Multiscale CFD Simulation of Multiphase Erosion Process in a Connecting Pipe of Industrial Polycrystalline Silicon Unit
Abstract
:1. Introduction
2. Simulation Description
2.1. Geometry of an Industrial Pipe of Polycrystalline Silicon Production
2.2. Governing Equations and Constitutive Relations
2.3. Simulation Settings
3. Results and Discussion
3.1. Model Validation
3.2. Effects of Key Simulation Parameters
3.2.1. Drag Force between Hydrogen and Discrete Phase
3.2.2. Liquid Droplet Specularity Coefficient at wall Boundary Condition
3.3. Effects of Key Operation Parameters
3.3.1. Atomized Droplet Size
3.3.2. Hydrogen Volume Fraction
3.4. Coupling Effects of Liquid Droplet and Solid Particle Phases on Erosion
3.5. Erosion Deformation Process in the Gas and Liquid Droplet Two-Phase Flow
4. Conclusions
- (1)
- The drag force between the hydrogen and discrete phase and the droplet wall specularity coefficient are key effect factors on the predicted erosion position and thinning rate. The non-uniform multiphase erosion flow behavior near the wall in a coarse mesh can be modeled accurately with the sub-grid EMMS drag model. The droplet specularity coefficient influences the wall momentum exchange and flow distribution. A suitable partial slip boundary condition, such as a 0.5 specularity coefficient, could improve the accuracy of erosion position.
- (2)
- The variations of operation parameters directly influence the erosion positions and thinning rates. Small liquid droplets, such as those of 30 μm size, will follow the gas phase better and have a lower erosion rate. The inertia effect of large droplets, such as those of 150 μm size, plays a dominant role, resulting in obvious erosion on the elbow walls. The erosion range and thinning rate enlarge with the increase in hydrogen volume fraction. A greater hydrogen volume fraction will have a greater impact on kinetic energy and produce more serious erosion damage.
- (3)
- A few silicon solid particles (such as 0.01% volume fraction) can change local flow behaviors, such as flow velocity and residence, and probably cause the variation of local erosion positions.
- (4)
- In the gas–liquid droplet erosion thinning deformation process, the erosion ranges and thinning rates enlarge quickly. The erosion positions remain unchanged at the beginning, whereafter the pipe deformation accelerates to improve the thinning rates at the severe erosion positions, but the erosion range changes little.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature | |
Af | the area of the cell face |
Bp | the range of predicted bending angle |
Bi | the range of industrial measured bending angle |
C | range contact ratio |
Cd | drag coefficient |
C(dp) | particle diameter function |
C(d) | drag coefficient |
d | diameter |
ER | erosion rate |
e | coefficient of restitution for particle collisions |
f(θ) | impact angle function |
Gb | turbulent kinetic energy |
Gk | mean velocity gradient |
gravity vector | |
g0 | radial distribution function |
Hd | heterogeneous structure factor |
identity tensor | |
L | length of the range |
m | mass flow rate |
n(u) | particle relative particle velocity function |
p | Pressure |
R | erosion thinning rate |
Re | Reynolds number |
t | time |
u | velocity |
