Diagenesis and Diagenetic Mineral Control on Reservoir Quality of Tight Sandstones in the Permian He8 Member, Southern Ningwu Basin
Abstract
:1. Introduction
2. Geological Setting
3. Experimental Methods
3.1. X-ray Diffraction Analyses
3.2. Thin-Section Analyses
3.3. SEM Analyses
3.4. Porosity and Permeability Analyses
4. Results
4.1. Petrological Features
4.2. Reservoir Porosity and Permeability
4.3. Pore Structure of the Tight Sandstone Reservoir
5. Discussion
5.1. The Influence of Deposition on Pore Structure
5.2. Diagenesis and Pore Evolution
5.2.1. Compaction
5.2.2. Cementation
5.2.3. Dissolution
5.2.4. Diagenetic Sequence and Pore Evolution Stage
5.3. Effect of Mineral Composition on Porosity
5.3.1. Rigid Minerals
5.3.2. Plastic Minerals
5.4. Mineral Content and Porosity Prediction Models
5.4.1. Multiple Linear Regression Model Building and Validation
5.4.2. Exploration Significance of the Multiple Linear Regression Porosity Model
6. Conclusions
- (1)
- Pore evolution was linked to mineral grids of depositional origin and new minerals formed during diagenesis influence. The He8 member sandstone reservoir underwent destructive diagenetic processes, including compaction and cementation, resulting in a porosity loss of 26.69% and 8.19%, respectively. Constructive diagenetic processes, including dissolution, increased the porosity by 3.54%. The reservoir is currently in the stage B of mesodiagenesis.
- (2)
- The pore spaces of the He8 member sandstone are mainly composed of secondary pores and micropores within kaolinite aggregates. The rigid quartz framework and feldspar grain dissolution has improved the reservoir quality. Carbonate minerals have had a dual impact on the formation of pore spaces in the sandstone. The dissolution of kaolinite mineral grains is a contributor to porosity.
- (3)
- The multiple linear regression model established based on the mineral contents of quartz, feldspar, carbonate minerals, kaolinite, chlorite, and rock fragments can better predict the distribution of reservoir porosity. The model predicts that the tight sandstone reservoir in the He8 member in the north of the Jingle south sub-depression has a favorable reservoir space.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, C.N.; Yang, Z.; Tao, S.Z.; Yuan, X.J.; Zhu, R.K.; Hou, L.H.; Wu, S.T.; Sun, L.; Zhang, G.S.; Bai, B.; et al. Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos basin, north-central China. Earth Sci. Rev. 2013, 126, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.; Zou, C.; Li, J.; Li, D.; Zheng, M. Evaluation criteria, major types, characteristics and resource prospects of tight oil in China. Pet. Res. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Ji, G.; Jia, A.L.; Meng, D.W.; Guo, Z.; Wang, G.T.; Cheng, L.H.; Zhao, X. Technical strategies for effective development and gas recovery enhancement of a large tight gas field: A case study of Sulige gas field, Ordos Basin, NW China. Pet. Explor. Dev. 2019, 46, 629–641. [Google Scholar] [CrossRef]
- Wei, J.G.; Tang, S.H.; Zhang, S.H.; Sun, C.R.; Zhang, T.Q.; Gong, M.H. Analysis on characteristics and influence factors of transitional facies shale pore in Ningwu basin. Coal Geol. Explor. 2018, 46, 78–85. [Google Scholar]
- Zuo, Z.X.; Zhang, X.B.; Chen, S.B.; Si, Q.H.; Zhang, C.; Liu, Z. Heterogeneity of Shale Gas Reservoirs in Coal Measures: A Case Study of the Taiyuan and Shanxi Formations in the Ningwu Basin. Acta Geol. Sin. 2017, 91, 1130–1140. [Google Scholar]
