Numerical Evaluation of the Effect of Buoyancy-Driven Flow on the Migration of Respiratory Droplets
Abstract
:1. Introduction
2. Physical Problems
2.1. Validation Problem 1: Jet Penetration
2.2. Validation Problem 2: Droplet Evaporation
2.3. Buoyancy-Driven Flow and the Cough Problem
3. Numerical Models
- Droplets were treated as spherical droplets;
- Droplet collision was negligible due to the small volume fraction of droplets in the air;
- The Stefan flow was neglected due to the small temperature difference between the respiratory droplets and the ambient air [27];
- The density of the respiratory droplets is approximated to be the same as that of water droplets due to the high mass fraction of water in typical respiratory droplets [6];
- The person is approximated as a column with a uniform temperature of 35 °C.
3.1. Continuous Phase Model
- Gas flow
- Heat transfer
- Species transfer
3.2. Discrete Phase Model
- Droplet migration
- Droplet heating and evaporation
4. Results and Discussion
4.1. Model Validation
4.1.1. Jet Penetration Validation
4.1.2. Droplet Evaporation Validation
4.2. Flow Pattern of the Buoyancy-Driven Flow
4.3. Respiratory Droplet Migration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazant, M.Z.; Bush, J.W.M. A guideline to limit indoor airborne transmission of COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2018995118. [Google Scholar] [CrossRef]
- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.L.; Lakdawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. Science 2021, 373, 981. [Google Scholar] [CrossRef] [PubMed]
- Abkarian, M.; Mendez, S.; Xue, N.; Yang, F.; Stone, H.A. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proc. Natl. Acad. Sci. USA 2020, 117, 25237–25245. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.H.; Wan, M.P.; Morawska, L.; Johnson, G.R.; Ristovski, Z.D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Li, Y.; Xie, X.; et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 2009, 40, 122–133. [Google Scholar] [CrossRef]
- Han, Z.Y.; Weng, W.G.; Huang, Q.Y. Characterizations of particle size distribution of the droplets exhaled by sneeze. J. R. Soc. Interface 2013, 10, 20130560. [Google Scholar] [CrossRef]
- Quiñones, J.J.; Doosttalab, A.; Sokolowski, S.; Voyles, R.M.; Castaño, V.; Zhang, L.T.; Castillo, L. Prediction of respiratory droplets evolution for safer academic facilities planning amid COVID-19 and future pandemics: A numerical approach. J. Build. Eng. 2022, 54, 104593. [Google Scholar] [CrossRef]
- He, Q.; Niu, J.; Gao, N.; Zhu, T.; Wu, J. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room. Build. Environ. 2011, 46, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lin, Z. Coughed droplet dispersion pattern in hospital ward under stratum ventilation. Build. Environ. 2021, 208, 108602. [Google Scholar] [CrossRef]
- Das, S.K.; Alam, J.-E.; Plumari, S.; Greco, V. Transmission of airborne virus through sneezed and coughed droplets. Phys. Fluids 2020, 32, 097102. [Google Scholar] [CrossRef]
- Yang, X.; Yang, H.; Ou, C.; Luo, Z.; Hang, J. Airborne transmission of pathogen-laden expiratory droplets in open outdoor space. Sci. Total. Environ. 2021, 773, 145537. [Google Scholar] [CrossRef]
- Rezaei, M.; Netz, R.R. Airborne virus transmission via respiratory droplets: Effects of droplet evaporation and sedimentation. Curr. Opin. Colloid Interface Sci. 2021, 55, 101471. [Google Scholar] [CrossRef]
- Lieber, C.; Melekidis, S.; Koch, R.; Bauer, H.-J. Insights into the evaporation characteristics of saliva droplets and aerosols: Levitation experiments and numerical modeling. J. Aerosol Sci. 2021, 154, 105760. [Google Scholar] [CrossRef]
- Liu, L.; Wei, J.; Li, Y.; Ooi, A. Evaporation and dispersion of respiratory droplets from coughing. Indoor Air 2016, 27, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Netz, R.R. Mechanisms of Airborne Infection via Evaporating and Sedimenting Droplets Produced by Speaking. J. Phys. Chem. B 2020, 124, 7093–7101. [Google Scholar] [CrossRef]