V | relative particle velocity |
Greek symbols | |
α | volume fraction |
β | interphase drag coefficient |
γ | the rate of energy dissipation |
σ | turbulent Prandtl number |
θ | impact angle |
θp | granular temperature |
λ | bulk viscosity |
μ | viscosity |
μp,col | solids collisional viscosity |
μp,fr | solids frictional viscosity |
μp,kin | solids kinetic viscosity |
ρ | density |
stress-strain tensor | |
Subscripts | |
g | gas phase |
p | discrete phase |
s | solid particle |
w | wall |
Appendix A. Grid Independence Analysis
Parameter | Mesh 1 | Mesh 2 | Mesh 3 | Mesh 4 |
---|---|---|---|---|
Total number of grids | 616,272 | 801,780 | 1,091,305 | 1,207,999 |
Radial minimum grid length, mm | 3.55 | 3.29 | 2.88 | 2.88 |
Radial maximum grid length, mm | 11.44 | 10.35 | 9.06 | 9.06 |
Axial minimum grid length, mm | 8.36 | 8.36 | 7.56 | 7.56 |
Axial maximum grid length, mm | 34.07 | 26.48 | 25.08 | 20.83 |
Maximum aspect ratio | 11.40 | 9.64 | 8.91 | 8.72 |
Minimum angle | 42.48° | 42.21° | 41.85° | 41.85° |
Cross-sectional averaged gas velocity at the outlet, m/s | 6.02 | 5.71 | 5.55 | 5.64 |
Appendix B. Heterogeneity Index, Hd, Calculated with EMMS Drag Scheme
Hd = a((ρl∙Uslip∙dp)/μl)b, 0.001 ≤ Uslip ≤ 10Ul | εmf ≤ εl ≤ 1.0000 |
εmf ≤ εl ≤ 0.4510 | |
0.4510 < εl ≤ 0.5404 | |
0.5404 < εl ≤ 0.9409 | |
0.9409 < εl ≤ 0.9967 | |
0.9967 < εl ≤ 1.0000 |
References
- Yan, D.; Li, A.; Wan, Y.; Yang, Y.; Zhang, S.; Zhao, X.; He, W.; Tang, C. A new pattern of competition in the high purity polysilicon material industry. Sol. Energy 2017, 1, 7–15. [Google Scholar]
- Li, Y.; Li, A.; Nie, Z.; Zhou, Y.; Fang, W.; Xie, G.; Hou, Y. Research progress in reduction process of polysilicon production by modified Siemens method. Mod. Chem. Ind. 2018, 38, 38–42. [Google Scholar]
- Zheng, J.; Huang, Y.; Xie, G. Research progress of plasma hydrogenation of silicon tetrachloride. Chem. Ind. Eng. Prog. 2015, 34, 1532–1538. [Google Scholar]
- Luo, Z.; Li, B.; Xiang, C. Research on energy saving optimization of cold hydrogenation process. Henan Chem. Ind. 2022, 39, 39–42. [Google Scholar]
- Xie, Z.; Cao, X.; Wu, C.; Sun, X.; Zhao, X.; Xiong, N. Research Progress of Solid Particle Erosion Theories and Anti-erosion Methods in Elbow. Surf. Technol. 2021, 50, 170–179. [Google Scholar]
- Liang, N.; Yuan, Z.; Wang, J.; Kang, J.; Chu, Y. Current Situation and Prospect of Erosion Wear. J. Phys. Conf. Ser. 2020, 1600, 012015. [Google Scholar] [CrossRef]
- Zamani, M.; Seddighi, S.; Nazif, H.R. Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow. J. Nat. Gas Sci. Eng. 2017, 40, 91–113. [Google Scholar] [CrossRef]
- Vieira, R.E.; Mansouri, A.; McLaury, B.S.; Shirazi, S.A. Experimental and computational study of erosion in elbows due to sand particles in air flow. Powder Technol. 2016, 288, 339–353. [Google Scholar] [CrossRef]
- Solnordal, C.B.; Wong, C.Y.; Boulanger, J. An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow. Wear 2015, 336–337, 43–57. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Li, X.; He, R.; Han, S.; Chen, Y. Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling method. Powder Technol. 2015, 275, 182–187. [Google Scholar] [CrossRef]
