A Convolutional Fuzzy Neural Network Active Noise Cancellation Approach without Error Sensors for Autonomous Rail Rapid Transit
Abstract
:1. Introduction
2. Approach
3. Simulation
3.1. Noise Reduction of Analog Noise Sources
3.2. Semiphysical Simulation
4. Experiment
4.1. Driver’s Cabin Noise Analysis of ART
4.2. ANC Experiment for ART
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lam, B.; Shi, D.; Gan, W.S.; Elliott, S.J.; Nishimura, M. Active control of broadband sound through the open aperture of a full-sized domestic window. Sci. Rep. 2020, 10, 10021. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Lam, B.; Gan, W.S.; Wen, S. Block coordinate descent based algorithm for computational complexity reduction in multichannel active noise control system. Mech. Syst. Signal Process. 2021, 151, 107346. [Google Scholar] [CrossRef]
- Samarasinghe, P.N.; Zhang, W.; Abhayapala, T.D. Recent advances in active noise control inside automobile cabins: Toward quieter cars. IEEE Signal Process. Mag. 2016, 33, 61–73. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, H.; Qiu, X. A frequency band constrained filtered–x least mean square algorithm for feedback active control systems. J. Acoust. Soc. Am. 2020, 148, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, S.; Pàmies Gómez, T.; Romeu Garbí, J. Proper location of the transducers for an active noise barrier. J. Vib. Control. 2023, 29, 2290–2300. [Google Scholar] [CrossRef]
- Song, P.; Zhao, H. Filtered-x least mean square/fourth (FXLMS/F) algorithm for active noise control. Mech. Syst. Signal Process. 2019, 120, 69–82. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J. A distributed FxLMS algorithm for narrowband active noise control and its convergence analysis. J. Sound Vib. 2022, 532, 116986. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Meng, D.; Pi, X. Active control of vehicle interior engine noise using a multi-channel delayed adaptive notch algorithm based on FxLMS structure. Mech. Syst. Signal Process. 2023, 186, 109831. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Gan, L.; Liu, Y. Directional Suppression of Monotone Noises with A Parametric Array Loudspeaker. Appl. Sci. 2023, 13, 6868. [Google Scholar] [CrossRef]
- Yin, W.; Wei, Y.; Liu, T.; Wang, Y. A novel orthogonalized fractional order filtered-x normalized least mean squares algorithm for feedforward vibration rejection. Mech. Syst. Signal Process. 2019, 119, 138–154. [Google Scholar] [CrossRef]
- Shi, D.; Gan, W.S.; Lam, B.; Shi, C. Two-gradient direction FXLMS: An adaptive active noise control algorithm with output constraint. Mech. Syst. Signal Process. 2019, 116, 651–667. [Google Scholar] [CrossRef]
- Rajagopal, R.; Palanisamy, K.; Paramasivam, S. Comparative performance of normalized LMS and variable step size LMS based control for shunt active filtering. In Proceedings of the 2019 9th International Conference on Advances in Computing and Communication (ICACC), Kochi, India, 6–8 November 2019; pp. 136–141. [Google Scholar]
- Li, T.; Wang, M.; He, Y.; Wang, N.; Yang, J.; Ding, R.; Zhao, K. Vehicle engine noise cancellation based on a multi-channel fractional-order active noise control algorithm. Machines 2022, 10, 670. [Google Scholar] [CrossRef]
- Mylonas, D.; Erspamer, A.; Yiakopoulos, C.; Antoniadis, I. An extrapolation-based virtual sensing technique of improving the control performance of the FxLMS algorithm in a maritime environment. Appl. Acoust. 2022, 193, 108756. [Google Scholar] [CrossRef]
- Shi, D.; Lam, B.; Wen, S.; Gan, W.S. Multichannel active noise control with spatial derivative constraints to enlarge the quiet zone. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Virtual, 4–9 May 2020; pp. 8419–8423. [Google Scholar]
- Li, T.; He, Y.; Wang, N.; Feng, J.; Gui, W.; Zhao, K. Active Noise Cancellation of Rail Vehicles Based on a Convolutional Fuzzy Neural Network Prediction Approach. In Proceedings of the 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Virtual, 25 October–14 November 2021; pp. 1–5. [Google Scholar]
- Ziółkowski, J.; Oszczypała, M.; Małachowski, J.; Szkutnik-Rogoż, J. Use of artificial neural networks to predict fuel consumption on the basis of technical parameters of vehicles. Energies 2021, 14, 2639. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, Y.; Pei, M.; Jia, Y. Vehicle type classification using a semisupervised convolutional neural network. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2247–2256. [Google Scholar] [CrossRef]
- An, J.; Fu, L.; Hu, M.; Chen, W.; Zhan, J. A novel fuzzy-based convolutional neural network method to traffic flow prediction with uncertain traffic accident information. IEEE Access 2019, 7, 20708–20722. [Google Scholar] [CrossRef]
- Du, G.; Wang, Z.; Li, C.; Liu, P.X. A TSK-type convolutional recurrent fuzzy network for predicting driving fatigue. IEEE Trans. Fuzzy Syst. 2020, 29, 2100–2111. [Google Scholar] [CrossRef]
- Hepzibah, J.; Kalaiselvi, S.; Anitha, V.; Gomathi, V. Road segmentation from remote sensing images using fuzzy based convolutional neural network. In Proceedings of the AIP Conference Proceedings, Kovilpatti, India, 14–15 May 2021; AIP Publishing LLC: New York, NY, USA, 2022; Volume 2444, p. 040007. [Google Scholar]
- Zhou, Y.L.; Zhang, Q.Z.; Li, X.D.; Gan, W.S. Analysis and DSP implementation of an ANC system using a filtered-error neural network. J. Sound Vib. 2005, 285, 1–25. [Google Scholar] [CrossRef]
- Park, S.; Patterson, E.; Baum, C. Long Short-Term Memory and Convolutional Neural Networks for Active Noise Control. In Proceedings of the 2019 5th International Conference on Frontiers of Signal Processing (ICFSP), Marseille, France, 18–20 September 2019; pp. 121–125. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; He, Y.; Wang, M.; Zhao, K.; Wang, N.; Gui, W.; Feng, J.; Yang, J. A Convolutional Fuzzy Neural Network Active Noise Cancellation Approach without Error Sensors for Autonomous Rail Rapid Transit. Processes 2023, 11, 2576. https://doi.org/10.3390/pr11092576
Li T, He Y, Wang M, Zhao K, Wang N, Gui W, Feng J, Yang J. A Convolutional Fuzzy Neural Network Active Noise Cancellation Approach without Error Sensors for Autonomous Rail Rapid Transit. Processes. 2023; 11(9):2576. https://doi.org/10.3390/pr11092576
Chicago/Turabian StyleLi, Tao, Yuyao He, Minqi Wang, Kaihui Zhao, Ning Wang, Weihua Gui, Jianghua Feng, and Jun Yang. 2023. "A Convolutional Fuzzy Neural Network Active Noise Cancellation Approach without Error Sensors for Autonomous Rail Rapid Transit" Processes 11, no. 9: 2576. https://doi.org/10.3390/pr11092576
APA StyleLi, T., He, Y., Wang, M., Zhao, K., Wang, N., Gui, W., Feng, J., & Yang, J. (2023). A Convolutional Fuzzy Neural Network Active Noise Cancellation Approach without Error Sensors for Autonomous Rail Rapid Transit. Processes, 11(9), 2576. https://doi.org/10.3390/pr11092576