A Comparative Study on the Bioavailability and Soil-to-Plant Transfer Factors of Potentially Toxic Element Contamination in Agricultural Soils and Their Impacts: A Case Study of Dense Farmland in the Western Region of Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Recommended Wet Acid Digestion Procedures
2.2.1. Wet Digestion of Vegetable Samples
2.2.2. Wet Digestion of Soil, Fertilizer, and Pesticide Samples and Total Organic Carbon (TOC) Content
2.2.3. Digestion of Water Samples
2.3. Recommended Sample Preparation and ICP–OES Measurements
2.4. Data Analysis
2.4.1. Estimation of the Soil and Water Transfer Factor to the Plant (TF)
2.4.2. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of Water and Soil Samples
3.2. Levels of Trace Elements in the Studied Samples
3.3. Transfer Factor (TF)
3.4. Statistical Analysis
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajeb, P.; Sloth, J.J.; Shakibazadeh, S.; Mahyudin, N.; Afsah-Hejri, L. Toxic elements in food: Occurrence, binding, and reduction approaches. Compr. Rev. Food Sci. Food Saf. 2014, 13, 457–472. [Google Scholar] [CrossRef]
- Gergen, I.; Harmanescu, M. Application of principal component analysis in the pollution assessment with heavy metals of vegetable food chain in the old mining areas. Chem. Cent. J. 2012, 6, 156. [Google Scholar] [CrossRef]
- Karahan, F. Evaluation of Trace Element and Heavy Metal Levels of Some Ethnobotanically Important Medicinal Plants Used as Remedies in Southern Turkey in Terms of Human Health Risk. Biol. Trace Elem. Res. 2023, 201, 493–513. [Google Scholar] [CrossRef]
- FAO/WHO. Joint FAO/WHO Food Standards Programme Codex Alimentarius Commission. Report of the Thirty Three Session of the Codex Committee on Food Additives and Contaminants. Geneva, Switzerland, 2001; ALINORM 01/12A:1289. Available online: http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf (accessed on 10 October 2021).
- Irshad, M.; Ruqia, B.; Hussain, Z. Phytoaccumulation of heavy metals in natural vegetation at the municipal wastewater site in Abbottabad, Pakistan. Int. J. Phytoremediation 2015, 17, 1269–1273. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Ramteke, S.; Sahu, B.L.; Dahariya, N.S.; Patel, K.S.; Blazhev, B.; Matini, L. Heavy metal contamination of vegetables. J. Environ. Prot. 2016, 7, 996–1004. [Google Scholar] [CrossRef]
- Tong, S.; Yang, L.; Gong, H.; Wang, L.; Li, H.; Yu, J.; Li, Y.; Deji, Y.; Nima, C.; Zhao, S.; et al. Bioaccumulation characteristics, transfer model of heavy metals in soil-crop system and health assessment in plateau region, China. Ecotoxicol. Environ. Saf. 2022, 241, 113733. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef]
- Bhagure, G.R.; Mirgane, S. Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environ. Monit. Assess. 2011, 173, 643–652. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration–a review. Sci. Total Environ. 2019, 651 Pt 2, 2927–2942. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Yang, L.; Li, Y.; Wei, B.; Yu, J.; Feng, F. Distribution and translocation of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area. Environ. Geochem. Health 2017, 39, 221–229. [Google Scholar] [CrossRef]
- Wan, M.; Hu, W.; Wang, H.; Tian, K.; Huang, B. Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China. Sci. Total Environ. 2021, 780, 146567. [Google Scholar] [CrossRef]
- Waseem, A.; Arshad, J.; Iqbal, F.; Sajjad, A.; Mehmood, Z.; Murtaza, G. Pollution status of Pakistan: A retrospective review on heavy metal contamination of water, soil, and vegetables. BioMed Res. Int. 2014, 2014, 1–29. [Google Scholar] [CrossRef]
- Ezez, D.; Belew, M. Analysis of physicochemical attributes, contamination level of trace metals and assessment of health risk in mango fruits from Southern region Ethiopia. Toxicol. Rep. 2023, 10, 124–132. [Google Scholar] [CrossRef]