- Singh, J.; Singh, J.P. Numerical Analysis on Solid Particle Erosion in Elbow of a Slurry Conveying Circuit. J. Pipeline Syst. Eng. Pract. 2021, 12, 04020070. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Wang, Y.; He, R. Numerical investigation of the erosion behavior in elbows of petroleum pipelines. Powder Technol. 2017, 314, 490–499. [Google Scholar] [CrossRef]
- Parsi, M.; Najmi, K.; Najafifard, F.; Hassani, S.; McLaury, B.S.; Shirazi, S.A. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. J. Nat. Gas Sci. Eng. 2014, 21, 850–873. [Google Scholar] [CrossRef]
- Cao, X.; Xie, Z.; Peng, W.; Sun, X.; Zhao, X.; Zang, X. Research progress of erosion in multiphase pipelines. Oil Gas Storage Transp. 2021, 40, 1092–1098. [Google Scholar]
- Madani Sani, F.; Huizinga, S.; Esaklul, K.A.; Nesic, S. Review of the API RP 14E erosional velocity equation: Origin, applications, misuses, limitations and alternatives. Wear 2019, 426–427, 620–636. [Google Scholar] [CrossRef]
- Chochua, G.; Parsi, M.; Zhang, Y.; Zhang, J.; Sedrez, T.; Karimi, S.; Darihaki, F.; Edwards, J.; Arabnejad, H.; Agrawal, M. A review of various guidelines for predicting solid particle erosion using computational fluid dynamics codes. In CORROSION 2020; OnePetro: Richardson, TX, USA, 2020; Volume 15105. [Google Scholar]
- Mansouri, A.; Arabnejad, H.; Shirazi, S.A.; McLaury, B.S. A combined CFD/experimental methodology for erosion prediction. Wear 2015, 332–333, 1090–1097. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, Q.B.; Liu, Z.G.; Wan, S.; Lim, C.Y.H.; Zhang, Y.W. A combined numerical–experimental study on the effect of surface evolution on the water–sand multiphase flow characteristics and the material erosion behavior. Wear 2014, 319, 96–109. [Google Scholar] [CrossRef]
- Pouraria, H.; Darihaki, F.; Park, K.H.; Shirazi, S.A.; Seo, Y. CFD modelling of the influence of particle loading on erosion using dense discrete particle model. Wear 2020, 460–461, 203450. [Google Scholar] [CrossRef]
- Duarte, C.A.R.; de Souza, F.J.; dos Santos, V.F. Numerical investigation of mass loading effects on elbow erosion. Powder Technol. 2015, 283, 593–606. [Google Scholar] [CrossRef]
- Lin, N.; Arabnejad, H.; Shirazi, S.A.; McLaury, B.S.; Lan, H. Experimental study of particle size, shape and particle flow rate on Erosion of stainless steel. Powder Technol. 2018, 336, 70–79. [Google Scholar] [CrossRef]
- Laín, S.; Sommerfeld, M. Numerical prediction of particle erosion of pipe bends. Adv. Powder Technol. 2019, 30, 366–383. [Google Scholar] [CrossRef]
- Solnordal, C.B.; Wong, C.Y.; Zamberi, A.; Jadid, M.; Johar, Z. Determination of erosion rate characteristic for particles with size distributions in the low Stokes number range. Wear 2013, 305, 205–215. [Google Scholar] [CrossRef]
- Mazumder, Q.H.; Shirazi, S.A.; McLaury, B. Experimental investigation of the location of maximum erosive wear damage in elbows. Press. Vessel Technol. 2008, 130, 011303–011310. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, Y.; Yang, D.; Trias, F.X.; Jiang, S.; Sheng, Y.; Oliva, A. Numerical investigation of the location of maximum erosive wear damage in elbow: Effect of slurry velocity, bend orientation and angle of elbow. Powder Technol. 2012, 217, 467–476. [Google Scholar] [CrossRef]
