The Fermentation of a Marine Probiotic Bacterium on Low-Cost Media Formulated with Industrial Fish Gelatin Waterstreams and Collagen Hydrolysates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Gelatin Effluents and Collagen Hydrolysates
2.2. Microbiological Methods, Culture Media, and Analytical Determinations
2.3. Bacterial Sampling and Biomass and Cell Analysis
2.4. Mathematical Modelling of Strain DIFR 27-4 Cultivation
2.5. Economy Assessment of Strain DIFR 27-4 Production
2.6. Numerical Fittings and Statistical Analyses
3. Results and Discussion
3.1. Composition of Gelatin Effluents and Collagen Hydrolysates
3.2. Phaeobacter Fermentations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alipal, J.; Mohd Pu’ad, N.A.S.; Lee, T.C.; Nayan, N.H.M.; Sahari, N.; Basri, H.; Idris, M.I.; Abdullah, H.Z. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater. Today Proc. 2021, 42, 240–250. [Google Scholar] [CrossRef]
- Chen, T.; Hou, H. Protective effect of gelatin polypeptides from Pacific cod (Gadus macrocephalus) against UV irradiation-induced damages by inhibiting inflammation and improving transforming growth factor-beta/Smad signaling pathway. J. Photochem. Photobiol. B 2016, 162, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.G.; Lee, M.Y.; Cha, J.M.; Lee, J.K.; Lee, S.C.; Kim, J.; Hwang, Y.S.; Bae, H. Nanogels derived from fish gelatin: Application to drug delivery system. Mar. Drugs 2019, 17, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermida-Merino, C.; Cabaleiro, D.; Lugo, L.; Valcarcel, J.; Vázquez, J.A.; Bravo, I.; Longo, A.; Salloum-Abou-Jaoude, G.; Solano, E.; Gracia-Fernández, C.; et al. Characterization of tuna gelatin-based hydrogels as a matrix for drug delivery. Gels 2022, 8, 237. [Google Scholar] [CrossRef]
- Ding, M.Z.; Zhang, T.; Zhang, H.; Tao, N.P.; Wang, X.C.; Zhong, J. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions. Food Chem. 2020, 309, 125642. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Manca, M.L.; Manconi, M.; Caddeo, C.; Vázquez, J.A.; Lozano-Sánchez, J.; Escribano-Ferrer, E.; Arráez-Román, D.; Segura-Carretero, A. Incorporation of Lippia citriodora microwave extract into total-green biogelatin-phospholipid vesicles to improve its antioxidant activity. Nanomaterials 2020, 10, 765. [Google Scholar] [CrossRef] [Green Version]
- Negrini, N.C.; Bonnetier, M.; Giatsidis, G.; Orgill, D.P.; Farè, S.; Marelli, B. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomat. 2019, 87, 61–75. [Google Scholar] [CrossRef]
- Alves, A.L.; Carvalho, A.C.; Machado, I.; Diogo, G.S.; Fernandes, E.M.; Castro, V.I.B.; Pires, R.A.; Vázquez, J.A.; Pérez-Martín, R.I.; Alaminos, M.; et al. Cell-laden marine gelatin methacryloyl hydrogels enriched with ascorbic acid for corneal stroma regeneration. Bioengineering 2023, 10, 62. [Google Scholar] [CrossRef]
- Dille, M.J.; Haug, I.J.; Draget, K.I. Chapter 34—Gelatin and collagen. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Phillips, G.O., Williams, P.A.B.T.-H., Third, E., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 1073–1097. ISBN 978-0-12-820104-6. [Google Scholar]
- Boran, G.; Regenstein, J.M. Chapter 5—Fish Gelatin. In Advances in Food and Nutrition Research; Taylor, S.L.B.T.-A., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 60, pp. 119–143. ISBN 1043-4526. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Bolton, D.J.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.M.; Hilbert, F.; et al. Potential BSE risk posed by the use of ruminant collagen and gelatine in feed for non-ruminant farmed animals. EFSA J. 2020, 18, e06267. [Google Scholar]
