Modeling of Oxidative Coupling of Methane for Manufacture of Olefins—Part I: CFD Simulations
Abstract
:1. Introduction
2. Governing Equations
2.1. Kinetic Model
2.2. Solid Phase
2.3. Gas Phase
3. Numerical Approach
Simulation Parameters
4. Results and Discussion
4.1. Mesh Convergence
4.2. Numerical Validation
4.3. OCM Reactions
4.4. Effect of the Pellet Arrangement
4.5. Effect of the Feed Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amghizar, I.; Vandewalle, L.; Geem, K.; Marin, G. New trends in olefin production. Engineering 2017, 3, 171–178. [Google Scholar] [CrossRef]
- Da Ros, S.; Fontoura, T.B.; Schwaab, M.; de Jesus, N.J.C.; Pinto, J.C. Oxidative Coupling of Methane for Ethylene Production: Reviewing Kinetic Modelling Approaches, Thermodynamics and Catalysts. Processes 2021, 9, 2196. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. J. Ind. Eng. Chem. 2016, 37, 1–13. [Google Scholar] [CrossRef]
- Vandewalle, L.A.; de Vijver, R.V.; Geem, K.M.V.; Marin, G.B. The role of mass and heat transfer in the design of novel reactors for oxidative coupling of methane. Chem. Eng. Sci. 2019, 198, 268–289. [Google Scholar] [CrossRef]
- Stansch, Z.; Mleczko, L.; Baerns, M. Comprehensive Kinetics of Oxidative Coupling of Methane over the La2O3/CaO catalyst. Ind. Eng. Chem. Res 1997, 36, 2568–2579. [Google Scholar] [CrossRef]
- Alexiadis, V.; Chaar, M.; Van Veen, A.; Muhler, M.; Thybaut, J.; Marin, G. Quantitative screening of an extended oxidative coupling of methane catalyst library. Appl. Catal. B Environ. 2016, 199, 252–259. [Google Scholar] [CrossRef]
- Vandewalle, L.A.; Lengyel, I.; West, D.H.; Geem, K.M.V.; Marin, G.B. Catalyst ignition and extinction: A microkinetics-based bifurcation study of adiabatic reactors for oxidative coupling of methane. Chem. Eng. Sci. 2019, 199, 635–651. [Google Scholar] [CrossRef]
- Couwenberg, P.; Chen, Q.; Marin, G. Irreducible Mass-Transport Limitations during a Heterogeneously Catalyzed Gas-Phase Chain Reaction: Oxidative Coupling of Methane. Ind. Eng. Chem. Res. 1996, 35, 415–421. [Google Scholar] [CrossRef]
- Alexiadis, V.; Thybaut, J.; Kechagiopoulos, P.; Chaar, M.; Van Veen, A.C.; Muhler, M. Oxidative coupling of methane: Catalytic behaviour assessment via comprehensive microkinetic modelling. Appl. Catal. B Environ. 2014, 151, 496–505. [Google Scholar] [CrossRef]
- Obradović, A.; Thybaut, J.; Marin, G. Oxidative coupling of methane: Opportunities for microkinetic model-assisted process implementations. Chem. Eng. Technol. 2016, 39, 1996–2010. [Google Scholar] [CrossRef]
- Balakotaiah, V.; Kodra, D.; Nguyen, D. Runaway limits for homogeneous and catalytic reactors. Chem. Eng. Sci. 1995, 50, 1149–1171. [Google Scholar] [CrossRef]
- Couwenberg, P.; Chen, Q.; Marin, G. Kinetics of a Gas-Phase Chain Reaction Catalyzed by a Solid: The Oxidative Coupling of Methane over LiMgO - Based Catalysts. Ind. Eng. Chem. Res 1996, 35, 3999–4011. [Google Scholar] [CrossRef]
- Kechagiopoulos, P.N.; Thybaut, J.W.; Marin, G.B. Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles. Ind. Eng. Chem. Res. 2014, 53, 1825–1840. [Google Scholar] [CrossRef]
- Sun, Z.; West, D.H.; Balakotaiah, V. Bifurcation analysis of catalytic partial oxidations in laboratory-scale packed-bed reactors with heat exchange. Chem. Eng. J. 2018, 377, 119765. [Google Scholar] [CrossRef]
- Maffei, T.; Gentile, G.; Rebughini, S.; Bracconi, M.; Manelli, F.; Lipp, S.; Cuoci, A.; Maestri, M. A multiregion operator-splitting CFD approach for couplingmicrokinetic modeling with internal porous transport in heterogeneouscatalytic reactors. Chem. Eng. J. 2016, 283, 1392–1404. [Google Scholar] [CrossRef]
- Deutschmann, O.; Tischer, S.; Correa, C.; Chatterjee, D.; Kleditzsch, S.; Janardhanan, V.; Mladenov, N.; Minh, H.; Karadeniz, H.; Hettel, M. DETCHEM Software Package. 2014. Available online: https://www.detchem.com/home (accessed on 7 July 2021).