- Chen, X.; McLaury, B.S.; Shirazi, S.A. Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees. Comput. Fluids 2004, 33, 1251–1272. [Google Scholar] [CrossRef]
- Peng, W.; Cao, X.; Hou, J.; Xu, K.; Fan, Y.; Xing, S. Experiment and numerical simulation of sand particle erosion under slug flow condition in a horizontal pipe bend. J. Nat. Gas Sci. Eng. 2020, 76, 103175. [Google Scholar] [CrossRef]
- Parkash, O.; kumar, A.; Sikarwar, B.S. Computational Erosion Wear Model Validation of Particulate Flow through Miter Pipe Bend. Arab. J. Sci. Eng. 2021, 46, 12373–12390. [Google Scholar] [CrossRef]
- Wu, H.; Luo, X.; Yang, Y.; Du, M.; Yao, Y.; Pan, S.; Qin, H. Research on Erosion and Wear of Jet Pump by Different Sand Particle Size Based on DPM Method. In Proceedings of the 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 25–27 May 2022; pp. 115–119. [Google Scholar]
- Li, A.; Zhu, L.; Wang, K.; Wang, G.; Wang, Z. Particles residence time distribution in a gas-solid cyclone reactor using a CFD-DDPM tracer method. Powder Technol. 2020, 364, 205–217. [Google Scholar] [CrossRef]
- Farokhipour, A.; Mansoori, Z.; Rasteh, A.; Rasoulian, M.A.; Saffar-Avval, M.; Ahmadi, G. Study of erosion prediction of turbulent gas-solid flow in plugged tees via CFD-DEM. Powder Technol. 2019, 352, 136–150. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Q.; Zheng, J.; Zhao, Y. Numerical prediction of erosion in elbow based on CFD-DEM simulation. Powder Technol. 2016, 302, 236–246. [Google Scholar] [CrossRef]
- Xiao, F.; Luo, M.; Huang, F.; Zhou, M.; An, J.; Kuang, S.; Yu, A. CFD–DEM investigation of gas-solid flow and wall erosion of vortex elbows conveying coarse particles. Powder Technol. 2023, 424, 118524. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, G. Comparison of solid particle erosion predictions using the dense discrete phase and discrete element models. Adv. Powder Technol. 2022, 33, 103644. [Google Scholar] [CrossRef]
- Parsi, M.; Kara, M.; Agrawal, M.; Kesana, N.; Jatale, A.; Sharma, P.; Shirazi, S. CFD simulation of sand particle erosion under multiphase flow conditions. Wear 2017, 376–377, 1176–1184. [Google Scholar] [CrossRef]
- Stack, M.M.; Abdelrahman, S.M. A CFD model of particle concentration effects on erosion–corrosion of Fe in aqueous conditions. Wear 2011, 273, 38–42. [Google Scholar] [CrossRef]
- Ou, G.; Bie, K.; Zheng, Z.; Shu, G.; Wang, C.; Cheng, B. Numerical simulation on the erosion wear of a multiphase flow pipeline. Int. J. Adv. Manuf. Technol. 2017, 96, 1705–1713. [Google Scholar] [CrossRef]
- Li, J. Particle-Fluid Two-Phase Flow the Energy-Minimization Multi-Scale Method; Metallurgical Industry Press: Beijing, China, 1994. [Google Scholar]
- Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Ding, J.; Gidaspow, D. A bubbling fluidization model using kinetic theory of granular flow. AIChE J. 1990, 36, 523–538. [Google Scholar] [CrossRef]
- Morsi, S.A.; Alexander, A.J. An Investigateion of Particle Trajectories in Two-Phase Flow Systems. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Haider, A.; Levenspiel, O. Drag coefficient and Terminal Velocity of Spherical and Nonspherical Particels. Powder Technol. 1989, 58, 67–70. [Google Scholar] [CrossRef]