- Maree, J.P.; Cole, C.G.B.; Gerber, A.; Barnard, J.L. Treatment of gelatine factory effluent. Water SA 1990, 16, 265–268. [Google Scholar]
- Wang, G.; Yu, N.; Guo, Y. A novel process to recycle the highly concentrated calcium and chloride ions in the gelatin acidification wastewater. J. Clean. Prod. 2018, 188, 62–68. [Google Scholar] [CrossRef]
- Ahmad, T.; Ismail, A.; Ahmad, S.A.; Abdul Khalil, K.; Awad, E.A.; Akhtar, M.T.; Sazili, A.Q. Recovery of gelatin from bovine skin with the aid of pepsin and its effects on the characteristics of the extracted gelatin. Polymers 2021, 13, 1554. [Google Scholar] [CrossRef]
- Fatimah, S.; Sarto, S.; Fahrurrozi, M.; Budhijanto, B. Characterization and development of gelatin from cow bones: Investigation of the effect of solvents used for soaking beef bones. Appl. Sci. 2023, 13, 1550. [Google Scholar] [CrossRef]
- Ghatnekar, S.D.; Kavian, M.F.; Sharma, S.M.; Ghatnekar, S.S.; Ghatnekar, G.S.; Ghatnekar, A.V. Application of vermi-filter-based effluent treatment plant (pilot scale) for biomanagement of liquid effluents from the gelatine industry. Dyn. Soil Dyn. Plant 2010, 4, 83–88. [Google Scholar]
- Tawfik, A.; Ni, S.-Q.; Awad, H.M.; Ismail, S.; Tyagi, V.K.; Khan, M.S.; Qyyum, M.A.; Lee, M. Recent approaches for the production of high value-added biofuels from gelatinous wastewater. Energies 2021, 14, 4936. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Wong, J.W.C.; Li, R.; Zhang, Z. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour. Technol. 2016, 213, 181–189. [Google Scholar] [CrossRef]
- Rai, K.; Maheshwari, A. Removal of pollutants from industrial effluents using plastic clay and pyrophyllite. Asian J. Chem. 2002, 14, 739–745. [Google Scholar]
- Badrinath, S.D.; Kaul, S.N.; Deshpande, V.P.; Gadkari, S.K. Ossein wastewater characterization and treatability study. Water Res. 1991, 25, 1439–1445. [Google Scholar] [CrossRef]
- Blanco, G.C.; Stablein, M.J.; Tommaso, G. Cultivation of Chlorella vulgaris in anaerobically digested gelatin industry wastewater. Water Supply 2020, 21, 1953–1965. [Google Scholar] [CrossRef]
- Valcarcel, J.; Hermida-Merino, C.; Piñeiro, M.M.; Hermida-Merino, D.; Vázquez, J.A. Extraction and characterization of gelatin from skin by-products of seabream, seabass and rainbow trout reared in aquaculture. Int. J. Mol. Sci. 2021, 22, 12104. [Google Scholar] [CrossRef]
- Al-Nimry, S.; Dayah, A.A.; Hasan, I.; Daghmash, R. Cosmetic, biomedical and pharmaceutical applications of fish gelatin/hydrolysates. Mar. Drugs 2021, 19, 145. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Pedreira, A.; Durán, S.; Cabanelas, D.; Souto-Montero, P.; Martínez, P.; Mulet, M.; Pérez-Martín, R.I.; Valcarcel, J. Biorefinery for tuna head wastes: Production of protein hydrolysates, high-quality oils, minerals and bacterial peptones. J. Clean. Prod. 2022, 357, 131909. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Durán, A.I.; Menduíña, A.; Nogueira, M.; Gomes, A.M.; Antunes, J.; Freitas, A.C.; Dagá, E.; Dagá, P.; Valcarcel, J. Bioconversion of fish discards through the production of lactic acid bacteria and metabolites: Sustainable application of fish peptones in nutritive fermentation media. Foods 2020, 9, 1239. [Google Scholar] [CrossRef] [PubMed]
- Ummadi, M.; Curic-Bawden, M. Use of protein hydrolysates in industrial starter culture fermentations. In Protein Hydrolysates in Biotechnology; Pasupuleti, V.K., Demain, A.L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 91–114. ISBN 978-1-4020-6674-0. [Google Scholar]