- Oteef, M.D.; KF Fawy HS Abd-Rabboh, A.M. Idris Levels of zinc, copper, cadmium, and lead in fruits and vegetables grown and consumed in Aseer Region, Saudi Arabia. Environ. Monit. Assess. 2015, 187, 676–687. [Google Scholar] [CrossRef]
- Harmanescu, M.; Alda, L.M.; Bordean, D.M.; Gogoasa, I.; Gergen, I. Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chem. Cent. J. 2011, 5, 64–74. [Google Scholar] [CrossRef]
- Islam, M.S.; Proshad, R.; Asadul Haque, M.; Hoque, M.F.; Hossin, M.S.; Islam Sarker, M.N. Assessment of heavy metals in foods around the industrial areas: Health hazard inference in Bangladesh. Geocarto Int. 2020, 35, 280–295. [Google Scholar] [CrossRef]
- Kaledin, A.P.; Stepanova, M.V. Bioaccumulation of trace elements in vegetables grown in various anthropogenic conditions. Foods Raw Mater. 2023, 11, 10–16. [Google Scholar] [CrossRef]
- Ashraf, I.; Ahmad, F.; Sharif, A.; Altaf, A.R.; Teng, H. Heavy metals assessment in water, soil, vegetables and their associated health risks via consumption of vegetables, District Kasur, Pakistan. SN Appl. Sci. 2021, 3, 1–16. [Google Scholar] [CrossRef]
- Kirmani, M.Z. Determination of some toxic and essential trace metals in some medicinal and edible plants of Karachi city. J. Basic Appl. Sci. 2011, 7, 89–95. [Google Scholar] [CrossRef]
- Helali, S.; Bohli, N.; Mostafa, H.A.; Zina, H.B.; Al-Hartomy, O.A.; Abdelghani, A. Electrical impedance spectroscopy using single wall carbon nanotubes carboxlic acid functionalized: Detection of copper in Tabuk-Kingdom of Saudi Arabia Water. J. Nanomed. Nanotechnol. 2016, 7, 396. [Google Scholar] [CrossRef]
- Abedi, A.; Gavanji, S.; Amin Mojiri, A. Lead and Zinc Uptake and Toxicity in Maize and Their Management. Plants 2022, 11, 1922. [Google Scholar] [CrossRef]
- Nazir, R.; Khan, M.; Masab, M.; Rehman, H.U.; Rauf, N.U.; Shahab, S.; Shaheen, Z. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 2015, 7, 89. [Google Scholar]
- Fruzińska, R. Accumulation of iron in the soil-plant system in a metal industry area. Civ. Environ. Eng. Rep. 2011, 7, 59–68. [Google Scholar]
- Alhogbi, B.G. Trace Metal Determination in Herbal Plants by Acid Digestion from Jeddah Market in Saudi Arabia. Int. J. Chem. 2018, 10, 8–14. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015. [Google Scholar] [CrossRef]
- Beinabaj, S.M.H.; Heydariyan, H.; Aleii, H.M.; Hosseinzadeh, A. Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon 2023, 9, e13017. [Google Scholar] [CrossRef]
- Organgi, R.A. Ecological Studies in Makkah Region. 1. Vegetation Development at Wadi Fatma. J. Coll. Sci. Univ. Riyadh 1982, 13, 25–51. [Google Scholar]
- Atamaleki, A.; Yazdanbakhsh, A.; Fallah, S.; Hesami, M.; Neshat, A.; Fakhri, Y. Accumulation of potentially harmful elements (PHEs) in lettuce (Lactuca sativa L.) and coriander (Coriandrum sativum L.) irrigated with wastewater: A systematic review and meta-analysis and probabilistic health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 13072–13082. [Google Scholar] [CrossRef]
- Tefera, M.; Teklewold, A. Health risk assessment of heavy metals in selected Ethiopian spices. Heliyon 2021, 7, e07048. [Google Scholar] [CrossRef]
- Sadee, B.A.; Ali, R.J. Determination of heavy metals in edible vegetables and a human health risk assessment. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100761. [Google Scholar] [CrossRef]
- Jalali, M.; Meyari, A. Heavy metal contents, soil-to-plant transfer factors, and associated health risks in vegetables grown in western Iran. J. Food Compos. Anal. 2022, 106, 104316. [Google Scholar] [CrossRef]
- Sheydaei, M.; Ghiasvandnia, P.; Edraki, M.; Sheidaie, M. Investigation of toxic metals content of parsley (petroselinum crispum) obtained from local farms in Baz Kia Gorab region (Lahijan city, north of Iran). J. Chem. Lett. 2022, 3, 114–118. [Google Scholar] [CrossRef]