- Hong, K.; Chen, S.; Wang, W.; Li, J. Fine-grid two-fluid modeling of fluidization of Geldart A particles. Powder Technol. 2016, 296, 2–16. [Google Scholar] [CrossRef]
- Chen, C. Analysis on the EMMS Theory, Investigations on Mesoscale Structure in Gas–Solid Fluidization and Heterogeneous Drag Model; Springer: Berlin/Heidelberg, Germany, 2016; pp. 33–53. [Google Scholar]
- Song, F.; Li, F.; Wang, W.; Li, J. A sub-grid EMMS drag for multiphase particle-in-cell simulation of fluidization. Powder Technol. 2018, 327, 420–429. [Google Scholar] [CrossRef]
- Wang, W.; Lu, B.; Geng, J.; Li, F. Mesoscale drag modeling: A critical review. Curr. Opin. Chem. Eng. 2020, 29, 96–103. [Google Scholar] [CrossRef]
- Shah, S.; Myöhänen, K.; Kallio, S.; Ritvanen, J.; Hyppänen, T. CFD modeling of gas–solids flow in a large scale circulating fluidized bed furnace. Powder Technol. 2015, 274, 239–249. [Google Scholar] [CrossRef]
- Kshetrimayum, K.S.; Park, S.; Han, C.; Lee, C.-J. EMMS drag model for simulating a gas–solid fluidized bed of geldart B particles: Effect of bed model parameters and polydisperity. Particuology 2020, 51, 142–154. [Google Scholar] [CrossRef]
- Agrawal, K.; Loezos, P.N.; Syamlal, M.; Sundaresan, S. The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 2001, 445, 151–185. [Google Scholar] [CrossRef]
- Milioli, C.C.; Milioli, F.E.; Holloway, W.; Agrawal, K.; Sundaresan, S. Filtered two-fluid models of fluidized gas-particle flows: New constitutive relations. AIChE J. 2013, 59, 3265–3275. [Google Scholar] [CrossRef]
- Ozarkar, S.S.; Yan, X.; Wang, S.; Milioli, C.C.; Milioli, F.E.; Sundaresan, S. Validation of filtered two-fluid models for gas–particle flows against experimental data from bubbling fluidized bed. Powder Technol. 2015, 284, 159–169. [Google Scholar] [CrossRef]
- Sarkar, A.; Milioli, F.E.; Ozarkar, S.; Li, T.; Sun, X.; Sundaresan, S. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations. Chem. Eng. Sci. 2016, 152, 443–456. [Google Scholar] [CrossRef]
- Li, J.; Ge, W.; Wang, W.; Yang, N.; Liu, X.; Wang, L.; He, X.; Wang, X.; Wang, J.; Kwauk, M. Extension of the EMMS Model to Gas-Liquid Systems. In Multiscale Modeling to Meso-Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 111–145. [Google Scholar]
- Lu, B.; Wang, W.; Li, J. Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows. Chem. Eng. Sci. 2009, 64, 3437–3447. [Google Scholar] [CrossRef]
- Li, J.; Ge, W.; Wang, W.; Yang, N.; Huang, W. Focusing on mesoscales: From the energy-minimization multiscale model to mesoscience. Curr. Opin. Chem. Eng. 2016, 13, 10–23. [Google Scholar] [CrossRef]
- Lu, B.; Wang, W.; Li, J. Eulerian simulation of gas–solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model. Chem. Eng. Sci. 2011, 66, 4624–4635. [Google Scholar] [CrossRef]
- Chen, S.; Fan, Y.; Kang, H.; Lu, B.; Tian, Y.; Xie, G.; Wang, W.; Lu, C. Gas-solid-liquid reactive CFD simulation of an industrial RFCC riser with investigation of feed injection. Chem. Eng. Sci. 2021, 242, 116740. [Google Scholar] [CrossRef]
- Adnan, M.; Zhang, N.; Sun, F.; Wang, W. Numerical simulation of a semi-industrial scale CFB riser using coarse-grained DDPM-EMMS modelling. Can. J. Chem. Eng. 2018, 96, 1403–1416. [Google Scholar] [CrossRef]
- Chen, S.; Fan, Y.; Yan, Z.; Wang, W.; Liu, X.; Lu, C. CFD optimization of feedstock injection angle in a FCC riser. Chem. Eng. Sci. 2016, 153, 58–74. [Google Scholar] [CrossRef]