- Sun, C.R.; Tang, S.H.; Wei, J.G. Characterization of microscopic pore structure of transitional fades shale of Taiyuan Formation in Ningwu Basin. China Min. Mag. 2017, 26, 155–161. [Google Scholar]
- Zou, C.N.; Yang, Z.; He, D.B.; Wei, Y.S.; Li, J.; Jia, A.L.; Chen, J.J.; Zhao, Q.; Li, Y.L.; Li, J.; et al. Theory, technology and prospects of conventional and unconventional natural gas. Pet. Explor. Dev. 2018, 45, 604–618. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Z.X.; Xiao, H.M.; Hu, B.; Chen, P.; Tang, X.L.; Sun, W.; Zhu, L.; Wang, Q.Y. Testing origin of reservoir quality difference of tight sandstones in the Yanchang Formation, Ordos Basin, China. Mar. Pet. Geol. 2022, 137, 105507. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Ran, Y.; Zhou, Z.L.; Cui, Y.F. Impact of diagenesis on the petro-physical properties of tight oil reservoirs: The case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China. J. Pet. Sci. Eng. 2016, 145, 54–65. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, S.; Cao, J.T.; Li, M.; Pang, X.J.; Zhou, Z.L.; Fan, X.Q.; Dai, Q.Q.; Yang, L.; et al. Review of diagenetic facies in tight sandstones: Diagenesis, diagenetic minerals, and prediction via well logs. Earth Sci. Rev. 2018, 185, 234–258. [Google Scholar] [CrossRef]
- Cui, Y.F.; Wang, G.W.; Jones, S.J.; Zhou, Z.L.; Ran, Y.; Lai, J.; Li, R.J.; Deng, L. Prediction of diagenetic facies using well logs–a case study from the upper Triassic Yanchang Formation, Ordos Basin, China. Mar. Pet. Geol. 2017, 81, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A.; Diggs, T.N.; Braunsdorf, N.R.; Birbiglia, G.V.; Kittridge, M.G.; Macaulay, C.I.; Espejo, I.S. Sandstone diagenesis and reservoir quality prediction: Models. Myths, and reality. AAPG Bull. 2010, 94, 1093–1132. [Google Scholar] [CrossRef]
- Xi, Z.D.; Tang, S.H.; Lash, G.G.; Ye, Y.P.; Lin, D.L.; Zhang, B. Grain assemblages and diagenesis in Ordovician-Silurian transition shale deposits of the Upper Yangtze Platform, South China. J. Asian Earth Sci. 2022, 230, 105188. [Google Scholar] [CrossRef]
- Yuan, G.H.; Cao, Y.C.; Gluyas, J.; Li, X.Y.; Xi, K.L.; Wang, Y.Z.; Jia, Z.Z.; Sun, P.P.; Oxtoby, N.H. Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: Typical examples from two sags in Bohai Bay Basin, East China. AAPG Bull. 2015, 99, 2121–2154. [Google Scholar] [CrossRef]
- Baker, J.C.; Hacord, P.J.; Martin, K.R.; Ghori, K.A.R. Diagenesis and petrophysics of the Early Permian Moogooloo sandstone, southern Camarvon Basin, Western Australia. AAPG Bull. 2000, 84, 250–265. [Google Scholar]
- Griffiths, J.; Worden, R.H.; Utley, J.E.P.; Brostrøm, C.; Martinius, A.W.; Lawan, A.Y.; Al-Hajri, A.I. Origin and distribution of grain-coating and pore-filling chlorite in deltaic sandstones for reservoir quality assessment. Mar. Pet. Geol. 2021, 134, 105326. [Google Scholar] [CrossRef]
- Ran, Y.; Wang, G.W.; Lai, J.; Zhou, Z.L.; Cui, Y.F.; Dai, Q.Q.; Chen, J.; Wang, S.C. Quantitative characterization of diagenetic facies by using logging cross-plot: A case study on Chang 7 tight sandstone oil reservoir in Heshui area, Ordos Basin. Acta Sedimentol. Sin. 2016, 34, 694–706. [Google Scholar]
