Study on Efficient Removal Method of Fine Particulate Dust in Green Metallurgy Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Reagent
2.3. Experimental Method
2.4. Size Distribution of Raw Dust
2.5. Response Surface Test Design
3. Results and Discussion
3.1. Effect of the Agglomerator Solutions on Fine Dust Particles
3.2. Effect of Different Coupled Agglomerates on Fine Dust Particles
3.3. Effect of Mixed Gel Concentration on Fine Dust Particles
3.4. Effect of Gas Pressure on Fine Dust Particles
3.5. Effect of Flue Gas Flow Rate on Fine Dust Particles
3.6. Response Surface Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, R.W.; Mills, I.C.; Walton, H.A.; Anderson, H.R. Fine Particle Components and Health-a Systematic Review and Meta-Analysis of Epidemiological Time Series Studies of Daily Mortality and Hospital Admissions. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Knaapen, A.M.; Borm, P.J.A.; Albrecht, C.; Schins, R.P.F. Inhaled Particles and Lung Cancer. Part A: Mechanisms. Int. J. Cancer 2004, 109, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.L.; Wu, K.; Mi, J.C. Experimental Investigation of Aerodynamic Agglomeration of Fine Ash Particles from a 330 Mw Pc-Fired Boiler. Fuel 2016, 165, 86–93. [Google Scholar] [CrossRef]
- Asanakham, A.; Kiatsiriroat, T. Use of Bluff Body for Enhancing Submicron Particle Agglomeration in Plasma Field. Part. Sci. Technol. 2018, 36, 123–130. [Google Scholar] [CrossRef]
- Yang, Z.D.; Cai, Y.X.; Li, Q.Y.; Li, H.Q.; Jiang, Y.; Lin, R.Y.; Zheng, C.H.; Sun, D.S.; Gao, X. Predicting Particle Collection Performance of a Wet Electrostatic Precipitator under Varied Conditions with Artificial Neural Networks. Powder Technol. 2021, 377, 632–639. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.L.; Wang, Z.H.; Liu, Y.X.; Zhao, Y.C. A Review on Arsenic Removal from Coal Combustion: Advances, Challenges and Opportunities. Chem. Eng. J. 2021, 414, 128785. [Google Scholar] [CrossRef]
- Zu, K.; Yao, Y.; Cai, M.; Zhao, F.; Cheng, D.L. Modeling and Experimental Study on Acoustic Agglomeration for Dust Particle Removal. J. Aerosol Sci. 2017, 114, 62–76. [Google Scholar] [CrossRef]
- Sun, Z.K.; Yang, L.J.; Chen, S.; Wu, X. Promoting the Removal of Fine Particles by Turbulent Agglomeration with the Coupling of Different-Scale Vortexes. Powder Technol. 2020, 367, 399–410. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Chen, H.; Wang, T.; Zhou, D.; Lu, M.S.; He, M.C.; Fang, M.X.; Cen, K.F. Agglomeration and Capture of Fine Particles in the Coupling Effect of Pulsed Corona Discharge and Acoustic Wave Enhanced by Spray Droplets. Powder Technol. 2017, 312, 21–28. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Luo, L.Y.; Yuan, Z.L.; Yang, L.J.; Wu, H. Improving the Removal of Fine Particles by Chemical Agglomeration During the Limestone-Gypsum Wet Flue Gas Desulfurization Process. J. Environ. Sci. 2019, 80, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.K.; Sun, D.S.; Liu, Y.L.; Yu, Y.; Yan, P.L. Agglomeration and removal of coal-fired particulate matter under the action of chemical agglomeration agent. Environ. Sci. Technol. 2017, 40, 111–116. [Google Scholar]
- Dai, M.B.; Ruan, Z.Y.; Geng, Y.; Li, W.C.; Mu, G.T.; Chun, T.J. Study on removal of PM10/2.5/1.0 based on chemical agglomerated iron ore sintering process. J. Iron Steel Res. 2021, 33, 385–393. [Google Scholar]
- Liu, Y.; Hu, B.; Zhou, L.; Jiang, Y.Z.; Yang, L.J. Improving the Removal of Fine Particles with an Electrostatic Precipitator by Chemical Agglomeration. Energy Fuels 2016, 30, 8441–8447. [Google Scholar] [CrossRef]
- Ding, X.H.; Wang, D.F.; Luo, Z.M.; Wang, T.; Deng, J. Multi-Scale Study on the Agglomerating and Wetting Behaviour of Binary Electrolyte-Surfactant Coal Dust Suppression Based on Multiple Light Scattering. Fuel 2022, 311, 122515. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, W.; Wu, H.; Shen, A.; Yuan, Z.L.; Yang, L.J. Investigation on the Relationship of Droplet Atomization Performance and Fine Particle Abatement During the Chemical Agglomeration Process. Fuel 2019, 245, 65–77. [Google Scholar] [CrossRef]
