Fenton: A Systematic Review of Its Application in Wastewater Treatment
Abstract
:1. Introduction
2. Methods
3. Results and Discussions
3.1. Time Trends in Studies Using Fenton
3.2. Size and Reaction Conditions of Fenton Reaction Studies
3.3. Isolated or Combined Processes with Fenton and Electro-Fenton
3.4. Journals Publishing on Fenton Indexed in SCOPUS through 2022
3.5. Perspectives on Water Reclamation after Fenton Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. Clear. Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Khaya, P.S.; Babatunde, F.B.; Joseph, K.B. The Treatment Effect of Chemical Coagulation Process in South African Brewery Wastewater: Comparison of Polyamine and Aluminum-Chlorohydrate coagulants. Comparison of Polyamine and Aluminum-Chlorohydrate coagulants. Water 2022, 14, 2495. [Google Scholar] [CrossRef]
- Konradt, N.; Kuhlen, J.G.; Rohns, H.-P.; Schmitt, B.; Fischer, U.; Binder, T.; Schumacher, V.; Wagner, C.; Kamphausen, S.; Müller, U.; et al. Removal of Trace Organic Contaminants by Parallel Operation of Reverse Osmosis and Granular Activated Carbon for Drinking Water Treatment. Membranes 2021, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Dharupaneedi, S.P.; Sanna, K.N.; Mallikarjuna, N.; Kakarla, R.R.; Shyam, S.S.; Tejraj, M.A. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019, 210, 850–866. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019, 672, 708–721. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Senthil Kumar, P.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Yu, H.Y.; Jenn, F.S.; Yujen, S.; Jianmin, W.; Po, Y.W.; Chin, P.H. Hazardous wastes treatment technologies. Water Environ. Res. 2020, 92, 1833–1860. [Google Scholar] [CrossRef]
- Lyngsie, G.; Krumina, L.; Tunlid, A.; Persson, P. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. Sci. Rep. 2018, 8, 10834. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Ganiyu, S.O.; Martínez-Huitle, C.A.; Mousset, E.; Olvera-Vargas, H.; Trellu, C.; Zhou, M.; Oturan, M.A. Recent advances in electro-Fenton process and its emerging applications. Crit. Rev. Environ. Sci. Technol. 2023, 53, 887–913. [Google Scholar] [CrossRef]
- Deng, F.; Jiang, J.; Sirés, I. State-of-the-art review and bibliometric analysis on electro-Fenton process. Carbon Lett. 2022, 33, 17–34. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Hood, W.; Wilson, C.A. The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- Jiang, Y.; Ran, J.; Mao, K.; Yang, X.; Zhong, L.; Yang, C.; Feng, X.; Zhang, H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicol. Environ. Saf. 2022, 236, 113464. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Nabout, J.C.; Parreira, M.R.; Teresa, F.B.; Carneiro, F.M.; Cunha, H.F.; Ondei, L.S.; Salomão Caramori, S.; Soares, T.N. Publish (in group) or perish (alone): The trend from single to multi-authorship in biological papers. Scientometrics 2015, 102, 357–364. [Google Scholar] [CrossRef]
- Marcionilio, S.M.L.O.; Alves, M.T.R.; Borges, P.P.; Machado, K.B.; Araújo, C.S.T.; Da Cunha, H.F.; Nabout, J.C. The state of global scientific literature on chlorophyll-A. Biosci. J. 2015, 31, 941–950. [Google Scholar] [CrossRef]
- Brillas, E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 2020, 250, 126198. [Google Scholar] [CrossRef] [PubMed]
- Diaw, P.A.; Oturan, N.; Gaye Seye, M.D. Removal of the herbicide monolinuron from waters by the electro-Fenton treatment. J. Electroanal. Chem. 2020, 864, 114087. [Google Scholar] [CrossRef]
- Ramos, M.D.N.; Santana, C.S.; Velloso, C.C.V.; da Silva, A.H.M.; Magalhães, F.M.; Aguiar, A. A review on the treatment of textile industry effluents through Fenton processes. Process Saf. Environ. Prot. 2021, 155, 366–386. [Google Scholar] [CrossRef]
- Bu, J.; Liu, H.; Lin, C. Fenton’s reagent-enhanced supercritical water oxidation of wastewater released from 3-hydroxypyridine production. RSC Adv. 2019, 9, 29317–29326. [Google Scholar] [CrossRef] [PubMed]
- Varank, G.; Yazici, G.S.; Demir, A. A comparative study of electrocoagulation and electro-Fenton for food industry wastewater treatment: Multiple response optimization and cost analysis. Sep. Sci. Technol. 2018, 53, 2727–2740. [Google Scholar] [CrossRef]
- Ibarra-Taquez, H.N.; Dobrosz-Gómez, I.; Gómez, M.-Á. Optimización Multiobjetivo del Proceso Fenton en el Tratamiento de Aguas Residuales provenientes de la Producción de Café Soluble. Inf. Tecnol. 2018, 29, 111–122. [Google Scholar] [CrossRef]
- Ajmi, K.; Vismara, E.; Manai, I.; Haddad, M.; Hamdi, M.; Bouallagui, H. Polyvinyl acetate processing wastewater treatment using combined Fenton’s reagent and fungal consortium: Application of central composite design for conditions optimization. J. Hazard. Mater. 2018, 358, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, K.; Morone, A.; Chakrabarti, T.; Pandey, R.A. Evaluation and optimization of Fenton pretreatment integrated with granulated activated carbon (GAC) filtration for carbamazepine removal from complex wastewater of pharmaceutical industry. J. Environ. Chem. Eng. 2018, 6, 3681–3689. [Google Scholar] [CrossRef]
- Abedinzadeh, N.; Shariat, M.; Monavari, S.M.; Pendashteh, A. Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater. Process Saf. Environ. Prot. 2018, 116, 82–91. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, Y.; Lu, J.; Nie, J.; Liu, Y. Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: Removal and conversion of organic pollutants as well as estimation of operational costs. Environ. Sci. Pollut. Res. 2018, 25, 12083–12095. [Google Scholar] [CrossRef]