- Barragán, P.J.; Sánchez, Ó.J.; Martínez, L.J. Towards valorization of bovine blood plasma: Optimal design of a culture medium based on bovine blood plasma with enzymatically hydrolyzed proteins for the growth of a probiotic bacterium by submerged fermentation. Waste Biomass Valor. 2022, 13, 1143–1155. [Google Scholar] [CrossRef]
- Hjelm, M.; Bergh, Ø.; Riaza, A.; Nielsen, J.; Melchiorsen, J.; Jensen, S.; Duncan, H.; Ahrens, P.; Birkbeck, H.; Gram, L. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst. Appl. Microbiol. 2004, 27, 360–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnenschein, E.C.; Jimenez, G.; Castex, M.; Gram, L. The Roseobacter-group bacterium Phaeobacter as a safe probiotic solution for aquaculture. Appl. Environ. Microbiol. 2021, 87, e02581-20. [Google Scholar] [CrossRef]
- Ringø, E.; van Doan, H.; Lee, S.H.; Soltani, M.; Hoseinifar, S.H.; Ramasamy, H.; Song, S.K. Probiotics, lactic acid bacteria and Bacilli: Interesting supplementation for aquaculture. J. Appl. Microbiol. 2020, 129, 116–136. [Google Scholar] [CrossRef] [Green Version]
- Ringø, E.; van Doan, H.; Lee, S.; Song, S.K. Lactic acid bacteria in shellfish: Possibilities and challenges. Rev. Fish. Sci. Aquacult. 2020, 28, 139–169. [Google Scholar] [CrossRef]
- Ringø, E.; Li, X.; van Doan, H.; Ghosh, K. Interesting probiotic bacteria other than the more widely used lactic acid bacteria and bacilli in finfish. Front. Mar. Sci. 2022, 9, 848037. [Google Scholar] [CrossRef]
- Planas, M.; Pérez-Lorenzo, M.; Hjelm, M.; Gram, L.; Uglenes Fiksdal, I.; Bergh, Ø.; Pintado, J. Probiotic effect in vivo of Roseobacter strain 27-4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture 2004, 255, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Prol-García, M.J.; Pintado, J. Effectiveness of probiotic Phaeobacter bacteria grown in biofilters against Vibrio anguillarum infections in the rearing of turbot (Psetta maxima) larvae. Mar. Biotechnol. 2013, 15, 726–738. [Google Scholar] [CrossRef]
- D’Alvise, P.W.; Lillebø, S.; Wergeland, H.I.; Gram, L.; Bergh, Ø. Protection of codlarvae from vibriosis by Phaeobacter spp.: A Comparison of Strains and Introduction Times. Aquaculture 2013, 384–387, 82–85. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Duran, A.; Nogueira, M.; Menduina, A.; Antunes, J.; Freitas, A.C.; Gomes, A.M. Production of marine probiotic bacteria in a cost-effective marine media based on peptones obtained from discarded fish by-products. Microorganisms 2020, 8, 1121. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Hermida-Merino, C.; Hermida-Merino, D.; Piñeiro, M.M.; Johansen, J.; Sotelo, C.G.; Pérez-Martín, R.I.; Valcarcel, J. Characterization of gelatin and hydrolysates from valorization of farmed salmon skin by-products. Polymers 2021, 13, 2828. [Google Scholar] [CrossRef]
- Valcarcel, J.; Fraguas, J.; Hermida-Merino, C.; Hermida-Merino, D.; Piñeiro, M.M.; Vázquez, J.A. Production and physicochemical characterization of gelatin and collagen hydrolysates from turbot skin waste generated by aquaculture activities. Mar. Drugs 2021, 19, 491. [Google Scholar] [CrossRef]
- Sousa, S.C.; Vázquez, J.A.; Pérez-Martín, R.I.; Carvalho, A.P.; Gomes, A.M. Valorization of by-products from commercial fish species: Extraction and chemical properties of skin gelatins. Molecules 2017, 22, 1545. [Google Scholar] [CrossRef] [Green Version]
- Sonnenschein, E.C.; Phippen, C.B.W.; Nielsen, K.F.; Mateiu, R.V.; Melchiorsen, J.; Gram, L.; Overmann, J.; Freese, H.M. Phaeobacter piscinae sp. nov., a species of the Roseobacter group and potential aquaculture probiont. Int. J. Syst. Evol, Microbiol. 2017, 67, 4559–4564. [Google Scholar] [CrossRef]
- FAO. 2023. Available online: https://www.fao.org/fishery/en/culturedspecies/ (accessed on 5 May 2023).