- Shi, G.Q.; Qi, J.M.; Wang, Y.M.; Shen, H.Y. Synergistic Influence of Noncationic Surfactants on the Wettability and Functional Groups of Coal. Powder Technol. 2021, 385, 92–105. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Zhao, Y.C.; Wang, S.L.; Jiang, C.; Zhang, J.Y. Relationship between the Zeta Potential and the Chemical Agglomeration Efficiency of Fine Particles in Flue Gas During Coal Combustion. Fuel 2018, 215, 756–765. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Zhang, J.Y.; Zhao, Y.C.; Wang, S.L.; Jiang, C.; Zheng, C.G. Chemical Agglomeration of Fine Particles in Coal Combustion Flue Gas: Experimental Evaluation. Fuel 2017, 203, 557–569. [Google Scholar] [CrossRef]
Level | Factor | ||
---|---|---|---|
A, Mixed Gel Concentration /(g/L) | B, Nitrogen Pressure /MPa | C, Flue Gas Flow Velocity /(m/s) | |
1 | 0.75 | 0.2 | 8 |
0 | 1 | 0.4 | 10 |
−1 | 1.25 | 0.6 | 12 |
Serial Number | A, Mixed Gum Concentration/(g/L) | B, Nitrogen Pressure/MPa | C, Flue Gas Flow Velocity/(m/s) | η1/% | η2/% |
---|---|---|---|---|---|
1 | 0.75 | 0.2 | 10 | 46.61 | 48.92 |
2 | 1.25 | 0.2 | 10 | 46.49 | 48.73 |
3 | 0.75 | 0.6 | 10 | 47.14 | 49.53 |
4 | 1.25 | 0.6 | 10 | 46.91 | 49.31 |
5 | 0.75 | 0.4 | 8 | 46.51 | 49.97 |
6 | 1.25 | 0.4 | 8 | 47.52 | 49.37 |
7 | 0.75 | 0.4 | 12 | 48.63 | 49.43 |
8 | 1.25 | 0.4 | 12 | 46.59 | 48.64 |
9 | 1 | 0.2 | 8 | 47.15 | 48.63 |
10 | 1 | 0.6 | 8 | 47.54 | 49.52 |
11 | 1 | 0.2 | 12 | 47.25 | 49.24 |
12 | 1 | 0.6 | 12 | 47.44 | 49.53 |
13 | 1 | 0.4 | 10 | 50.37 | 52.41 |
14 | 1 | 0.4 | 10 | 50.61 | 52.76 |
15 | 1 | 0.4 | 10 | 50.69 | 52.97 |
16 | 1 | 0.4 | 10 | 50.68 | 52.37 |
17 | 1 | 0.4 | 10 | 50.73 | 52.75 |
Variance Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | Prob > F | Significance |
---|---|---|---|---|---|---|
Model | 46.27 | 9 | 5.14 | 107.41 | <0.0001 | Significant |
A | 0.24 | 1 | 0.24 | 4.97 | 0.0610 | |
B | 0.29 | 1 | 0.29 | 6.11 | 0.0427 | Significant |
C | 0.18 | 1 | 0.18 | 3.70 | 0.0959 | |
AB | 3.025 × 10−3 | 1 | 3.025 × 10−3 | 0.063 | 0.8087 | |
AC | 2.33 | 1 | 2.33 | 48.59 | 0.0002 | Significant |
BC | 0.010 | 1 | 0.010 | 0.21 | 0.6615 | |
A2 | 15.69 | 1 | 15.69 | 327.85 | <0.0001 | Significant |
B2 | 15.17 | 1 | 15.17 | 316.90 | <0.0001 | Significant |
C2 | 7.94 | 1 | 7.94 | 165.83 | <0.0001 | Significant |
Residual | 0.34 | 7 | 0.048 | |||
Loss of proposed project | 0.25 | 3 | 0.084 | 4.04 | 0.1054 | Insignificant |
Variance Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | Prob > F | Significance |
---|---|---|---|---|---|---|
Model | 42.57 | 9 | 4.73 | 40.04 | <0.0001 | Significant |
A | 0.41 | 1 | 0.41 | 3.43 | 0.1065 | |
B | 0.70 | 1 | 0.70 | 5.94 | 0.0449 | Significant |
C | 0.053 | 1 | 0.053 | 0.45 | 0.5252 | |
AB | 2.250 × 10−4 | 1 | 2.250 × 10−4 | 1.90 × 10−3 | 0.9664 | |
AC | 9.025 × 10−3 | 1 | 9.025 × 10−3 | 0.076 | 0.7902 | |
BC | 0.09 | 1 | 0.09 | 0.76 | 0.4117 | |
A2 | 12.22 | 1 | 12.22 | 103.42 | <0.0001 | Significant |
B2 | 14.04 | 1 | 14.04 | 118.82 | <0.0001 | Significant |
C2 | 10.73 | 1 | 10.73 | 90.77 | <0.0001 | Significant |
Residual | 0.83 | 7 | 0.12 | |||
Loss of proposed project | 0.57 | 3 | 0.19 | 2.90 | 0.1651 | Insignificant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xue, H.; Zhang, J.; Zhang, G. Study on Efficient Removal Method of Fine Particulate Dust in Green Metallurgy Process. Processes 2023, 11, 2573. https://doi.org/10.3390/pr11092573
Li H, Xue H, Zhang J, Zhang G. Study on Efficient Removal Method of Fine Particulate Dust in Green Metallurgy Process. Processes. 2023; 11(9):2573. https://doi.org/10.3390/pr11092573
Chicago/Turabian StyleLi, Haiying, Hairui Xue, Junya Zhang, and Guijie Zhang. 2023. "Study on Efficient Removal Method of Fine Particulate Dust in Green Metallurgy Process" Processes 11, no. 9: 2573. https://doi.org/10.3390/pr11092573
APA StyleLi, H., Xue, H., Zhang, J., & Zhang, G. (2023). Study on Efficient Removal Method of Fine Particulate Dust in Green Metallurgy Process. Processes, 11(9), 2573. https://doi.org/10.3390/pr11092573