- Lu, B.; Niu, Y.; Chen, F.; Ahmad, N.; Wang, W.; Li, J. Energy-minimization multiscale based mesoscale modeling and applications in gas-fluidized catalytic reactors. Rev. Chem. Eng. 2019, 35, 879–915. [Google Scholar] [CrossRef]
- Chen, S.; Fan, Y.; Yan, Z.; Wang, W.; Lu, C. CFD simulation of gas–solid two-phase flow and mixing in a FCC riser with feedstock injection. Powder Technol. 2016, 287, 29–42. [Google Scholar] [CrossRef]
- Benyahia, S. Analysis of model parameters affecting the pressure profile in a circulating fluidized bed. AIChE J. 2012, 58, 427–439. [Google Scholar] [CrossRef]
- Grant, G.; Tabakoff, W. Erosion Prediction in Turbomachinery Resulting from Environmental Solid Particles. J. Aircraft. 1975, 12, 471–478. [Google Scholar] [CrossRef]
- Johnson, P.C.; Jackson, R. Frictional-Collisional Constitutive Relations for Granular Materials, with Application to Plane Shearing. J. Fluid Mech. 1987, 176, 67–93. [Google Scholar] [CrossRef]
- Li, T.; Grace, J.; Bi, X. Study of wall boundary condition in numerical simulations of bubbling fluidized beds. Powder Technol. 2010, 203, 447–457. [Google Scholar] [CrossRef]
- Armstrong, L.M.; Luo, K.H.; Gu, S. Two-dimensional and three-dimensional computational studies of hydrodynamics in the transition from bubbling to circulating fluidised bed. Chem. Eng. J. 2010, 160, 239–248. [Google Scholar] [CrossRef]
- Altantzis, C.; Bates, R.B.; Ghoniem, A.F. 3D Eulerian modeling of thin rectangular gas–solid fluidized beds: Estimation of the specularity coefficient and its effects on bubbling dynamics and circulation times. Powder Technol. 2015, 270, 256–270. [Google Scholar] [CrossRef]
- Zhong, H.; Lan, X.; Gao, J.; Zheng, Y.; Zhang, Z. The difference between specularity coefficient of 1 and no-slip solid phase wall boundary conditions in CFD simulation of gas–solid fluidized beds. Powder Technol. 2015, 286, 740–743. [Google Scholar] [CrossRef]
- Song, Z.; Li, Q.; Li, F.; Chen, Y.; Ullah, A.; Chen, S.; Wang, W. MP-PIC simulation of dilute-phase pneumatic conveying in a horizontal pipe. Powder Technol. 2022, 410, 117894. [Google Scholar] [CrossRef]
- Benyahia, S.; Syamlal, M.; O’Brien, T.J. Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe. Powder Technol. 2005, 156, 62–72. [Google Scholar] [CrossRef]
- Li, T.; Benyahia, S. Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations. AIChE J. 2013, 59, 3624–3632. [Google Scholar] [CrossRef]
- Adedeji, O.E.; Duarte, C.A.R. Prediction of thickness loss in a standard 90° elbow using erosion-coupled dynamic mesh. Wear 2020, 460–461, 203400. [Google Scholar] [CrossRef]
- Gidaspow, D.; Bezburuah, R.; Ding, J. Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach. In Proceedings of the 7th Engineering Foundation Conference on Fluidization, Gold Coast, Australia, 3–8 May 1992; pp. 75–82. [Google Scholar]
- Lun, C.K.K.; Savage, S.B.; Jeffrey, D.J.; Chepurniy, N. Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field. Fluid Mech. 1984, 140, 223–256. [Google Scholar] [CrossRef]
- Syamlal, M.; Rogers, W.; O’Brien, T.J. MFIX Documentation: Volume 1 Theory Guide; USDOE Morgantown Energy Technology Center (METC): Washington, DC, USA, 1993.