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Moore, S.; Spackman, D.H.; Stein, W.H. Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Anal. Chem. 1958, 30, 1185–1190. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Durán, A.I.; Menduíña, A.; Nogueira, M. Biotechnological valorization of food marine wastes: Microbial productions on peptones obtained from aquaculture by-products. Biomolecules 2020, 10, 1184. [Google Scholar] [CrossRef] [PubMed]
- Kedia, G.; Vázquez, J.A.; Pandiella, S.S. Evaluation of the fermentability of oat fractions obtained by debranning using lactic acid bacteria. J. Appl. Microbiol. 2008, 105, 1227–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryee, A.N.A.; Simpson, B. Comparative studies on the yield and quality of solvent-extracted oil from salmon skin. J. Food Eng. 2009, 92, 353–358. [Google Scholar] [CrossRef]
- Haq, M.; Ahmed, R.; Cho, Y.-J.; Chun, B.-S. Quality properties and bio-potentiality of edible oils from Atlantic salmon by-products extracted by supercritial carbon dioxide and conventional methods. Waste Biomass Valor. 2017, 8, 1953–1967. [Google Scholar] [CrossRef]
- Ferdosh, S.; Sarker, Z.I.; Norulaini, N.; Oliveira, A.; Yunus, K.; Chowdury, A.J.; Akanda, J.; Omar, M. Quality of tuna fish oils extracted from processing the by-products of three species of neritic tuna using supercritical carbon dioxide. J. Food Proc. Preservat. 2015, 39, 432–441. [Google Scholar] [CrossRef]
- Nitsuwatm, S.; Zhang, P.; Ng, K.; Fang, Z. Fish gelatin as an alternative to mammalian gelatin for food industry: A meta-analysis. LWT Food Sci. Technol. 2021, 141, 110899. [Google Scholar] [CrossRef]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast extract: Characteristics, production, applications and future perspectives. J. Microbiol. Biotechnol. 2023, 33, 151–166. [Google Scholar] [CrossRef]
- Muthusamy, S.; Baltar, F.; González, J.M.; Pinhassi, J. Dynamics of metabolic activities and gene expression in the Roseobacter clade bacterium Phaeobacter sp. strain MED193 during growth with thiosulfate. Appl. Environ. Microbiol. 2014, 80, 6933–6942. [Google Scholar] [CrossRef] [Green Version]
- Will, S.E.; Neumann-Schaal, M.; Heydorn, R.L.; Bartling, P.; Petersen, J.; Schomburg, D.; Virolle, M.-J. The limits to growth—Energetic burden of the endogenous antibiotic tropodithietic acid in Phaeobacter inhibens DSM 17395. PLoS ONE 2017, 12, e0177295. [Google Scholar] [CrossRef] [Green Version]
- Goldman, J.C.; Dennett, M.R. Growth of marine bacteria in batch and continuous culture under carbon andnitrogen limitation. Limnol. Oceanogr. 2000, 45, 789–800. [Google Scholar] [CrossRef]
- Jiménez-Mercado, A.; Cajal-Medrano, R.; Maske, H. Marine heterotrophic bacteria in continuous culture, the bacterial carbon growth efficiency, and mineralization at excess substrate and different temperatures. Microb. Ecol. 2007, 54, 56–64. [Google Scholar] [CrossRef]
SPECIES | SUBSTRATE | pH | Pr (g/L) | TS (g/L) | TL (g/L) |
---|---|---|---|---|---|
SHARK (BS) | GE | 6.17 ± 0.31 a | 2.34 ± 0.50 a | 0.04 ± 0.03 a | 0.17 ± 0.15 a |
TUNA (YT) | GE | 6.04 ± 0.27 a | 2.59 ± 0.43 a | 0.31 ± 0.09 b | 1.51 ± 0.13 b |