- Gilpavas, E.; Arbeláez-Castaño, P.E.; Medina-Arroyave, J.D.; Gómez-Atehortua, C.M. Tratamiento de aguas residuales de la industria textil mediante coagulación química acoplada a procesos fenton intensificados con ultrasonido de baja frecuencia. Rev. Int. Contam. Ambient. 2018, 34, 157–167. [Google Scholar] [CrossRef]
- Ben Ayed, S.; Azam, M.; Al-Resayes, S.I.; Ayari, F.; Rizzo, L. Cationic Dye Degradation and Real Textile Wastewater Treatment by Heterogeneous Photo-Fenton, Using a Novel Natural Catalyst. Catalysts 2021, 11, 1358. [Google Scholar] [CrossRef]
- Oñate, J.; Arenas, A.; Ruiz, A.; Rivera, K.; Pelaez, C. Evaluation of Mutagenic and Genotoxic Activity in Vinasses Subjected to Different Treatments. Water Air Soil Pollut. 2015, 226, 144. [Google Scholar] [CrossRef]
- Ghosh, K.; Ghosh, J.; Giri, P.K. Accordion-like multilayered two-dimensional Ti3C2TxMXenes for catalytic elimination of organic dyes from wastewater via the Fenton reaction. ACS Appl. Nano Mater. 2022, 5, 16451–16461. [Google Scholar] [CrossRef]
- Yan, X.; Li, H.; Feng, J.; Hou, B.; Yan, W.; Zhou, M. Activated Carbon Assisted Fenton-like Treatment of Wastewater Containing Acid Red G. Catalysts 2022, 12, 1358. [Google Scholar] [CrossRef]
- Miao, S.; Gao, H.; Xia, H.; Mao, X.; Zhang, L.; Shi, M.; Zhang, Y. Accelerated Fenton degradation of azo dye wastewater via a novel Z-scheme CoFeN-g-C3N4 heterojunction photocatalyst with excellent charge transfer under visible light irradiation. Dalton Trans. 2022, 51, 17192–17202. [Google Scholar] [CrossRef]
- Sanabria, P.; Scunderlick, D.; Wilde, M.L.; Lüdtke, D.S.; Sirtori, C. Solar photo-Fenton treatment of the anti-cancer drug anastrozole in different aqueous matrices at near-neutral pH: Transformation products identification, pathways proposal, and in silico (Q)SAR risk assessment. Sci. Total Environ. 2021, 754, 142300. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Cai, Z.; Hu, J.; Sun, B. Highly Efficient Microwave-Assisted Fenton Degradation of Toluene Nitration Wastewater over Microwave-Responsive Catalyst of Fe3O4−BiOCl. Chem. Sel. 2022, 7, e202200804. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, C.; Su, P.; Lu, W.; Zhang, Z.; Wang, X.; Hu, W. Fenton Process for Treating Acrylic Manufacturing Wastewater: Parameter Optimization, Performance Evaluation, Degradation Mechanism. Water 2022, 14, 2913. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.R.; Mohammadi, A.S.; Alinejad, A.A.; Hassani, G.; Golmohammadi, S.; Mohseni, S.M.; Sardar, M.; Sarsangi, V. Reduction of non-Betalactam Antibiotics COD by Combined Coagulation and Advanced Oxidation Processes. Water Environ. Res. 2016, 88, 2121–2131. [Google Scholar] [CrossRef]
- Nisapai, W.; Paikamnam, A.; Sriprom, P.; Neramittagapong, S.; Theerakulpisut, S.; Lin, C.; Neramittagapong, A. Degradation of Penicillin G contaminant in synthesized wastewater by Fenton-like reaction. Eng. Appl. Sci. Res. 2022, 49, 622–629. [Google Scholar]
- Yang, K.; Liu, M.; Weng, X.; Owens, G.; Chen, Z. Fenton-like oxidation for the simultaneous removal of estrone and β-estradiol from wastewater using biosynthesized silver nanoparticles. Sep. Purif. Technol. 2022, 285, 120304. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Chen, X.; Chen, Y.; Li, Y.; Motkuri, R.K.; Dai, Z.; Kumar, A.; Fang, T.; Shen, J. Novel catalysts with multivalence copper for organic pollutants removal from wastewater with excellent selectivity and stability in Fenton-like process under neutral pH conditions. Water Environ. Res. 2022, 94, e10816. [Google Scholar] [CrossRef]
- Hassan, A.A.; Gheni, S.A.; Ahmed, S.M.R.; Abdullah, G.H.; Harvey, A. Aromatic free Fenton process for rapid removal of phenol from refinery wastewater in an oscillatory baffled reactor. Arab. J. Chem. 2022, 15, 103635. [Google Scholar] [CrossRef]
- Berberidou, C.; Kokkinos, P.; Poulios, I.; Mantzavinos, D. Homogeneous photo-Fenton degradation and mineralization of model and simulated pesticide wastewaters in lab- and pilot-scale reactors. Catalysts 2022, 12, 1512. [Google Scholar] [CrossRef]
- Lin, S.; Lu, Y.; Ye, B.; Zeng, C.; Liu, G.; Li, J.; Luo, H.; Zhang, R. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process. Front. Environ. Sci. Eng. 2019, 14, 12. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Y. A novel strategy for treating chromium complex wastewater: The combination of a Fenton-like reaction and adsorption using cobalt/iron-layered double hydroxide as catalyst and adsorbent. J. Clean. Prod. 2022, 370, 133337. [Google Scholar] [CrossRef]
- Arita, S.; Agustina, T.E.; Ilmi, N.; Pranajaya, V.D.W.; Gayatri, R. Treatment of laboratory wastewater by using Fenton reagent and combination of coagulation-adsorption as pretreatment. J. Ecol. Eng. 2022, 23, 8210–8220. [Google Scholar] [CrossRef]
- Cüce, H.; Aydin Temel, F. Classical-Fenton and photo-Fenton oxidation of wastewater arising from cosmetic automobile care products. Environ. Prog. Sustain. Energy 2021, 40, e13701. [Google Scholar] [CrossRef]
- Riadi, L.; Tanuwijaya, A.D.; Je, R.R.; Altway, A. Fenton’s Oxidation of Personal Care Product (PCP) Wastewater: A Kinetic Study and the Effects of System Parameters. Int. J. Technol. Manag. 2021, 12, 298–308. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Salmerón, I.; Peres, J.A.; Tavares, P.B.; Lucas, M.S.; Malato, S. Advanced Oxidation Processes as sustainable technologies for the reduction of elderberry agro-industrial water impact. Water Resour. Ind. 2020, 24, 100137. [Google Scholar] [CrossRef]