- Bahramian, M.; Mohammadi, G. Ahmadi, Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling. Sci. Total Environ. 2023, 858, 159444. [Google Scholar] [CrossRef]
- Pal, R.; Sarkar, S.; Mukhopadhyay, A. Influence of ambient conditions on evaporation and transport of respiratory droplets in indoor environment. Int. Commun. Heat Mass Transf. 2021, 129, 105750. [Google Scholar] [CrossRef]
- Sheikhnejad, Y.; Aghamolaei, R.; Fallahpour, M.; Motamedi, H.; Moshfeghi, M.; Mirzaei, P.A.; Bordbar, H. Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. Sustain. Cities Soc. 2022, 79, 103704. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Q. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos. Environ. 2007, 41, 5236–5248. [Google Scholar] [CrossRef]
- Yu, H.; Mui, K.; Wong, L.; Chu, H. Ventilation of general hospital wards for mitigating infection risks of three kinds of viruses including Middle East respiratory syndrome coronavirus. Indoor Built Environ. 2016, 26, 514–527. [Google Scholar] [CrossRef]
- Bogdan, A.; Ogłodziński, K.; Szyłak-Szydłowski, M. Analysis of thermal plumes forming over male human subjects. J. Build. Eng. 2022, 45, 103596. [Google Scholar] [CrossRef]
- Hossain, M.; Chinenye-Kanu, N.; Faisal, N.H.; Prathuru, A.; Asim, T.; Banik, S. Numerical Prediction of the Effect of Thermal Plume of a Standing Human on the Airborne Aerosol Flow in a Room: Assessment of the Social Distancing Rule. Aerosol Sci. Eng. 2022, 7, 96–106. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.; Han, J. How human thermal plume influences near-human transport of respiratory droplets and airborne particles: A review. Environ. Chem. Lett. 2021, 19, 1971–1982. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Y. Human Cough as a Two-Stage Jet and Its Role in Particle Transport. PLoS ONE 2017, 12, e0169235. [Google Scholar] [CrossRef] [PubMed]
- Smolík, J.; Džumbová, L.; Schwarz, J.; Kulmala, M. Evaporation of ventilated water droplet: Connection between heat and mass transfer. J. Aerosol Sci. 2001, 32, 739–748. [Google Scholar] [CrossRef]
- Tan, H.; Wong, K.Y.; Othman, M.H.D.; Kek, H.Y.; Nyakuma, B.B.; Ho, W.S.; Hashim, H.; Wahab, R.A.; Sheng, D.D.C.V.; Wahab, N.H.A.; et al. Why do ventilation strategies matter in controlling infectious airborne particles? A comprehensive numerical analysis in isolation ward. Build. Environ. 2023, 231, 110048. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, G.; Ekambaram, P.; Yan, X. Lab-scale electrostatic droplet collection from a fog plume with droplet evaporation. Appl. Therm. Eng. 2023, 223, 120044. [Google Scholar] [CrossRef]
- Akkus, Y. The effect of Stefan flow on the models of droplet evaporation. J. Therm. Sci. Technol. 2020, 40, 309–318. [Google Scholar] [CrossRef]
- Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Ranz, W.E.; Marshall, W.R., Jr. Evaporation from drops, Part I. Chem. Eng. Prog. 1952, 48, 141–146. [Google Scholar]
- Ranz, W.E.; Marshall, W.R., Jr. Evaporation from drops, Part II. Chem. Eng. Prog. 1952, 48, 173–180. [Google Scholar]
- Tong, X.; Hong, S.W.; Zhao, L. CFD modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosyst. Eng. 2019, 178, 275–293. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Yan, X. Numerical Evaluation of the Effect of Buoyancy-Driven Flow on the Migration of Respiratory Droplets. Processes 2023, 11, 2596. https://doi.org/10.3390/pr11092596
Li N, Yan X. Numerical Evaluation of the Effect of Buoyancy-Driven Flow on the Migration of Respiratory Droplets. Processes. 2023; 11(9):2596. https://doi.org/10.3390/pr11092596
Chicago/Turabian StyleLi, Nan, and Xiaohong Yan. 2023. "Numerical Evaluation of the Effect of Buoyancy-Driven Flow on the Migration of Respiratory Droplets" Processes 11, no. 9: 2596. https://doi.org/10.3390/pr11092596
APA StyleLi, N., & Yan, X. (2023). Numerical Evaluation of the Effect of Buoyancy-Driven Flow on the Migration of Respiratory Droplets. Processes, 11(9), 2596. https://doi.org/10.3390/pr11092596