- Raja, L.; Kee, R.; Deutschmann, O.; Warnatz, J.; Schmidt, L. A criticalevaluation of Navier-Stokes, boundary-layer, and plug-flow models of the flowand chemistry in a catalytic-combustion monolith. Catal. Today 2000, 59, 47–60. [Google Scholar] [CrossRef]
- Maestri, M.; Cuoci, A. Coupling CFD with detailed microkinetic modeling inheterogeneous catalysis. Chem. Eng. Sci 2013, 96, 106–117. [Google Scholar] [CrossRef]
- Maestri, M.; Cuoci, A. CatalyticFOAM. 2013. Available online: http://www.catalyticfoam.polimi.it/ (accessed on 5 July 2021).
- Schlichting, H.; Gersten, K. Boundary-Layer Theory, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Seyednejadian, S.; Yaghobi, N.; Maghrebi, R.; Vafajoo, L. CFD modeling of reaction and transfer through a single pellet: Catalytic oxidative coupling of methane. J. Nat. Gas Chem. 2011, 20, 356–363. [Google Scholar] [CrossRef]
- Maghrebi, R.; Yaghobi, N.; Seyednejadian, S.; Tabatabaei, M. CFD modeling of catalyst pellet for oxidative coupling of methane: Heat transfer and reaction. Particuology 2013, 11, 506–513. [Google Scholar] [CrossRef]
- Salehi, M.; Askarishahi, M.; Godini, H.R.; Schomäcker, R.; Wozny, G. CFD Simulation of Oxidative Coupling of Methane in Fluidized-Bed Reactors: A Detailed Analysis of Flow-Reaction Characteristics and Operating Conditions. Ind. Eng. Chem. Res. 2016, 55, 1149–1163. [Google Scholar] [CrossRef]
- Vandewalle, L.A.; Geem, K.M.V.; Marin, G.B. CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane. Chem. Eng. Process. Process. Intensif. 2021, 165, 108434. [Google Scholar] [CrossRef]
- Vandewalle, L.A.; Gonzalez-Quiroga, A.; Perreault, P.; Geem, K.M.V.; Marin, G.B. Process Intensification in a Gas-Solid Vortex Unit Computational Fluid Dynamics Model Based Analysis and Design. Ind. Eng. Chem. Res. 2019, 58, 12751–12765. [Google Scholar] [CrossRef]
- Vandewalle, L.A.; Geem, K.M.V.; Marin, G.B. catchyFOAM Euler-Euler CFD Simulations of Fluidized Bed Reactors with Microkinetic Modeling of Gas-Phase and Catalytic Surface Chemistry. Energy Fuels 2021, 35, 2545–2561. [Google Scholar] [CrossRef]
- Ansys®—Academic Research Mechanical. 2019. Release 19.1. Available online: https://www.ansys.com/academic/students/ansys-student (accessed on 23 October 2019).
- Sinev, M.Y.; Gordienko, Y.A. Kinetics of oxidative coupling of methane: Bridging the gap between comprehension and description. J. Nat. Gas Chem. 2009, 18, 273–287. [Google Scholar] [CrossRef]
- Lomonosov, V.I.; Gordienko, Y.A.; Sinev, M.Y. Kinetics of the oxidative coupling of methane in the presence of model catalysts. Kinet. Catal. 2013, 54, 451–462. [Google Scholar] [CrossRef]
- Rafique, H.; Vuddagiri, S.; Radaelli, G.; Scher, E.; McCormick, J.; Cizeron, J. Oxidative Coupling of Methane Implementation for Olefin Production. U.S. Patent 20160272556A1, 22 September 2016. [Google Scholar]
- Scher, E.; Zurcher, F.; Cizeron, J.; Schammel, W.; Tkachenko, A.; Karshtedt, D.; Nyce, G. Nanowire Catalysts. EP Patent 2576046A2, 24 May 2011. [Google Scholar]
- Malalasekera, W.; Versteeg, H.K. An Introduction to Computational Fluid Dynamics, The Finite Volume Method, 2nd ed.; Pearson Education: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Maliska, C. Transferência de Calor e Mecânica dos Fluidos Computacional, 2nd ed.; LTC—Livros Técnicos e Científicos: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- Alberton, A.; Schwaab, M.; Fontes, C.E.; Bittencourt, R.C.; Pinto, J.C. Hybrid Modeling of Methane Reformers. 1. A Metamodel for the Effectiveness Factor of a Catalyst Pellet with Complex Geometry. Ind. Eng. Chem. Res. 2009, 48, 9369–9375. [Google Scholar] [CrossRef]
- Sarsani, S.; West, D.; Liang, W.; Balakotaiah, V. Autothermal oxidative coupling of methane with ambient feed temperature. Chem. Eng. J. 2017, 328, 484–496. [Google Scholar] [CrossRef]
- Lage, V.; Pacheco, H.; Fontoura, T.B.; Jesus, N.; Pinto, J.; Estudo do Acoplamento Oxidativo com Metano—Estudos de Validação Experimental. Personal Communication to be Published, 2023.