- Liu, H.P.; Luo, Y.; Zhao, Y.C.; Zhang, C.M.; Zhou, S.B.; Shao, L.K. Controlling factors and predictions of well-connected pore-throat volumes in tight oil sandstones. J. Pet. Sci. Eng. 2022, 218, 111034. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, F.Y.; Jiang, B. Geology and transitional shale gas resource potentials in the Ningwu Basin, China. Energy Explor. Exploit. 2018, 36, 1482–1497. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Huang, W.; Zhong, J.; Sun, N. Occurrence, Classification and Formation Mechanisms of the Organic-Rich Clasts in the Upper Paleozoic Coal-Bearing Tight Sandstone, Northeastern Margin of the Ordos Basin, China. Energies 2020, 13, 2694. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Pang, X.Q.; Jiang, F.J.; Li, L.; Zheng, D.Y.; Shao, X.H. Coupling relationship between tight sandstone reservoir and gas charging: An example from lower Permian Taiyuan Formation in Kangning field, northeastern Ordos Basin, China. Mar. Pet. Geol. 2019, 105, 238–250. [Google Scholar]
- Wang, J.Y.; Jiang, J.F.; Hu, Q.H.; Zhang, C.L.; Yang, X.G.; Mo, W.L.; Wang, X.R.; Qi, Z.G. A quantitative model and controlling factors of secondary pore development for tight sandstone reservoirs in the carboniferous Benxi Formation, Ordos Basin, China. Mar. Pet. Geol. 2023, 148, 106034. [Google Scholar] [CrossRef]
- Schieber, J.; Camp, W.; Diaz, E.; Wawak, B. SEM observations on ion-milled samples of Devonian black shalesfrom Indiana and New York: The petrographic context of multiple pore types. Electron Microsc. Shale Hydrocarb. Reserv. AAPG Mem. 2013, 102, 153–171. [Google Scholar]
- Schieber, J. Mud re-distribution in epicontinental basins–Exploring likely processes. Mar. Pet. Geol. 2016, 71, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.D.; Tang, S.H.; Wang, J.; Yang, G.Q.; Li, L. Formation and development of pore structure in marine-continental transitional shale from northern China across a maturation gradient: Insights from gas adsorption and mercury intrusion. Int. J. Coal Geol. 2018, 200, 87–102. [Google Scholar] [CrossRef]
- Zhang, Q.P.; Liu, Y.C.; Wang, B.T.; Ruan, J.F.; Yan, N.; Chen, H.; Wang, Q.; Jia, G.W.; Wang, R.N.; Liu, H.; et al. Effects of pore-throat structures on the fluid mobility in Chang 7 tight sandstone reservoirs of longdong area, Ordos Basin. Mar. Pet. Geol. 2022, 135, 105407. [Google Scholar] [CrossRef]
- Ramm, M. Reservoir quality and its relationship to facies and provenance in Middle to Upper Jurassic sequences, northeastern North Sea. Clay Miner. 2000, 35, 77–94. [Google Scholar] [CrossRef]
- Islam, M.A. Diagenesis and reservoir quality ofBhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. J. Asian Earth Sci. 2009, 35, 89–100. [Google Scholar] [CrossRef]
- Ajdukiewicz, J.M.; Lander, R.H. Sandstone reservoir quality prediction: The state of the art. AAPG Bull. 2010, 94, 1083–1091. [Google Scholar] [CrossRef]
- Bjørlykke, K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sediment. Geol. 2014, 301, 1–14. [Google Scholar] [CrossRef]
- Higgs, K.E.; Zwingmann, H.; Reyes, A.G.; Funnell, R.H. Diagenesis, porosity evolution, and petroleum emplacement in tight gas reservoirs, Taranaki basin, New Zealand. J. Sediment. Res. 2007, 77, 1003–1025. [Google Scholar] [CrossRef]
- Dutton, S.P.; Loucks, R.D. Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200–6700 m) burial, Gulf of Mexico Basin, U.S.A. Mar. Pet. Geol. 2010, 27, 69–81. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Chai, Y.; Xin, Y.; Wu, Q.K.; Zhang, X.T.; Sun, Y.H. Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa depression, Tarim basin of China. AAPG Bull. 2017, 101, 829–862. [Google Scholar] [CrossRef]