- Pereira, M.; Oliveira, L.; Murad, E. Iron oxide catalysts: Fenton and Fenton-like reactions—A review. Clay Miner. 2012, 47, 285–302. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, X.; Zha, F.; Tang, X.; Tian, H. Efficient photocatalytic removal of orange II by a Mn3O4-FeS2/Fe2O3 heterogeneous catalyst. J. Environ. Manag. 2020, 253, 109695. [Google Scholar] [CrossRef]
- Kumar, S.; Alka; Tarun; Saxena, J.; Bansal, C.; Kumari, P. Visible light-assisted photodegradation by silver tungstate-modified magnetite nanocomposite material for enhanced mineralization of organic water contaminants. Appl. Nanosci. 2020, 10, 1555–1569. [Google Scholar] [CrossRef]
- Fu, D.M.; Messele, S.A.; Fortuny, A.; Stuber, F.; Fabregat, A.; Font, J.; Bengoa, C. Efficient elimination of tyrosol in a zero valent iron-EDTA system at mild conditions. Chem. Eng. J. 2015, 260, 199–208. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E. Upgrading and expanding the electro-Fenton and related processes. Curr. Opin. Electrochem. 2021, 27, 100686. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Y.; Guan, X. A Rapid Fenton treatment of bio-treated dyeing and finishing wastewater at second-scale intervals: Kinetics by stopped-flow technique and application in a full-scale plant. Relat. Cient. 2019, 9, 9689. [Google Scholar] [CrossRef]
- Fischbacher, A.; Sonntag, C.; von Schmidt, T.C. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Chemosphere 2017, 182, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Duan, X.; Shang, Y.; Gao, B.; Xu, X. Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways. Appl. Catal. B 2021, 287, 119963. [Google Scholar] [CrossRef]
- Ebrahiem, E.E.; Al-Maghrabi, M.N.; Mobarki, A.R. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem. 2017, 10, S1674–S1679. [Google Scholar] [CrossRef]
- Lisiée, M.; Gonçalves, P.; Eugênia, O.F.; Ostroski, I.C. Cosmetic wastewater primary treatment by fenton process and final polishing adsorption. Rev. Eletrôn. Gest. Educ. Tecnol. Ambient. 2020, 24, e13. [Google Scholar] [CrossRef]
- Li, S.; Gao, M.; Dong, H.; Jiang, Y.; Liang, W.; Jiang, J.; Ho, S.-H.; Li, F. Deciphering the fate of antibiotic resistance genes in norfloxacin wastewater treated by a bio-electro-Fenton system. Bioresour. Technol. 2022, 364, 128110. [Google Scholar] [CrossRef]
- Ribeiro, J.P.; Gomes, H.G.M.F.; Sarinho, L.; Marques, C.C.; Nunes, M.I. Synergies of metallic catalysts in the Fenton and photo-Fenton processes applied to the treatment of pulp bleaching wastewater. Chem. Eng. Process. Process Intensif. 2022, 181, 109159. [Google Scholar] [CrossRef]
- Ribeiro, J.P.; Sarinho, L.; Neves, M.C.; Nunes, M.I. Valorization of residual iron dust as Fenton catalyst for pulp and paper wastewater treatment. Environ. Pollut. 2022, 310, 119850. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Olvera-Vargas, H.; Zhou, M.; Qiu, S.; Sirés, I.; Brillas, E. Critical Review on the Mechanisms of Fe2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem. Rev. 2023, 123, 4635–4662. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, N.; Monou, M.; Mantzavinos, D.; Kassinos, D. Monitoring of the quality of winery influents/effluents and polishing of partially treated winery flows by homogeneous Fe(II) photo-oxidation. Desalination 2009, 248, 836–842. [Google Scholar] [CrossRef]
- De Torres-Socías, E.; Prieto-Rodríguez, L.; Zapata, A.; Fernández-Calderero, I.; Oller, I.; Malato, S. Detailed treatment line for a specific landfill leachate remediation. Brief economic assessment. Chem. Eng. J. 2015, 261, 60–66. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Najafpoor, A.A.; Navaei, A.A.; Zhou, J.L.; Altaee, A.; Ramezanian, N.; Dehghan, A.; Bao, T.; Yazdani, M. Improving Formaldehyde Removal from Water and Wastewater by Fenton, Photo-Fenton and Ozonation/Fenton Processes through Optimization and Modeling. Water 2021, 13, 2754. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, F.; Bai, Z.; Wang, Y.; Zhang, H.; Gao, X.; Wang, Y.; Li, X. Preparation of Fe-loaded needle coke particle electrodes and utilisation in three-dimensional electro-Fenton oxidation of coking wastewater. Chemosphere 2022, 308, 136544. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, O.A.; Adekalu, K.O.; Okunade, D.A. Electro-Fenton treatment process for brewery wastewater: Effects of oxidant concentration and reaction time on BOD and COD removal efficiency. J. Eng. App. Sci. 2022, 69, 42. [Google Scholar] [CrossRef]
- Behrouzeh, M.; Mehdi Parivazh, M.; Danesh, E.; Javad Dianat, M.; Abbasi, M.; Osfouri, S.; Rostami, A.; Sillanpää, M.; Dibaj, M.; Akrami, M. Application of photo-Fenton, electro-Fenton, and photo-electro-Fenton processes for the treatment of DMSO and DMAC wastewaters. Arab. J. Chem. 2022, 15, 104229. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B Environ. 2023, 328, 122430. [Google Scholar] [CrossRef]
- Perry, S.C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F.C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458. [Google Scholar] [CrossRef]
- Zhou, W.; Meng, X.; Gao, J.; Alshawabkeh, A.N. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review. Chemosphere 2019, 225, 588–607. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, M.; Oturan, N.; Li, Y.; Oturan, M.A. Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochim. Acta 2019, 305, 285–294. [Google Scholar] [CrossRef]
- Coria, G.; Pérez, T.; Sirés, I.; Brillas, E.; Nava, J.L. Abatement of the antibiotic levofloxacin in a solar photoelectro-Fenton flow plant: Modeling the dissolved organic carbon concentration-time relationship. Chemosphere 2018, 198, 174–181. [Google Scholar] [CrossRef]