- Forder, A.; Thew, M.; Harrison, D. A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear 1998, 216, 184–193. [Google Scholar] [CrossRef]
- Wei, B. Metal Corrosion Theory and Application; Chemical Industry Press: Beijing, China, 2008. [Google Scholar]
- Ananya, L.; Kumar Baghel, Y.; Kumar Patel, V. Computational analysis of erosion wear in various angle bent pipes. Mater. Today Proc. 2023, 80, 1150–1157. [Google Scholar] [CrossRef]
- Mirzaei, M.; Jensen, P.A.; Nakhaei, M.; Wu, H.; Zakrzewski, S.; Zhou, H.; Lin, W. CFD-DDPM coupled with an agglomeration model for simulation of highly loaded large-scale cyclones: Sensitivity analysis of sub-models and model parameters. Powder Technol. 2023, 413, 118036. [Google Scholar] [CrossRef]
- Fluent User’s Guide; Release 14; Ansys Inc.: Canonsburg, PA, USA, 2023.
Continuity equation: Momentum equation: Granular motion equation: where , . Gidaspow drag coefficient [39]: EMMS drag coefficient [46]: where the heterogeneity index, Hd, is provided in Appendix A. Spherical drag coefficient [41]: Granular temperature equation (Algebraic): Stress–strain tensors: Granular shear viscosity using the Gidaspow model [73]: Granular bulk viscosity using the Lun et al. model [74]: Granular pressure using the Syamlal–O’Brien model [75]: Radial distribution function using the Lun et al. model [74]: Collisional dissipation function using the Lun et al. model [74]: Shear force of granular phase at wall: Turbulent kinetic energy k and turbulent dissipation rate ε equation using the RNG k-ε model: Fluent generic erosion model [76]: where , , . Discrete phase reflection coefficients of Grant and Tabakoff [63]: |
Types | Parameters | Values | |
---|---|---|---|
inlet | velocity inlet | gauge pressure, MPa | 2.68 |
temperature, K | 397.05 | ||
turbulent intensity, % | 5 | ||
turbulent hydraulic diameter, m | 0.3074 | ||
hydrogen | velocity, uinlet,g m/s | 47.71 | |
density, kg/m3 | 1.62 | ||
volume flow rate, m3/s | 3.54 | ||
volume fraction, εhydrogen | 99.26 | ||
viscosity, kg/(m·s) | 1.0862 × 10−5 | ||
silicon tetrachloride droplet | velocity, uinlet,l m/s | 0.36 | |
density, kg/m3 | 1248.31 | ||
diameter, ddroplet m | 0.0001 | ||
viscosity, kg/(m·s) | 3.40 × 10−4 | ||
mass flux, kg/s | 33.06 | ||
volume fraction, εdroplet | 0.74 | ||
silicon particle | velocity, uinlet,s m/s | 0.36 | |
density, kg/m3 | 2400 | ||
diameter, ds m | 0.00007 | ||
mass flux, kg/s | 0, 1 | ||
volume fraction, εs | 0, 0.01 | ||
outlet | outflow | discrete phase boundary condition type | escape |
wall | material | density, kg/m3 | 7850 |
boundary condition | hydrogen shear condition | no slip | |
discrete phase shear condition | specularity coefficient, φ, 0.5 | ||
wall roughness | standard |
Type | Data | Bending Angle | Contact Ratio between Predicted and Industrial Data | Distance to Pipe Boundary along X | Distance to Pipe Boundary along Y | Distance to Pipe Boundary along Z |
---|---|---|---|---|---|---|
A elbow | Industrial data | 26°~48° | / | 316 | 472 | 191 |
Predicted | 25°~47° | 0.917 | 340 | 485 | 175 | |
B elbow | Industrial data | 34°~68° | / | 260 | 421 | 278 |
Predicted | 38°~69° | 0.886 | 234 | 458 | 287 |