- Xu, H.; Liu, M.J.; Zhang, Z.; Ye, S.J.; Yang, Y.T.; Wu, L.; Zhang, L.; Nan, H.L.; Tan, X.C.; Zeng, W.; et al. Diagenesis and porosity evolution of the 3rd member of Xujiahe Formation tight sandstone reservoir in the Western Sichuan Depression, Sichuan Basin. Nat. Gas Geosci. 2022, 33, 344–357. [Google Scholar]
- Beard, D.C.; Weyl, P.K. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bull. 1973, 57, 349–369. [Google Scholar]
- Yang, J.Q.; Ji, Y.L.; Wu, H.; Meng, L.J. Diagenesis and Porosity Evolution of Deep Reservoirs in the Nanpu Sag: A case study of Sha 1 Member of the Paleogene in No. 3 structural belt. Acta Sedimentol. Sin. 2022, 40, 203–216. [Google Scholar]
- Bai, Y.Y.; Sun, W.; Ren, D.Z.; Han, J. Quantitative classification and characteristic difference of diagenetic facies in He8 reservoir of the Su 48 block, west area of Sulige Gas Field, Ordos Basin. Nat. Gas Geosci. 2018, 29, 1739–1747. [Google Scholar]
- Wei, Q.S.; Guo, Y.Q.; Chen, S.; Shi, K.; Li, W.P. Microscopic pore throat characterization analysis of tight sandstone reservoirs in He8 member of Sulige gas field, China. Fresenius Environ. Bull. 2021, 30, 448–456. [Google Scholar]
- Paxton, S.T.; Szabo, J.O.; Ajdukiewicz, J.M.; Klimentidis, R.E. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. AAPG Bull. 2002, 86, 2047–2067. [Google Scholar]
- Zou, C.N.; Hou, L.H.; Kuang, L.C.; Kuang, J. Genetic mechanism of fan controlled diagenetic reservoir facies of the fan-controlled permo-triassic in western marginal area the Junggar Basin. Chin. J. Geol. Sci. Geol. Sin. 2007, 587–601. [Google Scholar]
- Pittman, E.D.; Larese, R.E. Compaction of Lithic Sands: Experimental Results and Applications. AAPG Bull. 1991, 75, 1279–1299. [Google Scholar]
- Wu, H.Y.; Zhao, J.Z.; Wu, W.T.; Li, J.; Huang, Y.Z.; Chen, M.N. Formation and diagenetic characteristics of tight sandstones in closed to semi-closed systems: Typical example from the Permian Sulige gas field. J. Pet. Sci. Eng. 2021, 199, 108248. [Google Scholar] [CrossRef]
- Wang, Z.N.; Luo, X.R.; Lei, Y.H.; Zhang, L.K.; Shi, H.; Lu, J.H.; Cheng, M.; Liu, N.G.; Wang, X.Z.; He, Y.H.; et al. Impact of detrital composition and diagenesis on the heterogeneity and quality of low-permeability to tight sandstone reservoirs: An example of the Upper Triassic Yanchang Formation in Southeastern Ordos Basin. J. Pet. Sci. Eng. 2020, 195, 107596. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Lin, M.R.; Xi, K.L.; Cao, Y.C.; Wang, J.; Yuan, G.H.; Kashif, M.; Song, M.S. Characteristics and origin of the major authigenic minerals and their impacts on reservoir quality in the Permian Wutonggou Formation of Fukang Sag, Junggar Basin, western China. Mar. Pet. Geol. 2018, 97, 241–259. [Google Scholar] [CrossRef]
- Ma, B.; Cao, Y.; Jia, Y. Feldspar dissolution with implications for reservoir quality in tight gas sandstones: Evidence from the Eocene Es4 interval, Dongying Depression, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2017, 150, 74–84. [Google Scholar] [CrossRef]
- Hong, D.D.; Cao, J.; Wu, T.; Dang, S.; Hu, W.X.; Yao, S.O. Authigenic clay minerals and calcite dissolution influence reservoir quality in tight sandstones: Insights from the central Junggar Basin, NW China. Energy Geosci. 2020, 1, 8–19. [Google Scholar] [CrossRef]
- Worden, R.H.; Morad, S. Clay minerals in sandstones: Controls on formation, distribution and evolution. In Clay Mineral Cements in Sandstones; Special Publication; Worden, R.H., Morad, S., Eds.; International Association of Sedimentologists: Flanders, Belgium, 2003; Volume 34, pp. 3–41. [Google Scholar]