- Zhao, Q.; An, J.; Wang, S.; Qiao, Y.; Liao, C.; Wang, C.; Wang, X.; Li, N. Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 35410–35419. [Google Scholar] [CrossRef]
- Xu, W.; Lu, Z.; Sun, X.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Li, A.Y.; Li, G.; Li, J.; Zhang, F. Janus electrode of asymmetric wettability for H2O2 production with highly efficient O2 utilization. ACS Appl. Mater. Interfaces 2020, 3, 705–714. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhao, Y.; Li, G.; Zhang, F. Carbon black oxidized by air calcination for enhanced H2O2 generation and effective organics degradation. ACS Appl. Mater. Interfaces 2019, 11, 27846–27853. [Google Scholar] [CrossRef]
- Pérez, J.F.; Llanos, J.; Sáez, C.; López, C.; Cañizares, P.; Rodrigo, M.A. Electrochemical jet-cell for the in-situ generation of hydrogen peroxide. Electrochem. Comm. 2016, 71, 65–68. [Google Scholar] [CrossRef]
- Scialdone, O.; Galia, A.; Gattuso, C.; Sabatino, S.; Schiavo, B. Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. Electrochim. Acta 2015, 182, 775–780. [Google Scholar] [CrossRef]
- Hamdi, N.; Proietto, F.; Ben, A.H.; Galia, A.; Inguanta, R.; Ammar, S.; Gadri, A.; Scialdone, O. Effective Removal and mineralization of 8-hydroxyquinoline-5-sulfonic acid through a pressurized electro-Fenton-like process with Ni-Cu-Al layered double hydroxide. ChemElectroChem 2020, 7, 2457–2465. [Google Scholar] [CrossRef]
- Scialdone, O.; Galia, A.; Sabatino, S. Electro-generation of H2O2 and abatement of organic pollutant in water by an electro-Fenton process in a microfluidic reactor. Electrochem. Comm. 2013, 26, 45–47. [Google Scholar] [CrossRef]
- González, P.O.; Bisang, J.M. Electrochemical synthesis of hydrogen peroxide with a three-dimensional rotating cylinder electrode. J. Chem. Technol. Biotechnol. 2014, 89, 528–535. [Google Scholar] [CrossRef]
- Zhou, M.; Oturan, M.A.; Sirés, I. Electro-Fenton Process: New Trends and Scale-Up; Springer Nature: Singapore, 2018. [Google Scholar]
- Cornejo, O.M.; Sirés, I.; Nava, J.L. Electrosynthesis of hydrogen peroxide sustained by anodic oxygen evolution in a flow-through reactor. J. Electroanal. Chem. 2020, 873, 114419. [Google Scholar] [CrossRef]
- Guo, X.; Lin, S.; Gu, J.; Zhang, S.; Chem, Z.; Huang, S. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 2019, 9, 11042–11054. [Google Scholar] [CrossRef]
- Jung, E.; Shin, H.; Lee, B.-H.; Efremov, V.; Lee, S.; Lee, H.S.; Kim, J.; Antink, W.H.; Park, S.; Lee, K.-S.; et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442. [Google Scholar] [CrossRef]
- Pizzutilo, E.; Kasian, O.; Choi, C.H.; Cherevko, S.; Hutchings, G.J.; Mayrhofer, K.J.J.; Freakley, S.J. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production. Chem. Phys. Lett. 2017, 683, 436–442. [Google Scholar] [CrossRef]
- Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T.W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I.E.L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608. [Google Scholar] [CrossRef]
- Colic, V.; Yang, S.; Révay, Z.; Stephens, I.E.L.; Chorkendorff, I. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochim. Acta 2018, 272, 192–202. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Siahrostami, S.; Kim, T.R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J.W.F.; Higgins, D.; Sinclair, R.; et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 2018, 6, 311–317. [Google Scholar] [CrossRef]
- Barhoumi, N.; Olvera-Vargas, H.; Oturan, N.; Huguenot, D.; Gadri, A.; Ammar, S.; Brillas, E.; Oturan, M.A. Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Appl. Catal. B Environ. 2017, 209, 637–647. [Google Scholar] [CrossRef]
- Lanzalaco, S.; Sirés, I.; Sabatino, M.A.; Dispenza, C.; Scialdone, O.; Galia, A. Synthesis of polymer nanogels by electro-Fenton process: Investigation of the effect of main operation parameters. Electrochim. Acta 2017, 246, 812–822. [Google Scholar] [CrossRef]
- Liu, T.; Wang, K.; Song, S.; Brouzgou, A.; Tsiakaras, P.; Wang, Y. New electro-Fenton gas diffusion cathode based on nitrogen-doped graphene@carbon nanotube composite materials. Electrochim. Acta 2016, 194, 228–238. [Google Scholar] [CrossRef]
- Roth, H.; Gendel, Y.; Buzatu, P.; David, O.; Wessling, M. Tubular carbon nanotube-based gas diffusion electrode removes persistent organic pollutants by a cyclic adsorption electro-Fenton process. J. Hazard. Mater. 2016, 307, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mousset, E.; Ko, Z.T.; Syafik, M.; Wang, Z.; Lefebvre, O. Electro-catalytic activity enhancement of a graphene ink-coated carbon cloth cathode for oxidative treatment. Electrochim. Acta 2016, 222, 1628–1641. [Google Scholar] [CrossRef]
- Li, L.; Hu, H.; Teng, X.; Yu, Y.; Zhu, Y.; Su, X. Electrogeneration of H2O2 using a porous hydrophobic acetylene black cathode for electro-Fenton process. Chem. Eng. Process. Process Intensif. 2018, 133, 34–39. [Google Scholar] [CrossRef]
- Zhao, K.; Su, Y.; Quan, X.; Liu, Y.; Chen, S.; Yu, H. Enhanced H2O2 production by selective electrochemical reduction of O2 fluorine-doped hierarchically porous carbon. J. Catal. 2018, 357, 118–126. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Ma, H. Enhancing the yield of H2O2 from oxygen reduction reaction performance by hierarchically porous carbon modified active carbon fiber as an effective cathode used in electro-Fenton. J. Electroanal. Chem. 2019, 838, 57–65. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, W.; Gao, J.; Ding, Y.; Kou, K. Oxidative modification of graphite felts for efficient H2O2 electrogeneration: Enhancement mechanism and long-term stability. J. Electroanal. Chem. 2019, 833, 258–268. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Li, G.; Zhang, F. Scaling up floating air cathodes for energy-efficient H2O2 generation and electrochemical advanced oxidation processes. Electrochim. Acta 2019, 299, 273–280. [Google Scholar] [CrossRef]