Type | Data | Bending Angle | Contact Ratio between Predicted and Industrial Data | Distance to Pipe Boundary along X | Distance to Pipe Boundary along Y | Distance to Pipe Boundary along Z |
---|---|---|---|---|---|---|
A elbow | Industrial data | 26°~48° | / | 316 | 472 | 191 |
Predicted with Gidaspow | 13°~80° | 0.338 | 584 | 131 | 157 | |
Predicted with spherical | 34°~55° | 0.500 | 381 | 369 | 274 | |
Predicted with EMMS | 25°~47° | 0.917 | 340 | 485 | 175 | |
B elbow | Industrial data | 34°~68° | / | 260 | 421 | 278 |
Predicted with Gidaspow | 36°~60° | 0.714 | 418 | 420 | 114 | |
Predicted with spherical | 15°~73° | 0.593 | 158 | 578 | 129 | |
Predicted with EMMS | 38°~69° | 0.886 | 234 | 458 | 287 |
Data | Whole Pressure Drops, kPa | Hydrogen Velocity at Outlet, m/s | Mass Flux at Outlet, kg/s |
---|---|---|---|
Industrial data | 80.00~100.00 | / | 0.20~0.30 |
Predicted with Gidaspow | 42.69 | 1.79 | 0.21 |
Predicted with Spherical | 76.55 | 3.61 | 0.25 |
Predicted with EMMS | 98.09 | 5.55 | 0.28 |
Type | Data | Bending Angle | Contact ratio between Predicted and Industrial Data | Distance to Pipe Boundary along X | Distance to Pipe Boundary along Y | Distance to Pipe Boundary along Z |
---|---|---|---|---|---|---|
A elbow | Industrial data | 26°~48° | / | 316 | 472 | 191 |
Predicted with φ = 0.1 | 33°~53° | 0.571 | 451 | 364 | 222 | |
Predicted with φ = 0.3 | 35°~51° | 0.538 | 377 | 405 | 256 | |
Predicted with φ = 0.5 | 25°~47° | 0.917 | 340 | 485 | 175 | |
Predicted with φ = 0.7 | 29°~45° | 0.739 | 336 | 498 | 122 | |
Predicted with no slip (φ = 1.0) | 32°~51° | 0.654 | 387 | 432 | 81 | |
B elbow | Industrial data | 34°~68° | / | 260 | 421 | 278 |
Predicted with φ = 0.1 | 20°~42° | 0.184 | 481 | 276 | 257 | |
Predicted with φ = 0.3 | 7°~46° | 0.210 | 306 | 264 | 262 | |
Predicted with φ = 0.5 | 38°~69° | 0.886 | 234 | 458 | 287 | |
Predicted with φ = 0.7 | 49°~87° | 0.370 | 168 | 381 | 291 | |
Predicted with no slip (φ = 1.0) | 53°~76° | 0.372 | 295 | 504 | 216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Shi, J.; Yuan, J.; He, M.; Li, Y.; Zhu, L.; Liu, J.; Wang, J.; Xie, G. Multiscale CFD Simulation of Multiphase Erosion Process in a Connecting Pipe of Industrial Polycrystalline Silicon Unit. Processes 2023, 11, 2510. https://doi.org/10.3390/pr11082510
Chen S, Shi J, Yuan J, He M, Li Y, Zhu L, Liu J, Wang J, Xie G. Multiscale CFD Simulation of Multiphase Erosion Process in a Connecting Pipe of Industrial Polycrystalline Silicon Unit. Processes. 2023; 11(8):2510. https://doi.org/10.3390/pr11082510
Chicago/Turabian StyleChen, Sheng, Jiarui Shi, Jun Yuan, Meng He, Yongquan Li, Liyun Zhu, Juanbo Liu, Jiangyun Wang, and Guoshan Xie. 2023. "Multiscale CFD Simulation of Multiphase Erosion Process in a Connecting Pipe of Industrial Polycrystalline Silicon Unit" Processes 11, no. 8: 2510. https://doi.org/10.3390/pr11082510
APA StyleChen, S., Shi, J., Yuan, J., He, M., Li, Y., Zhu, L., Liu, J., Wang, J., & Xie, G. (2023). Multiscale CFD Simulation of Multiphase Erosion Process in a Connecting Pipe of Industrial Polycrystalline Silicon Unit. Processes, 11(8), 2510. https://doi.org/10.3390/pr11082510