- Surdam, R.C.; Crossey, L.J. Oraanic-inoraanic reactions during progressive burial: Key to porosity and permeability enhancement and preservation. Philos. Trans. Roval Soc. Lond. Ser. A 1985, 315, 135–156. [Google Scholar]
- Bi, M.W.; Chen, S.Y.; Zhou, Z.H.; Liu, J.; Zheng, G.Q.; Zhang, M.L. Genesis of secondary pores of tight sandstone reservoir in He8th Member in Su 6 area of Sulige gas field. J. China Univ. Pet. 2015, 39, 8–16. [Google Scholar]
- Bjørlykke, K. Clay mineral diagenesis in sedimentary basinsda key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner. 1998, 33, 15–34. [Google Scholar] [CrossRef]
- Berger, A.; Gier, S.; Krois, P. Porosity-preserving chlorite cements in shallowmarine volcaniclastic sandstones: Evidence from Cretaceous sandstones of the Sawan gas field, Pakistan. AAPG Bull. 2009, 93, 595–615. [Google Scholar] [CrossRef] [Green Version]
- Mouna, M.A.; Marghani, M.Z.; Ahmed, E.R. Facies analysis, diagenesis, and petrophysical controls on the reservoir quality of the low porosity fluvial sandstone of the Nubian formation, east Sirt Basin, Libya: Insights into the role of fractures in fluid migration, fluid flow, and enhancing the permeability of low porous reservoirs. Mar. Pet. Geol. 2022, 147, 105986. [Google Scholar]
- Chen, X.J.; Li, P.F.; Li, P.; Hui, P.; Guo, Y.H. Application of Multiple Stepwise regression Analysis in Prediction of Coal Seam Gas Content. Coal Eng. 2019, 51, 106–111. [Google Scholar]
- Mei, X.R.; Chen, P.; Gao, Y.S. Research on correlation factor analysis and regression model of coal calorific value based on SPSS. China Coal 2011, 37, 88–91. [Google Scholar]
- Ulusay, R.; Türeli, K.; Ider, M.H. Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng. Geol. 1994, 38, 135–157. [Google Scholar] [CrossRef]
- Wang, Z.K.; Chen, J.F.; Li, W.P.; Wang, Q.Q.; Niu, Q.H.; Liu, S.L.; Hu, Y.B. Relationship between petrographic parameters and physical-mechanical properties of weakly cemented sandstones. Q. J. Eng. Geol. Hydrogeol. 2020, 54, qjegh2018-168. [Google Scholar] [CrossRef]
- Abdulmohsin, A.H.; Wahab, A.B.H.; Hossen, A.J.M.A. A New Hybrid Feature Selection Method Using T-test and Fitness Function. Comput. Mater. Contin. 2021, 68, 3998. [Google Scholar] [CrossRef]
- Guo, S.; Lyu, X.; Zhang, Y. Relationship between tight sandstone reservoir formation and hydrocarbon charging: A case study of a Jurassic reservoir in the eastern Kuqa Depression, Tarim Basin, NW China. J. Nat. Gas Sci. Eng. 2018, 52, 304–316. [Google Scholar] [CrossRef]
- Zeng, Q.L.; Mo, T.; Zhao, J.L.; Tang, Y.L.; Zhang, R.H.; Xia, J.F.; Hu, C.L.; Shi, L.L. Characteristics, genetic mechanism and oil and gas exploration significance of high- quality sandstone reservoirs deeper than 7000 m: A case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression, NW China. Nat. Gas Ind. B 2020, 7, 317–327. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jiang, S.; He, Z.L.; Wang, Y.B.; Guo, M.Q.; Zhu, G.H.; Cai, D.S.; Lu, S.F.; Xiao, D.S.; Li, Y.C.; et al. Characteristics of heterogeneous diagenesis and modification to physical properties of Upper Paleozoic tight gas reservoir in eastern Ordos Basin. J. Pet. Sci. Eng. 2021, 208, 109243. [Google Scholar] [CrossRef]
- Mi, L.J.; Zhu, G.H. Geological characteristics and exploration breakthrough in Linxing-Shenfu tight gas fi eld, northeastern Ordos Basin. China Pet. Explor. 2021, 26, 53–67. [Google Scholar]