- Perazzolo, V.; Durante, C.; Gennaro, A. Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment. J. Electroanal. Chem. 2016, 782, 264–269. [Google Scholar] [CrossRef]
- Xia, Y.; Shang, H.; Zhang, Q.; Zhou, Y.; Hu, X. Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton. J. Electroanal. Chem. 2019, 840, 400–408. [Google Scholar] [CrossRef]
- Zhu, Y.; Qiu, S.; Deng, F.; Ma, F.; Zheng, Y. Degradation of sulfathiazole by electro-Fenton using a nitrogen-doped cathode and a BDD anode: Insight into the H2O2 generation and radical oxidation. Sci. Total Environ. 2020, 722, 137853. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.S.; Silva, F.L.; Valim, R.B.; Barros, W.R.P.; Steter, J.R.; Bertazzoli, R.; Lanza, M.R.V. Effect of Fe2+ on the degradation of the pesticide profenofos by electrogenerated H2O2. J. Electroanal. Chem. 2016, 783, 100–105. [Google Scholar] [CrossRef]
- Moreira, J.; Lima, V.B.; Goulart, L.A.; Lanza, M.R.V. Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: Quinones and azo compounds employed as redox modifiers. Appl. Catal. B Environ. 2019, 248, 95–107. [Google Scholar] [CrossRef]
- Jirkovský, J.S.; Björling, A.; Ahlberg, E. Reduction of oxygen on dispersed nanocrystalline CoS2. J. Phys. Chem. C 2012, 116, 24436–24444. [Google Scholar] [CrossRef]
- Ye, Z.; Brillas, E.; Centellas, F.; Cabot, P.L.; Sirés, I. Electro-Fenton process at mild pH using Fe(III)-EDDS as soluble catalyst and carbon felt as cathode. Appl. Catal. B Environ. 2019, 257, 117907. [Google Scholar] [CrossRef]
- Alcaide, F.; Álvarez, G.; Guelfi, D.R.V.; Brillas, E.; Sirés, I. A stable CoSP/MWCNTs air-diffusion cathode for the photoelectro-Fenton degradation of organic pollutants at pre-pilot scale. Chem. Eng. J. 2020, 379, 122417. [Google Scholar] [CrossRef]
- Antonin, V.S.; Parreira, L.S.; Aveiro, L.R.; Silva, F.L.; Valim, R.B.; Hammer, P.; Lanza, M.R.V.; Santos, M.C. W@Au Nanostructures modifying carbon as materials for hydrogen peroxide electrogeneration. Electrochim. Acta 2017, 231, 713–720. [Google Scholar] [CrossRef]
- Sajjadi, S.; Hasanzadeh, A.; Khataee, A. Two-electron oxygen reduction on NiFe alloy enclosed carbonic nanolayers derived from NiFe-metal-organic frameworks. J. Electroanal. Chem. 2019, 840, 449–455. [Google Scholar] [CrossRef]
- Xu, A.; He, B.; Yu, H.; Han, W.; Li, J.; Shen, J.; Sun, X.; Wang, L. A facile solution to mature cathode modified by hydrophobic dimethyl silicon oil (DMS) layer for electro-Fenton processes: Water proof and enhanced oxygen transport. Electrochim. Acta 2019, 308, 158–166. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, M.; Ren, G.; Li, Y.; Li, Y.; Du, X. Highly efficient electrosynthesis of hydrogen peroxide on a super-hydrophobic three-phase interface by natural air diffusion. Nat. Commun. 2020, 11, 1731. [Google Scholar] [CrossRef]
- Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O.J. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2018, 30, 1703691. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.-J.; Wang, Y.-L.; Li, S.-S.; Li, J.-F.; Chen, P. Electrocatalyst derived from abundant biomass and its excellent activity for in situ H2O2 production. ChemElectroChem 2019, 6, 4877–4884. [Google Scholar] [CrossRef]
- Liang, L.; Zhou, M.; Lu, X.; Su, P.; Sun, J. High-efficiency electro-generation of hydrogen peroxide from oxygen reduction by carbon xerogels derived from glucose. Electrochim. Acta 2019, 320, 134569. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Yang, S.-C.; Wang, Y.-L.; Xi, J.-C.; Huang, J.-C.; Li, J.-F.; Chen, P.; Jia, R. Electrocatalyst derived from fungal hyphae and its excellent activity for electrochemical production of hydrogen peroxide. Electrochim. Acta 2019, 308, 74–82. [Google Scholar] [CrossRef]
- Daniel, G.; Zhang, Y.; Lanzalaco, S.; Brombin, F.; Kosmala, T.; Granozzi, G.; Wang, A.; Brillas, E.; Sirés, I.; Durante, C. Chitosan-derived nitrogen-doped carbon electrocatalyst for a sustainable upgrade of oxygen reduction to hydrogen peroxide in UV-assisted electro-Fenton water treatment. ACS Sustain. Chem. Eng. 2020, 8, 14425–14440. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Zhou, M.; Martínez-Huitle, C.A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal. B Environ. 2018, 235, 103–129. [Google Scholar] [CrossRef]
- Zhou, W.; Rajic, L.; Zhao, Y.; Gao, J.; Qin, Y.; Alshawabkeh, A. Rates of H2O2 electrogeneration by reduction of anodic O2 at RVC foam cathodes in batch and flow-through cells. Electrochim. Acta 2018, 277, 185–196. [Google Scholar] [CrossRef]
- Ye, Z.; Guelfi, D.R.V.; Álvarez, G.; Alcaide, F.; Brillas, E.; Sirés, I. Enhanced electrocatalytic production of H2O2 at Co-based air-diffusion cathodes for the photoelectro-Fenton treatment of bronopol. Appl. Catal. B Environ. 2019, 247, 191–199. [Google Scholar] [CrossRef]
- Ye, Z.; Brillas, E.; Centellas, F.; Cabot, P.L.; Sirés, I. Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex. Water Res. 2020, 169, 115219. [Google Scholar] [CrossRef]