- Mehmood, A.; Mirza, M.A.; Choudhary, M.A.; Kim, K.H.; Raza, W.; Raza, N.; Lee, S.S.; Zhang, M.; Lee, J.H.; Sarfraz, M. Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environ. Res. 2019, 168, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; El-Bebany, A.F.; Taher, M.A.; Alrumman, S.A.; Hussain, A.A.; Galal, T.M.; Shaltout, K.H.; Sewelam, N.A.; Ahmed, M.T.; El-Shaboury, G.A. Influences of sewage sludge-amended soil on heavy metal accumulation, growth and yield of rocket plant (Eruca sativa). Appl. Ecol. Environ. Res. 2020, 18, 3027–3040. [Google Scholar] [CrossRef]
- Eaton, A.D.; Franson, M.A.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA; Denver, CO, USA; Alexandria, Egypt, 2005. [Google Scholar]
- USEPA. United States Environmental Protection Agency for (Total Sobbed) Heavy Metals in Soil, Sediments and Sludge (USEPA SW-846, Method 3050); USEPA: Washington, DC, USA, 1986. [Google Scholar]
- Osakwe, S.A.; Okolie, L.P. Physicochemical characteristics and heavy metals contents in soils and cassava plants from farmlands along a major highway in Delta State, Nigeria. J. Appl. Sci. Environ. Manag. 2015, 19, 695–704. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Water Works Association: Denver, CO, USA; American Public Works Association: Kansas City, MO, USA; Water Environment Federation: Alexandria, VA, USA, 2022; ISBN 9780875532998.
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Pearson/Prentice-Hall: Harlow, UK, 2005. [Google Scholar]
- Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Chen, D.Y.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef]
- Sowrabha, J.; Narayana, J. Assessment of ground water quality using for drinking purpose in Shivamogga Town, Karnataka, India. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 381–388. [Google Scholar]
- Ishibashi, Y.; Matsuo, H.; Baba, Y.; Nagafuchi, Y.; Imato, T.; Hirata, T. Association of manganese effluent with the application of fertilizer and manure on tea field. Water Res. 2004, 38, 2821–2826. [Google Scholar] [CrossRef]
- Wang, A.S.; Angle, J.S.; Chaney, R.L.; Delorme, T.A.; Reeves, R.D. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 2006, 281, 325–337. [Google Scholar] [CrossRef]
- Cobbina, S.J.; Duwiejuah, A.B.; Quansah, R.; Obiri, S.; Bakobie, N. Comparative assessment of heavy metals in drinking water sources in two small-scale mining communities in northern Ghana. Int. J. Environ. Res. Public Health 2015, 12, 10620–10634. [Google Scholar] [CrossRef] [PubMed]
- Al-Hammad, B.A.; El-Salam, M.M.A. Evaluation of heavy metal pollution in water wells and soil using common leafy green plant indicators in the Al-Kharj region, Saudi Arabia. Environ. Monit. Assess. 2016, 188, 324. [Google Scholar] [CrossRef] [PubMed]
- Brar, M.; Malhi, S.; Singh, A.; Arora, C.; Gill, K. Sewage water irrigation effects on some potentially toxic trace elements in soil and potato plants in northwestern India. Can. J. Soil Sci. 2000, 80, 465–471. [Google Scholar] [CrossRef]
- Benson, N.U.; Anake, W.U.; Etesin, U.M. Trace metals levels in inorganic fertilizers commercially available in Nigeria. J. Sci. Res. Rep. 2014, 3, 610–620. [Google Scholar] [CrossRef]
- Naz, S.; Fazio, F.; Habib, S.S.; Nawaz, G.; Attaullah, S.; Ullah, M.; Hayat, A.; Ahmed, I. Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common carp) Pond and a Human Health Risk Assessment. Sustainability 2022, 14, 13441. [Google Scholar] [CrossRef]
- Modaihsh, A.; AI-Swailem, M.; Mahjoub, M. Heavy metals content of commercial inorganic fertilizers used in the Kingdom of Saudi Arabia. J. Agric. Mar. Sci. 2004, 9, 21–25. [Google Scholar] [CrossRef]
- Hegade, R.R.; Chethanakumara, M.V.; Krishnamurthy, S.V.B. Influence of Soil Organic Carbon, Water Holding Capacity, and Moisture Content on Heavy Metals in Rice Paddy Soils of Western Ghats of India. Water Air Soil Pollut. 2023, 234, 192. [Google Scholar] [CrossRef]
