b1 (T) Linear | 2.94 | 0.00 | 3.89 | 4.80 × 10−6 | 7.35 | 2.05 × 10−6 | 10.48 | 1.39 × 10−6 |
b2 (SV) Linear | 0.64 | 0.01 | 0.77 | 0.04 | 0.15 | 0.78 | −0.27 | 0.71 |
b3 (N) Linear | 1.89 | 1.32 × 10−5 | 2.14 | 2.33 × 10−4 | 3.83 | 1.51 × 10−4 | 4.12 | 5.92 × 10−4 |
b11 (T) Quadratic | −0.15 | 0.46 | −0.35 | 0.34 | −1.74 | 0.02 | 0.73 | 0.38 |
b12 (T × SV) | 0.03 | 0.90 | 0.15 | 0.72 | −0.40 | 0.57 | −0.56 | 0.56 |
b13 (T × N) | −0.34 | 0.19 | −0.09 | 0.83 | 0.23 | 0.75 | 3.69 | 4.84 × 10−3 |
b23 (SV × N) | 0.14 | 0.55 | 0.04 | 0.92 | 1.14 | 0.14 | 0.79 | 0.42 |
b33 (N) Quadratic | −0.76 | 0.01 | −0.47 | 0.21 | 0.05296 | 0.93 | −2.18 | 0.02 |
b22 (VS) Quadratic | −0.15 | 0.47 | 0.32 | 0.38 | 1.44 | 0.04 | −2.06 | 0.03 |
R2 | 0.98 | 0.97 | 0.98 | 0.98 | ||||
MS Residual | 0.42 | 1.32 | 3.65 | 6.62 |
Property | Value | ||
---|---|---|---|
(°C) | 80 | 90 | 100 |
(g) | 7.06 | 7.06 | 7.06 |
(g) | 4.37 | 4.19 | 4.06 |
(g/g) | 0.425 | 0.425 | 0.425 |
(g/g) | 0.044 | 0.019 | <0.01 |
(µm) | 472.2 | 472.2 | 472.2 |
(×10−12 m2/s) | 6.44 ± 0.42 a | 6.07 ± 0.38 a | 5.63 ± 0.43 a |
(-) | 0.9908 | 0.9884 | 0.9814 |
Property | Value | ||
---|---|---|---|
(°C) | 80 | 90 | 100 |
(g) | 7.06 | 7.06 | 7.06 |
(g) | 4.37 | 4.19 | 4.06 |
(g/g) | 0.425 | 0.425 | 0.425 |
(g/g) | 0.044 | 0.019 | <0.01 |
(×10−4 g·g−1·s−1) | 7.01 ± 0.14 b | 6.63 ± 0.32 b | 7.54 ± 0.19 a |
(g/g) | 0.166 ± 0.023 | 0.128 ± 0.023 | 0.139 ± 0.014 |
(s) | 370 | 420 | 390 |
(µm) | 472.2 | 472.2 | 472.2 |
(×10−12 m2/s) | 4.49 ± 0.491 | 1.79 ± 0.300 | 2.55 ± 0.301 |
(-) | 0.9989 | 0.9940 | 0.9980 |
Property | Value |
---|---|
(°C) | 100 |
(g) | 7.01 |
(g) | 4.58 |
(g/g) | 0.425 |
(g/g) | <0.01 |
(g/g) | 0.046 |
(µm) | 472.2 |
(×10−12 m2/s) | 1.28 ± 0.03 |
(-) | 0.9989 |
Sample | Isovitexin (µg/mL) | Isovitexin (mg/g of Dried Leaves) | Total Flavonoids (mg QE/g Dried Leaves) |
---|---|---|---|
Test three | 113.9 ± 8.8 a | 1.45 ± 1.09 a | 56.70 ± 028 b |
Test nine | 135.6 ± 16.0 a | 1.38 ± 0.91 a | 58.76 ± 0.21 a |
PER | 104.35 ± 2.2 a | 1.04 ± 0.64 a | 27.17 ± 0.64 c |
Sample | DPPH (%Inhibition) | FRAP (μmol/mL) | ORAC (μmol/mL) |
---|---|---|---|
Test three | 69.8 ± 0.5 b | 19.5 ± 0.6 a | 95.0 ± 4.6 a |
Test nine | 71.9 ± 1.9 ab | 16.7 ± 0.2 a | 89.8 ± 4.0 a |
PER | 74.1 ± 1.3 a | 14.8 ± 0.5 a | 47.2 ± 2.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Cunha Rodrigues, L.; Bodini, R.B.; Caneppele, F.d.L.; Dacanal, G.C.; Crevelin, E.J.; de Moraes, L.A.B.; de Oliveira, A.L. Pressurized Liquid Extraction (PLE) in an Intermittent Process as an Alternative for Obtaining Passion Fruit (Passiflora edulis) Leaf Hydroalcoholic Extract (Tincture). Processes 2023, 11, 2308. https://doi.org/10.3390/pr11082308
da Cunha Rodrigues L, Bodini RB, Caneppele FdL, Dacanal GC, Crevelin EJ, de Moraes LAB, de Oliveira AL. Pressurized Liquid Extraction (PLE) in an Intermittent Process as an Alternative for Obtaining Passion Fruit (Passiflora edulis) Leaf Hydroalcoholic Extract (Tincture). Processes. 2023; 11(8):2308. https://doi.org/10.3390/pr11082308
Chicago/Turabian Styleda Cunha Rodrigues, Larissa, Renata Barbosa Bodini, Fernando de Lima Caneppele, Gustavo César Dacanal, Eduardo José Crevelin, Luiz Alberto Beraldo de Moraes, and Alessandra Lopes de Oliveira. 2023. "Pressurized Liquid Extraction (PLE) in an Intermittent Process as an Alternative for Obtaining Passion Fruit (Passiflora edulis) Leaf Hydroalcoholic Extract (Tincture)" Processes 11, no. 8: 2308. https://doi.org/10.3390/pr11082308
APA Styleda Cunha Rodrigues, L., Bodini, R. B., Caneppele, F. d. L., Dacanal, G. C., Crevelin, E. J., de Moraes, L. A. B., & de Oliveira, A. L. (2023). Pressurized Liquid Extraction (PLE) in an Intermittent Process as an Alternative for Obtaining Passion Fruit (Passiflora edulis) Leaf Hydroalcoholic Extract (Tincture). Processes, 11(8), 2308. https://doi.org/10.3390/pr11082308