TURBOT (Tu) | GE | 5.98 ± 0.19 a | 4.00 ± 0.26 b | 0.12 ± 0.10 a,b | 1.61 ± 0.48 b,c |
SALMON (Sa) | GE | 6.50 ± 0.36 a | 3.96 ± 0.53 b | 0.17 ± 0.14 a,b | 2.06 ± 0.38 c |
SHARK (BS) | CH | 8.76 ± 0.10 b | 40.6 ± 1.5 c | 0.17 ± 0.15 a,b | 0.19 ± 0.05 a |
TUNA (YT) | CH | 8.82 ± 0.20 b | 42.9 ± 1.3 c | 0.15 ± 0.11 a,b | 0.32 ± 0.08 a |
TURBOT (Tu) | CH | 8.78 ± 0.08 b | 46.8 ± 0.4 d | 0.12 ± 0.05 a,b | 0.36 ± 0.19 a,d |
SALMON (Sa) | CH | 8.85 ± 0.09 b | 47.6 ± 1.2 d | 0.19 ± 0.11 a,b | 0.59 ± 0.08 d |
Xm | vx | λx | R2x | Yx/p | mp | R2x/p | |
---|---|---|---|---|---|---|---|
GE_BS | 0.654 ± 0.044 a | 0.075 ± 0.029 a.b | 2.85 ± 1.90 a | 0.983 | 1.30 ± 0.29 a | 0.030 ± 0.029 a | 0.985 |
GE_YT | 0.690 ± 0.048 a | 0.109 ± 0.051 a,b | 4.71 ± 1.69 a | 0.982 | 2.16 ± 0.42 b | 0.033 ± 0.024 a | 0.986 |
GE_Tu | 0.667 ± 0.053 a | 0.046 ± 0.014 a | 2.44 ± 2.37 a | 0.985 | 1.27 ± 0.26 a | 0.034 ± 0.018 a | 0.995 |
GE_Sa | 0.680 ± 0.061 a | 0.064 ± 0.029 a | 3.24 ± 2.63 a | 0.976 | 1.31 ± 0.39 a | 0.041 ± 0.036 a | 0.986 |
CH_BS | 1.00 ± 0.13 c | 0.069 ± 0.015 a | 4.59 ± 3.18 a | 0.979 | 0.969 ± 0.288 a | 0.028 ± 0.026 a | 0.991 |
CH_YT | 1.11 ± 0.05 c,d | 0.129 ± 0.035 b | 3.70 ± 1.29 a | 0.992 | 1.07 ± 0.30 a | 0.026 ± 0.025 a | 0.990 |
CH_Tu | 0.878 ± 0.137 b,c | 0.053 ± 0.028 a | 2.70 (NS) | 0.953 | 0.869 ± 0.302 a | 0.013 (NS) | 0.980 |
CH_Sa | 0.949 ± 0.105 b,c | 0.067 ± 0.036 a,b | 2.20 (NS) | 0.979 | 1.60 ± 0.47 a,b | 0.038 ± 0.032 a | 0.982 |
MM | 0.893 ± 0.118 b,c | 0.069 ± 0.042 a,b | 0.621 (NS) | 0.938 | 1.47 ± 0.38 a,b | 0.041 ± 0.036 a | 0.985 |
Substrate | Culture Media | Biomass (EUR/g) |
---|---|---|
commercial | MM | 10.14 |
GE_BS | Medium formulated with GE_BS | 0.138 |
GE_YT | Medium formulated with GE_YT | 0.130 |
GE_Tu | Medium formulated with GE_Tu | 0.135 |
GE_Sa | Medium formulated with GE_Sa | 0.132 |
CH_BS | Medium formulated with CH_BS | 0.090 |
CH_YT | Medium formulated with CH_YT | 0.081 |
CH_Tu | Medium formulated with CH_Tu | 0.103 |
CH_Sa | Medium formulated with CH_Sa | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez, J.A.; Pedreira, A.; Salmerón, I.; Wardhani, D.H.; Valcarcel, J. The Fermentation of a Marine Probiotic Bacterium on Low-Cost Media Formulated with Industrial Fish Gelatin Waterstreams and Collagen Hydrolysates. Processes 2023, 11, 2397. https://doi.org/10.3390/pr11082397
Vázquez JA, Pedreira A, Salmerón I, Wardhani DH, Valcarcel J. The Fermentation of a Marine Probiotic Bacterium on Low-Cost Media Formulated with Industrial Fish Gelatin Waterstreams and Collagen Hydrolysates. Processes. 2023; 11(8):2397. https://doi.org/10.3390/pr11082397
Chicago/Turabian StyleVázquez, José Antonio, Adrián Pedreira, Iván Salmerón, Dyah H. Wardhani, and Jesus Valcarcel. 2023. "The Fermentation of a Marine Probiotic Bacterium on Low-Cost Media Formulated with Industrial Fish Gelatin Waterstreams and Collagen Hydrolysates" Processes 11, no. 8: 2397. https://doi.org/10.3390/pr11082397
APA StyleVázquez, J. A., Pedreira, A., Salmerón, I., Wardhani, D. H., & Valcarcel, J. (2023). The Fermentation of a Marine Probiotic Bacterium on Low-Cost Media Formulated with Industrial Fish Gelatin Waterstreams and Collagen Hydrolysates. Processes, 11(8), 2397. https://doi.org/10.3390/pr11082397