- Alam, M.N.E.; Hosen, M.M.; Ullah, A.K.M.A.; Maksud, M.A.; Khan, S.R.; Lutfa, L.N.; Choudhury, T.R.; Quraishi, S.B. Pollution Characteristics, Source Identification, and Health Risk of Heavy Metals in the Soil-Vegetable System in Two Districts of Bangladesh. Biol. Trace Elem. Res. 2023. [Google Scholar] [CrossRef]
- Malede, M.; Tefera, M.; Mehari, B. Trace metals in the leaves of selected plants used to treat hepatitis in Dembia, Ethiopia. J. Herbs Spices Med. Plants 2020, 26, 101–112. [Google Scholar] [CrossRef]
- Mohamed, A.; Rashed, M.; Mofty, A. Assessment of essential and toxic elements in some kinds of vegetables. Ecotoxicol. Environ. Saf. 2003, 55, 251–260. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, P.K.; Shukla, D. Investigation of heavy metal status in soil and vegetables grown in urban area of Allahabad, Uttar Pradesh, India. Int. J. Sci. Res. Publ. 2013, 3, 1–7. [Google Scholar]
- Abdella, A.; Chandravanshi, B.S.; Yohannes, W. Levels of selected metals in coriander (Coriandrum sativum L.) leaves cultivated in four different areas of Ethiopia. Chem. Int. 2018, 4, 189–197. [Google Scholar]
- Hu, B.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.; Qi, L.; Shi, Z. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environ. Pollut. 2020, 262, 114308. [Google Scholar] [CrossRef]
- Wan, D.; Zhang, N.; Chen, W.; Cai, P.; Zheng, L.; Huang, Q. Organic matter facilitates the binding of Pb to iron oxides in subtropical contaminated soil. Environ. Sci. Pollut. Res. 2018, 25, 32130–32139. [Google Scholar] [CrossRef]
- Shen, B.; Wang, X.; Zhang, Y.; Zhang, M.; Wang, K.; Xie, P.; Ji, H. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci. Total Environ. 2020, 711, 135229. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Zhao, Q.; Zhang, W.; Chen, X.; Xu, S.; Zou, C. Zinc fractions in soils and uptake in winter wheat as affected by repeated applications of zinc fertilizer. Soil Tillage Res. 2020, 200, 104612. [Google Scholar] [CrossRef]
- Jorgensen, N.; Laursen, J.; Viksna, A.; Pind, N.; Holm, P.E. Multi-elemental EDXRF mapping of polluted soil from former horticultural land. Environ. Inter. 2005, 31, 43–52. [Google Scholar] [CrossRef]
- Abrham, F.; Gholap, A. Analysis of heavy metal concentration in some vegetables using atomic absorption spectroscopy. Pollution 2021, 7, 205–216. [Google Scholar] [CrossRef]
- Baldantoni, D.; Morra, L.; Zaccardelli, M.; Alfani, A. Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol. Environ. Saf. 2016, 123, 89–94. [Google Scholar] [CrossRef]
- Muamar, A.; Zouahri, A.; Tijane, M.; El Housni, A.; Mennane, Z.; Yachou, H.; Bouksaim, M. Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the Skhirat region Morocco. J. Mater. Environ. Sci. 2014, 5, 961–966. [Google Scholar]
- Ali, M.H.; Al-Qahtani, K.M. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt. J. Aquat. Res. 2012, 38, 31–37. [Google Scholar] [CrossRef]
- Soni, R.; Mishra, P. Assessment of heavy metals in the vegetables grown in the Suburbs of Jodhpur city. J. Indian Chem. Soc. 2017, 94, 1037–1043. [Google Scholar]
- Tudi, M.; Ruan, H.D.; Yu, Y.; Wang, L.; Wei, B.; Tong, S.; Kong, C.; Yang, L.S. Bioaccumulation and translocation of trace elements in soil-irrigation water-wheat in arid agricultural areas of Xin Jiang, China. Ecotoxicology 2021, 30, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Aiqing, Z.; Zhang, L.; Ning, P.; Chen, Q.; Wang, B.; Zhang, F.; Yang, X.; Zhang, Y. Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Crit. Rev. Food Sci. Nutr. 2022, 62, 7917–7928. [Google Scholar] [CrossRef] [PubMed]
- Brigden, K.; Stringer, R.; Santillo, D. Heavy Metal and Radionuclide Contamination of Fertilizer Products and Phosphogypsum Waste Produced by the Lebanese Chemical Company; Lebanon, Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter: Exeter, UK, 2002; Available online: http://www.greenpeace.to/publications/LCC_2002.pdf (accessed on 10 May 2022).