No | Reaction | ||||||
---|---|---|---|---|---|---|---|
1 | CH + 2O → CO + 2HO | 6.35 | 4.80 | 1.00 | 0.24 | 0.76 | −802.62 |
2 | 2CH + 0.5O → CH + HO | 3.80 | 1.32 | 1.40 | 1.00 | 0.40 | −176.59 |
3 | CH + O → CO + HO + H | 7.31 | 6.80 | 1.42 | 0.57 | 0.85 | −277.82 |
4 | CO + 0.5O CO | 4.99 | 1.04 | 1.55 | 1.00 | 0.55 | −283.26 |
5 | CH + 0.5O CH + HO | 9.69 | 1.57 | 1.32 | 0.95 | 0.37 | −210.51 |
6 | CH + 2O 2CO + 2HO | 1.10 | 1.66 | 1.96 | 1.00 | 0.96 | −652.17 |
7 * | CH + 2O CH + H | 9.97 | 2.22 | 1.00 | 1.00 | — | 31.31 |
8 | CH + 2HO → 2CO + 4H | 2.25 | 3.00 | 0.97 | 0.97 | 0.00 | 315.10 |
9 | CO + HO → CO + H | 5.01 | 1.73 | 2.00 | 1.00 | 1.00 | −41.16 |
10 | CO + H CO + HO | 6.86 | 2.20 | 2.00 | 1.00 | 1.00 | 41.16 |
11 * | CH + 2O CO + 2HO | 2.12 | 2.03 | — | 0.20 | 1.30 | −802.62 |
12 * | 2CH + O CH + 2HO | 2.30 | 1.82 | 2.00 | 1.00 | 1.00 | −387.16 |
Operating Conditions | |
---|---|
Inlet velocity | 0.5 m/s |
Inlet temperature | 600–1000 K |
Inlet Pressure | 1 atm |
CH/O | 2–8 |
Reactor Geometry | |
Volume | 1000 cm |
Pellet radius | 1 cm |
Pellet height | 1 cm |
Catalyst Properties | |
Porosity | |
Density | 3690 kg/m |
Heat capacity | 880 J/(Kg·K) |
Thermal conductivity | 18 W/(m·K) |
Mesh Quality | ||||
---|---|---|---|---|
Coarse | Medium | Fine | Very Fine | |
No of elements | 89,385 | 144,963 | 363,144 | 707,769 |
No of nodes | 15,776 | 26,080 | 66,566 | 135,042 |
Continuity Residual | ||||
Energy Residual |
2 | 4 | 8 | 10 | ||
---|---|---|---|---|---|
Pellet horizontal | [K] | 901 | 886 | 872 | 870 |
[K] | 922 | 899 | 883 | 878 | |
21.67 | 18.75 | 15.50 | 14.98 | ||
Ethylene Yield | 1.74 | 1.95 | 2.19 | 2.49 | |
Pellet vertical | [K] | 922 | 889 | 876 | 874 |
[K] | 1005 | 928 | 895 | 882 | |
23.69 | 19.50 | 18.89 | 18.56 | ||
Ethylene Yield | 1.48 | 1.65 | 1.98 | 2.32 | |
Set of pellets | [K] | 1160 | 927 | 898 | 876 |
[K] | 1440 | 1261 | 956 | 884 | |
26.08 | 21.92 | 19.87 | 18.97 | ||
Ethylene Yield | 1.61 | 1.82 | 2.12 | 2.57 |
Model | Data | |
---|---|---|
19.87 | 21.69 | |
Ethylene Yield | 2.12 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontoura, T.B.; De Jesus, N.J.C.; Pinto, J.C. Modeling of Oxidative Coupling of Methane for Manufacture of Olefins—Part I: CFD Simulations. Processes 2023, 11, 2505. https://doi.org/10.3390/pr11082505
Fontoura TB, De Jesus NJC, Pinto JC. Modeling of Oxidative Coupling of Methane for Manufacture of Olefins—Part I: CFD Simulations. Processes. 2023; 11(8):2505. https://doi.org/10.3390/pr11082505
Chicago/Turabian StyleFontoura, Tahyná B., Normando J. C. De Jesus, and José Carlos Pinto. 2023. "Modeling of Oxidative Coupling of Methane for Manufacture of Olefins—Part I: CFD Simulations" Processes 11, no. 8: 2505. https://doi.org/10.3390/pr11082505
APA StyleFontoura, T. B., De Jesus, N. J. C., & Pinto, J. C. (2023). Modeling of Oxidative Coupling of Methane for Manufacture of Olefins—Part I: CFD Simulations. Processes, 11(8), 2505. https://doi.org/10.3390/pr11082505