Number | Lithology | Depth /m | Content of Cement (C)/% | Measured Porosity (P0)/% | Total Plane Porosity (Pt)/% | Interparticle Plane Porosity (P1)/% | Dissolution Plane Porosity (P2)/% |
---|---|---|---|---|---|---|---|
1 | Feldspathic lithic sandstones | 1683.4 | 12.40 | 4.20 | 8.34 | 1.82 | 6.52 |
2 | 1683.9 | 7.20 | 3.50 | 9.17 | 2.52 | 6.65 | |
3 | 1787.4 | 12.00 | 1.20 | 3.23 | 1.64 | 1.59 | |
4 | 1788.0 | 12.00 | 10.70 | 17.64 | 4.64 | 13.00 | |
5 | 1788.5 | 7.20 | 6.40 | 9.58 | 2.78 | 6.80 | |
6 | 1789.0 | 7.20 | 7.30 | 12.27 | 3.28 | 8.99 | |
7 | 1789.6 | 2.40 | 7.30 | 11.21 | 3.34 | 7.87 | |
8 | 1790.0 | 9.60 | 4.90 | 8.05 | 2.13 | 5.93 | |
9 | 1790.5 | 14.00 | 4.50 | 7.23 | 1.95 | 5.28 | |
10 | 1791.0 | 14.40 | 2.80 | 6.48 | 1.67 | 4.81 | |
11 | 1792.1 | 2.40 | 3.30 | 5.70 | 1.43 | 4.26 | |
12 | 1832.5 | 6.50 | 7.50 | 8.90 | 2.1 | 6.80 | |
13 | 1857.2 | 7.30 | 4.40 | 6.00 | 1.3 | 4.75 | |
14 | 1857.9 | 8.00 | 5.50 | 5.70 | 1.5 | 4.20 | |
15 | Lithic sandstones | 1792.8 | 16.80 | 2.30 | 4.72 | 1.38 | 3.34 |
16 | 1793.8 | 7.20 | 3.70 | 6.34 | 1.61 | 4.73 | |
17 | 1794.5 | 7.20 | 3.50 | 5.98 | 1.52 | 4.46 | |
18 | 1795.6 | 4.80 | 5.70 | 9.50 | 2.47 | 7.02 | |
19 | 1796.3 | 4.80 | 4.80 | 8.02 | 2.08 | 5.94 | |
20 | 1797.0 | 2.40 | 4.70 | 8.09 | 2.04 | 6.05 | |
21 | 1798.1 | 2.40 | 3.60 | 8.84 | 1.92 | 6.92 | |
22 | 1798.5 | 4.80 | 3.40 | 5.83 | 1.48 | 4.35 | |
23 | 1819.2 | 12.00 | 1.40 | 6.79 | 1.07 | 5.72 | |
24 | Lithic feldspathic sandstones | 1836.1 | 11.40 | 7.70 | 8.61 | 1.8 | 6.81 |
Average | 8.18 | 4.76 | 8.01 | 2.06 | 5.95 |
Multiple R | Determination Coefficient/R2 | Adjusted R2 | Residual Error | F-Value |
---|---|---|---|---|
0.95 | 0.884 | 0.86 | 0.86 | 19.1 |
Gas Field | Lithology | Primary Porosity | Remaining Porosity after Compaction | Remaining Porosity after Cementation | Increasing Porosity after Dissolution | Current Porosity |
---|---|---|---|---|---|---|
Sulig | Lithic quartz sandstone/lithic sandstone | 41.2 | 26.8 | 17.9 | 12.3 | 9.3 |
Linxing–Shenfu | Feldspar lithic sandstone/lithic sandstone | 35.6 | 25.1 | 7.8 | 2.8 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Tang, S.; Lin, D.; Chen, Y.; Wang, X.; Liu, Z.; Han, F.; Lv, P.; Yang, Z.; Guan, X.; et al. Diagenesis and Diagenetic Mineral Control on Reservoir Quality of Tight Sandstones in the Permian He8 Member, Southern Ningwu Basin. Processes 2023, 11, 2374. https://doi.org/10.3390/pr11082374
Zhang P, Tang S, Lin D, Chen Y, Wang X, Liu Z, Han F, Lv P, Yang Z, Guan X, et al. Diagenesis and Diagenetic Mineral Control on Reservoir Quality of Tight Sandstones in the Permian He8 Member, Southern Ningwu Basin. Processes. 2023; 11(8):2374. https://doi.org/10.3390/pr11082374
Chicago/Turabian StyleZhang, Pengbao, Shuheng Tang, Donglin Lin, Yanjun Chen, Xiaoxuan Wang, Zhenxing Liu, Feng Han, Peng Lv, Zhoupeng Yang, Xiaoqu Guan, and et al. 2023. "Diagenesis and Diagenetic Mineral Control on Reservoir Quality of Tight Sandstones in the Permian He8 Member, Southern Ningwu Basin" Processes 11, no. 8: 2374. https://doi.org/10.3390/pr11082374
APA StyleZhang, P., Tang, S., Lin, D., Chen, Y., Wang, X., Liu, Z., Han, F., Lv, P., Yang, Z., Guan, X., Hu, J., & Gao, Y. (2023). Diagenesis and Diagenetic Mineral Control on Reservoir Quality of Tight Sandstones in the Permian He8 Member, Southern Ningwu Basin. Processes, 11(8), 2374. https://doi.org/10.3390/pr11082374