- Labiah, L.; Oturan, M.A.; Panizza, M.; Ben Hamadi, N.; Ammar, S. Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J. Hazard. Mater. 2015, 297, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Droguett, C.; Salazar, R.; Brillas, E.; Sirés, I.; Carlesi, C.; Marco, J.F.; Thiam, A. Treatment of antibiotic cephalexin by heterogeneous electrochemical Fenton-based processes using chalcopyrite as sustainable catalyst. Sci. Total Environ. 2020, 740, 140154. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.J.; Sirés, I.; Alves, A.P.M.; Martínez-Huitle, C.A.; Brillas, E. Vermiculite as heterogeneous catalyst in electrochemical Fenton-based processes: Application to the oxidation of Ponceau SS dye. Chemosphere 2020, 240, 124838. [Google Scholar] [CrossRef] [PubMed]
- Sklari, S.D.; Plakas, K.V.; Petsi, P.N.; Zaspalis, V.T.; Karabelas, A.J. Toward the development of a novel electro-Fenton System for eliminating toxic organic substances from water. Part 2. Preparation, characterization, and evaluation of iron-impregnated carbon felts as cathodic electrodes. Ind. Eng. Chem. Res. 2015, 54, 2059–2073. [Google Scholar] [CrossRef]
- Fernández, D.; Robles, I.; Rodríguez-Valadez, F.J.; Godínez, L.A. Novel arrangement for an electro-Fenton reactor that does not require addition of iron, acid and a final neutralization stage. Towards the development of a cost-effective technology for the treatment of wastewater. Chemosphere 2018, 199, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Rostamizadeh, M.; Jafarizad, A.; Gharibian, S. High efficient decolorization of Reactive Red 120 azo dye over reusable Fe-ZSM-5 nanocatalyst in electro-Fenton reaction. Separ. Purif. Technol. 2018, 192, 340–347. [Google Scholar] [CrossRef]
- Ye, Z.; Padilla, J.A.; Xuriguera, E.; Brillas, E.; Sirés, I. Magnetic MIL(Fe)-type MOF-derived N-doped nano-ZVI@C rods as heterogeneous catalyst for the electro-Fenton degradation of gemfibrozil in a complex aqueous matrix. Appl. Catal. B Environ. 2020, 266, 118604. [Google Scholar] [CrossRef]
- Ye, Z.; Schukraft, G.E.M.; L’Hermitte, A.; Xiong, Y.; Brillas, E.; Petit, C.; Sirés, I. Mechanism and stability of an Fe-based 2D MOF during the photoelectro-Fenton treatment of organic micro-pollutants under UVA and visible light irradiation. Water Res. 2020, 184, 115986. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sust. Energ. Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Nan, X.; Lavrnić, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef]
- Mei, N.S.; Wai, C.W.; Ahamad, R. Environmental Awareness and Behaviour Index for Malaysia. Procedia Soc. Behav. Sci. 2016, 222, 668–675. [Google Scholar] [CrossRef]
- Silva, M.M.; Luiz, G.P.; Duarte, S.; Higor, H.C. Práticas de gerenciamento de resíduos industriais no Brasil: Uma revisão da literatura. Rev. Bras. Eng. Prod. 2019, 5, 251–261. [Google Scholar]
- Maryam, B.; Büyükgüngör, H. Wastewater reclamation and reuse trends in Turkey: Opportunities and challenges. J. Water Process Eng. 2019, 30, 100501. [Google Scholar] [CrossRef]
- Domingues, E.; Fernandes, E.; Vaz, T.; Gomes, J.; Castro-Silva, S.; Martins, R.C.; Quinta-Ferreira, R.; Ferreira, L.M. Ion Exchange to Capture Iron after Real Effluent Treatment by Fenton’s Process. Water 2022, 14, 706. [Google Scholar] [CrossRef]
- Volesky, B. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy 2001, 59, 203–216. [Google Scholar] [CrossRef]
- Martins, P.J.M.; Reis, P.M.; Martins, R.C.; Gando-Ferreira, L.M.; Quinta-Ferreira, R.M. Iron recovery from the Fenton’s treatment of winery effluent using an ion-exchange resin. J. Mol. Liq. 2017, 242, 505–511. [Google Scholar] [CrossRef]
- Hasani, K.; Peyghami, A.; Moharrami, A.; Vosoughi, M.; Dargahi, A. The efficacy of sono-electro-Fenton process for removal of cefixime antibiotic from aqueous solutions by response surface methodology (RSM) and evaluation of toxicity of effluent by microorganisms. Arab. J. Chem. 2020, 13, 6122–6139. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Bellotindos, L.M.; Huang, Y.-H.; Brillas, E.; Lu, M.-C. Fluidized-bed Fenton process as alternative wastewater treatment technology—A review. J. Taiwan Inst. Chem. 2016, 67, 211–225. [Google Scholar] [CrossRef]
- Lacson, C.F.Z.; de Luna, M.D.G.; Dong, C.; Garcia-Segura, S.; Lu, M.-C. Fluidized-bed Fenton treatment of imidacloprid: Optimization and degradation pathway. Sustain. Environ. Res. 2018, 28, 309–314. [Google Scholar] [CrossRef]
- Su, C.-C.; Pukdee-Asa, M.; Ratanatamskul, C.; Lu, M.-C. Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination 2011, 278, 211–218. [Google Scholar] [CrossRef]
- Arden, S.; Ma, X. Constructed wetlands for greywater recycle and reuse: A review. Sci. Total Environ. 2018, 630, 587–599. [Google Scholar] [CrossRef]
- Liu, T.; Xu, S.; Lu, S.; Qin, P.; Bi, B.; Ding, H.; Liu, Y.; Guo, X.; Liu, X. A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors. Sci. Total Environ. 2019, 651, 2247–2268. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.N.R.; Ang, W.L.; Teow, Y.H.; Mohammand, A.W.; Hilal, N. Nanofiltration membrane processes for water recyclinh, reuse and product recovery within various industries: A review. J. Water Process Eng. 2022, 45, 102478. [Google Scholar] [CrossRef]
- Ali, M.; Rousseau, D.P.L.; Ahmed, S. A full-scale comparison of two hybrid constructed wetlands treating domestic wastewater in Pakistan. J. Environ. Manag. 2018, 210, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Gorito, A.M.; Ribeiro, A.R.; Gomes, C.R.; Almeida, C.M.R.; Silva, A.M.T. Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents. Sci. Total Environ. 2018, 644, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Arslan, M.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Sci. Total Environ. 2018, 645, 966–973. [Google Scholar] [CrossRef]