- Mahmood, A.; Malik, R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef]
- Waheed, H.; Ilyas, N.; Iqbal Raja, N.; Mahmood, T.; Ali, Z. Heavy metal phytoaccumulation in leafy vegetables irrigated with municipal wastewater and human health risk repercussions. Int. J. Phytoremediation 2019, 21, 170–179. [Google Scholar] [CrossRef]
- Waida, J.; Ibrahim, U.; Goki, N.G.; Yusuf, S.D.; Rilwan, U. Transfer Factor of Heavy Metals due to Mining Activities in Some Parts of Plateau State, Nigeria (Health Implications on the Inhabitants). J. Oncol. Res. 2022, 4, 13–18. [Google Scholar] [CrossRef]
- Jogawat, A.; Yadav, B.; Chhaya Narayan, O.P. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol. Plant. 2021, 173, 259–275. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Sharma, D.; Bisla, G. Assessment of Heavy Metals in Fruits and Vegetables Collected from Bareilly Local Market, Uttar Pradesh State, India. Int. J. Res. 2022, 10, 501–509. [Google Scholar] [CrossRef]
- Page, V.; Feller, U. Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy 2015, 5, 447–463. [Google Scholar] [CrossRef]
Plant Sample | Part of Plant | Pb | Ni | Zn | Fe | Cr | Cu |
---|---|---|---|---|---|---|---|
Coriander | Leaves | 3.05 ± 1.36 | ND * | 29.9 ± 3.2 | 157.80 ± 74.9 | 1.20 ± 2 | 9.20 ± 2.1 |
Shoots | 4.70 ± 0.70 | 0.23 ± 1.4 | 14.2 ± 3.7 | 57.90 ± 17.9 | ND | 7.40 ± 0.5 | |
Roots | 5.70 ± 0.42 | 9.70 ± 10.1 | 38.6 ± 8.6 | 212.10 ± 45.1 | 4.40 ± 7.8 | 11.30 ± 0.7 | |
Parsley | Leaves | 5.50 ± 5.23 | 0.20 ± 0.2 | 70.9 ± 14.4 | 101.50 ± 13.2 | ND | 14.80 ± 1.4 |
Shoots | 12.50 ± 8.34 | 0.1 ± 0.1 | 48 ± 8.5 | 64.20 ± 10.05 | ND | 10.50 ± 1.1 | |
Roots | 8.90 ± 4.38 | 0.03 ± 0.05 | 58.5 ± 11.8 | 57.80 ± 17.4 | ND | 13.40 ± 2 | |
Arugula | Leaves | 7.06 ± 1.97 | 4.40 ± 0.9 | 37.2 ± 11.3 | 157.40 ± 30.3 | ND | ND |
Shoots | 2.75 ± 1.62 | 2.60 ± 1.0 | 26.7 ± 5.6 | 60.06 ± 37.4 | 0.40 ± 0.7 | ND | |
Roots | 6.85 ± 2.05 | 2.20 ± 0.2 | 45.5 ± 4.7 | 60.10 ± 11.2 | ND | ND | |
Dill | Leaves | 7.10 ± 0.14 | 12.03 ± 14.2 | 36.8 ± 6.4 | 158.30 ± 8.6 | ND | 0.70 ± 1.2 |
Shoots | 6.35 ± 0.07 | 3.80 ± 2.2 | 13.1 ± 0.9 | 13.90 ± 17.2 | 3.40 ± 6.1 | 1.30 ± 2.2 | |
Roots | 4.75 ± 11.68 | 3.06 ± 0.2 | 26.9 ± 3.1 | 327.40 ± 24.5 | ND | ND | |
WHO/FAO | 0.3 | 67.9 | 99.4 | 425 | 0.5 | 73 |
Plant Sample | Part of Plant | Pb | Ni | Zn | Fe | Cr | Cu |
---|---|---|---|---|---|---|---|
Coriander | Leaves | ND * | ND | 0.15 | 0.004 | 0.01 | 0.44 |
Shoots | ND | 0.003 | 0.06 | 0.001 | ND | 0.35 | |
Roots | ND | 0.15 | 0.18 | 0.005 | 0.04 | 0.54 | |
Parsley | Leaves | ND | 0.004 | 0.39 | 0.003 | ND | 0.74 |