- Maine, M.A.; Sanchez, G.C.; Hadad, H.R.; Caffaratti, S.E.; Pedro, M.C.; Mufarrege, M.M.; Di Luca, G.A. Hybrid constructed wetlands for the treatment of wastewater from a fertilizer manufacturing plant: Microcosms and field scale experiments. Sci. Total Environ. 2019, 650, 297–302. [Google Scholar] [CrossRef]
- Bang, W.H.; Jung, Y.; Park, J.W.; Lee, S.; Maeng, S.K. Effects of hydraulic loading rate and organic load on the performance of a pilot-scale hybrid VF-HF constructed wetland in treating secondary effluent. Chemosphere 2019, 218, 232–240. [Google Scholar] [CrossRef]
- Tang, X.Y.; Yang, Y.; McBride, M.B.; Tao, R.; Dai, Y.N.; Zhang, X.M. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species. Chemosphere 2019, 216, 195–202. [Google Scholar] [CrossRef]
- Xing, L.; Kong, M.; Xie, X.; Sun, J.; Wei, D.; Li, A. Feasibility and safety of papermaking wastewarter in using as ecological water supplement after advanced treatment by fluidized-bed Fenton coupled with large-scale constructed wetland. Sci. Total Environ. 2020, 699, 134369. [Google Scholar] [CrossRef]
- Cai, Q.Q.; Lee, B.C.Y.; Ong, S.L.; Hu, J.Y. Fleuidized-bed Fenton techonologies for recalcitrant industrial wastewater treatment-Recent advances, chellenges and perspective. Water Res. 2021, 190, 116692. [Google Scholar] [CrossRef] [PubMed]
- Metin, S.; Çifçi, D.İ. Chemical industry wastewater treatment by coagulation combined with Fenton and photo-Fenton processes. J. Chem. Technol. Biotechnol. 2023, 98, 1158–1165. [Google Scholar] [CrossRef]
- Lin, R.; Li, Y.; Yong, T.; Cao, W.; Wu, J.; Shen, Y. Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: A review. J. Environ. Manag. 2022, 306, 114460. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Y.; Gao, Y.; Han, X.; Yang, M. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: Performance, mechanism, and full-scale application. Water Res. 2020, 173, 115517. [Google Scholar] [CrossRef]
- Niaounakis, M.; Halvadakis, C.P. Olive processing waste management literature review and patent survey. Waste Manag. Ser. 2006, 5, 23–64. [Google Scholar]
- Paraskeva, P.; Diamadopoulos, E. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 2006, 81, 475–1485. [Google Scholar] [CrossRef]
- Asfi, M.; Ouzounidou, G.; Panajiotidis, S.; Therios, I.; Moustakas, M. Toxicity effects of olive-mill wastewater on growth, photosynthesis and pollen morphology of spinach plants. Ecotoxicol. Environ. Saf. 2012, 80, 69–75. [Google Scholar] [CrossRef]
- Danellakis, D.; Ntaikou, I.; Kornaros, M.; Dailianis, S. Olive oil mill wastewater toxicity in the marine environment: Alterations of stress indices in tissues of mussel Mytilus galloprovincialis. Aquat. Toxicol. 2011, 101, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Karaouzas, I.; Skoulikidis, N.T.; Giannakou, U.; Albanis, T.A. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status. Water Res. 2011, 45, 6334–6346. [Google Scholar] [CrossRef] [PubMed]
- Ntougias, S.; Gaitis, F.; Katsaris, P.; Skoulika, S.; Iliopoulos, N.; Zervakis, G.I. The effects of olives harvest period and production year on olive mill wastewater properties-evaluation of Pleurotus strains as bioindicators of the effluent’s toxicity. Chemosphere 2013, 92, 399–405. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Hodaifa, G.; Martinez-Ferez, A. Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology. Sci. Total Environ. 2015, 503–504, 113–121. [Google Scholar] [CrossRef] [PubMed]
- De Caprariis, B.; Di Rita, M.; Stoller, M.; Verdone, N.; Chianese, A. Reaction-precipitation by a spinning disc reactor: Influence of hydrodynamics on nanoparticles production. Chem. Eng. Sci. 2012, 76, 73–80. [Google Scholar] [CrossRef]
- Martínez Nieto, L.; Hodaifa, G.; Rodríguez Vives, S.; Giménez Casares, J.A.; Ochando, J. Flocculation–sedimentation combined with chemical oxidation process. Clean Soil Air Water 2011, 39, 949–955. [Google Scholar] [CrossRef]
- Sacco, O.; Stoller, M.; Vaiano, V.; Ciambelli, P.; Chianese, A.; Sannino, D. Photocatalytic degradation of organic dyes under visible light on n-doped photocatalysts. Int. J. Photoenergy 2012, 2012, 626759. [Google Scholar] [CrossRef]
- Martínez Nieto, L.; Hodaifa, G.; Rodríguez, V.S.; Giménez, C.J.A.; Ochando, J. Degradation of organic matter in olive oil mill wastewater through homogeneous Fenton-like reaction. Chem. Eng. J. 2011, 173, 503–510. [Google Scholar] [CrossRef]
- Martínez Nieto, L.; Alami, S.B.D.; Hodaifa, G.; Faour, C.; Rodríguez, S.; Gimézez, J.A.; Ochando, J. Adsorption of iron on crude olive stones. Ind. Crop. Prod. 2010, 32, 467–471. [Google Scholar] [CrossRef]
- Hodaifa, G.; Ochando-Pulido, J.M.; Rodriguez-Vives, S.; Martinez-Ferez, A. Optimization of con- tinuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chem. Eng. J. 2013, 220, 117–124. [Google Scholar] [CrossRef]
- Hodaifa, G.; Ochando-Pulido, J.M.; Ben-Driss-Alami, S.; Rodriguez-Vives, S.; Martinez-Ferez, A. Kinetic and thermodynamic parameters of iron adsorption onto olive stones. Ind. Crop. Prod. 2013, 49, 526–534. [Google Scholar] [CrossRef]
- Sancho Cierva, J. Water Quality for Irrigation Use; Giner, J.F., Ed.; Universida Politécnica de Valencia-Generalitat Valenciana—Phytoma: Valencia, Spain, 2000. [Google Scholar]
- Iaquinta, M.; Stoller, M.; Merli, C. Optimization of a nanofiltration membrane for tomato industry wastewater treatment. Desalination 2009, 245, 314–320. [Google Scholar] [CrossRef]
- Stoller, M.; Chianese, A. Technical optimization of a batch olive wash wastewater treatment membrane plant. Desalination 2006, 200, 734–736. [Google Scholar] [CrossRef]
- Stoller, M.; Chianese, A. Optimization of membrane batch processes by means of the critical flux theory. Desalination 2006, 191, 62–70. [Google Scholar] [CrossRef]
- Stoller, M.; Chianese, A. Influence of the adopted pretreatment process on the critical flux value of batch membrane processes. Ind. Eng. Chem. Res. 2007, 46, 2249–2253. [Google Scholar] [CrossRef]
- Stoller, M.; Bravi, M.; Chianese, A. Threshold flux measurements of a nanofiltration mem- brane module by critical flux data conversion. Desalination 2013, 315, 142–148. [Google Scholar] [CrossRef]
- Stoller, M.; De Caprariis, B.; Cicci, A.; Verdone, N.; Bravi, M.; Chianese, A. About proper mem- brane process design affected by fouling by means of the analysis of measured threshold flux data. Sep. Purif. Technol. 2013, 114, 83–89. [Google Scholar] [CrossRef]
- Stoller, M. On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction. Desalination 2009, 240, 209–217. [Google Scholar] [CrossRef]
- Stoller, M. Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment. Chem. Eng. J. 2011, 168, 1140–1148. [Google Scholar] [CrossRef]
- Pal, M.; Malhotra, M.; Madal, M.K.; Paine, T.K.; Pal, P. Recycling of wastewater from tannery industry through membrane-integrated hybrid treatment using a novel graphene oxide nanocomposite. J. Water Process. Eng. 2020, 36, 101324. [Google Scholar] [CrossRef]
- Víctor-Ortega, M.D.; Ochando-Pulido, J.M.; Hodaifa, G.; Martinez-Ferez, A. Final purification of synthetic olive oil mill wastewater treated by chemical oxidation using ion exchange: Study of operating parameters. Chem. Eng. Process. Process Intensif. 2014, 85, 241–247. [Google Scholar] [CrossRef]
- El-Hazek, A.N.; Wagdy, A.H.; Hassanain, A.M. Assessment of a Fenton Reaction in treating Greywater for reuse in Irrigation. Eng. Res. J. 2022, 51, 141–148. [Google Scholar]
- Ribeiro, M.C.M.; Starling, M.C.V.M.; Leão, M.M.D.; Amorim, C.C. Txtile wastewater reuse after additional treatment by Fenton’s reagent. Environ. Sci. Pollut. Res. 2016, 24, 6165–6175. [Google Scholar] [CrossRef]
Variable | No. of Articles | r | p |
---|---|---|---|
No. of articles | 1263 | 0.93 | <0.001 |
Dye | 227 | 0.85 | <0.001 |
Drugs | 114 | 0.81 | <0.001 |
Phenol | 62 | 0.81 | <0.001 |
Organic compounds | 216 | 0.87 | <0.001 |
Hygiene and cleaning | 11 | 0.42 | 0.02 |
Pesticide | 22 | 0.59 | <0.001 |
Inorganic compounds/metals | 40 | 0.82 | <0.001 |
Vinasse | 5 | 0.32 | 0.09 |
Other compounds | 418 | 0.69 | <0.001 |
Journal | Total | % |
---|---|---|
Desalination and Water Treatment | 68 | 5.384 |
Chinese Journal of Environmental Engineering | 67 | 5.305 |
Journal of Hazardous Materials | 66 | 5.226 |
Chemical Engineering Journal | 56 | 4.434 |
Chemosphere | 38 | 3.009 |
Journal of Environmental Chemical Engineering | 34 | 2.692 |
Water Science and Technology | 34 | 2.692 |
Environmental Science and Pollution Research | 27 | 2.138 |
Journal of Environmental Management | 25 | 1.979 |
Separation and Purification Technology | 25 | 1.979 |
Water Research | 23 | 1.821 |
Environmental Technology (United Kingdom) | 18 | 1.425 |
Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science) | 17 | 1.346 |
Journal of Water Process Engineering | 16 | 1.267 |
RSC Advances | 14 | 1.108 |
Science of the Total Environment | 14 | 1.108 |
Chung-kuo Tsao Chih/China Pulp and Paper | 13 | 1.029 |
Journal of Cleaner Production | 13 | 1.029 |
Journal of Chemical Technology and Biotechnology | 12 | 0.950 |
Desalination | 11 | 0.871 |
International Journal of Environmental Science and Technology | 11 | 0.871 |
Asian Journal of Chemistry | 10 | 0.792 |
Processes | 10 | 0.792 |
Country | No. of Articles | Percentage |
---|---|---|
China | 530 | 41.96358 |
Turkey | 95 | 7.52177 |
Iran | 86 | 6.80918 |
Spain | 62 | 4.90895 |
India | 52 | 4.11718 |
Portugal | 43 | 3.40459 |
Taiwan | 38 | 3.00871 |
Brazil | 29 | 2.29612 |
Poland | 27 | 2.13777 |
Italy | 18 | 1.42518 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimentel Prates, M.; de Oliveira Loures Marcionílio, S.M.; Borges Machado, K.; Medeiros de Araújo, D.; Martínez-Huitle, C.A.; Leão Arantes, A.L.; Ferreira da Silva Gadêlha, J.E. Fenton: A Systematic Review of Its Application in Wastewater Treatment. Processes 2023, 11, 2466. https://doi.org/10.3390/pr11082466
Pimentel Prates M, de Oliveira Loures Marcionílio SM, Borges Machado K, Medeiros de Araújo D, Martínez-Huitle CA, Leão Arantes AL, Ferreira da Silva Gadêlha JE. Fenton: A Systematic Review of Its Application in Wastewater Treatment. Processes. 2023; 11(8):2466. https://doi.org/10.3390/pr11082466
Chicago/Turabian StylePimentel Prates, Matheus, Suzana Maria de Oliveira Loures Marcionílio, Karine Borges Machado, Danyelle Medeiros de Araújo, Carlos A. Martínez-Huitle, Arizeu Luiz Leão Arantes, and José Eduardo Ferreira da Silva Gadêlha. 2023. "Fenton: A Systematic Review of Its Application in Wastewater Treatment" Processes 11, no. 8: 2466. https://doi.org/10.3390/pr11082466
APA StylePimentel Prates, M., de Oliveira Loures Marcionílio, S. M., Borges Machado, K., Medeiros de Araújo, D., Martínez-Huitle, C. A., Leão Arantes, A. L., & Ferreira da Silva Gadêlha, J. E. (2023). Fenton: A Systematic Review of Its Application in Wastewater Treatment. Processes, 11(8), 2466. https://doi.org/10.3390/pr11082466