Shoots | ND | 0.001 | 0.25 | 0.001 | ND | 0.52 | |
Roots | ND | 0.0005 | 0.31 | 0.001 | ND | 0.67 | |
Arugula | Leaves | 0.22 | 0.69 | 2.00 | 0.003 | ND | ND |
Shoots | 0.08 | 0.40 | 1.43 | 0.001 | 0.001 | ND | |
Roots | 0.20 | 0.34 | 2.44 | 0.001 | ND | ND | |
Dill | Leaves | 0.18 | 0.99 | 2.85 | 0.003 | ND | 0.03 |
Shoots | 0.16 | 0.31 | 1.01 | 0.0002 | 0.01 | 0.04 | |
Roots | 0.12 | 0.25 | 2.08 | 0.006 | ND | ND |
Plant Sample | Part of Plant | Pb | Ni | Zn | Fe | Cr | Cu |
---|---|---|---|---|---|---|---|
Coriander | Leaves | 30.5 | ND * | ND | 584.44 | ND | 306.66 |
Shoots | 47 | ND | ND | 214.44 | ND | 246.66 | |
Root | 57 | ND | ND | 785.55 | ND | 376.66 | |
Parsley | Leaves | 55 | ND | ND | 375.92 | ND | 493.33 |
Shoots | 30.5 | ND | ND | 237.77 | ND | 350 | |
Roots | 89 | ND | ND | 214.07 | ND | 446.66 | |
Arugula | Leaves | 70.6 | ND | ND | 582.96 | ND | ND |
Shoots | 27.5 | ND | ND | 222.44 | ND | ND | |
Roots | 68.5 | ND | ND | 222.59 | ND | ND | |
Dill | Leaves | 71 | ND | ND | 586.29 | ND | 23.33 |
Shoots | 63.5 | ND | ND | 51.48 | ND | 43.33 | |
Roots | 47.5 | ND | ND | 1212.59 | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhogbi, B.G.; Al-Ansari, S.A.; El-Shahawi, M.S. A Comparative Study on the Bioavailability and Soil-to-Plant Transfer Factors of Potentially Toxic Element Contamination in Agricultural Soils and Their Impacts: A Case Study of Dense Farmland in the Western Region of Saudi Arabia. Processes 2023, 11, 2515. https://doi.org/10.3390/pr11092515
Alhogbi BG, Al-Ansari SA, El-Shahawi MS. A Comparative Study on the Bioavailability and Soil-to-Plant Transfer Factors of Potentially Toxic Element Contamination in Agricultural Soils and Their Impacts: A Case Study of Dense Farmland in the Western Region of Saudi Arabia. Processes. 2023; 11(9):2515. https://doi.org/10.3390/pr11092515
Chicago/Turabian StyleAlhogbi, Basma G., Shroog A. Al-Ansari, and Mohammed S. El-Shahawi. 2023. "A Comparative Study on the Bioavailability and Soil-to-Plant Transfer Factors of Potentially Toxic Element Contamination in Agricultural Soils and Their Impacts: A Case Study of Dense Farmland in the Western Region of Saudi Arabia" Processes 11, no. 9: 2515. https://doi.org/10.3390/pr11092515
APA StyleAlhogbi, B. G., Al-Ansari, S. A., & El-Shahawi, M. S. (2023). A Comparative Study on the Bioavailability and Soil-to-Plant Transfer Factors of Potentially Toxic Element Contamination in Agricultural Soils and Their Impacts: A Case Study of Dense Farmland in the Western Region of Saudi Arabia. Processes, 11(9), 2515. https://doi.org/10.3390/pr11092515