Effects of Layering Angle and Prestress on Dynamic Load Energy Conversion and Damage Mechanism of Sandstone
Abstract
:1. Introduction
2. Test Plan
2.1. Sample Preparation
2.2. Test Scheme and Dynamic Stress Balance
3. Principle of Energy Calculation
4. Global Energy Conversion Characteristics of Sandstone
5. Evolution Mechanism of Elastic Energy and Dissipative Energy
6. Damage Analysis of Sandstone Caused by Initial Stress and Bedding Angle
6.1. Damage Analysis of Prestressed Sandstone
6.2. Damage Evolution of Sandstone under Combined Dynamic and Static Loading
7. Conclusions
- The global energy evolution curve and damage mechanism evolution curve of sandstone under prestress and bedding inclination were obtained.
- With the increase in prestress, the energy of each characteristic point of sandstone increases, and the total energy evolution curve changes. In addition, the energy of each characteristic point of sandstone is also different with different bedding angles.
- It is found that the energy conversion mechanism of sandstone is also different under different loading modes.
- It is found that the prestress is positively correlated with the initial damage degree of sandstone, and the initial damage degree of sandstone with different bedding angles is also different.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Xu, J.; Fang, X.; Wang, P. Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles. Eng. Geol. 2017, 221, 104–113. [Google Scholar] [CrossRef]
- Li, D.; Han, Z.; Zhu, Q.; Zhang, Y.; Ranjith, P.G. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles. Int. J. Rock Mech. Min. Sci. 2019, 117, 162–170. [Google Scholar] [CrossRef]
- Hao, X.; Du, W.; Zhao, Y.; Sun, Z.; Zhang, Q.; Wang, S.; Qiao, H. Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading. Int. J. Min. Sci. Technol. 2020, 30, 659–668. [Google Scholar] [CrossRef]
- Su, Q.; Ma, Q.; Ma, D.; Yuan, P. Dynamic mechanical characteristic and fracture evolution mechanism of deep roadway sandstone containing weakly filled joints with various angles. Int. J. Rock Mech. Min. Sci. 2021, 137, 104552. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Xia, K.; Tong, T. Dynamic Tensile Response of a Microwave Damaged Granitic Rock. Exp. Mech. 2020, 61, 461–468. [Google Scholar] [CrossRef]
- Qi, C.; Wang, M.; Qian, Q. Strain-rate effects on the strength and fragmentation size of rocks. Int. J. Impact Eng. 2009, 36, 1355–1364. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, F.; Du, H. Experimental and numerical studies on compression-shear behaviors of brittle rocks subjected to combined static-dynamic loading. Int. J. Mech. Sci. 2020, 175, 105520. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, W.; Yang, Y.; Zhang, Y.; Dong, X.; Xing, Y.; Zeng, W.; Fang, K. Dynamic response and energy evolution of sandstone under combined dynamic and static loading. Soil Dyn. Earthq. Eng. 2023, 174, 108168. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, J.; Yang, Y.; Zhang, Y.; Dong, X.; Xing, Y. Study on the Mechanical Behavior and Constitutive Model of Layered Sandstone under Triaxial Dynamic Loading. Mathematics 2023, 11, 1959. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, J.; Niu, W.; Zhang, Y.; Dong, X.; Xing, Y.; Zeng, W. Study on dynamic loading characteristics and energy evolution of sandstone with double cracks. Theor. Appl. Fract. Mech. 2023, 125, 103893. [Google Scholar] [CrossRef]
- Khayrutdinov, M.M.; Kongar-Syuryun, C.B.; Khayrutdinov, A.M.; Tyulyaeva, Y.S. Improving safety when extracting water-soluble ores by optimizing the parameters of the backfill mass. Bezop. Tr. V Promyshlennosti 2021, 2021, 53–59. [Google Scholar] [CrossRef]
- Adigamov, A.E.; Yudenkov, A.V. Stress-strain behavior model of disturbed rock mass with regard to anisotropy and discontinuities. Min. Inf. Anal. Bull. 2021, 8, 93–103. [Google Scholar] [CrossRef]
- Rybak, J.M.; Kongar-Syuryun, C.; Tyulyaeva, Y.; Khayrutdinov, A.M.; Akinshin, I. Geomechanical substantiation of parameters of technology for mining salt deposits with a backfill. Min. Sci. 2021, 28, 19–32. [Google Scholar] [CrossRef]
- Kongar-Syuryun, C.; Ubysz, A.; Faradzhov, V. Models and algorithms of choice of development technology of deposits when selecting the composition of the backfilling mixture. IOP Conf. Ser. Earth Environ. Sci. 2021, 684, 012008. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, X.; Qian, L.Z.; Chen, S.H.; Yu, J. Influence of bedding anisotropy on the dynamic fracture behavior of layered phyllite. Eng. Fract. Mech. 2022, 260, 108183. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Z.; Gao, Y.; Wang, X.; Song, H. Influence of bedding planes on fracture characteristics of coal under mode II loading. Theor. Appl. Fract. Mech. 2022, 117, 103131. [Google Scholar] [CrossRef]
- Zhang, X.; Ou, X.; Gong, F.; Yang, J. Effects of Bedding on The Dynamic Compressive Properties of Low Anisotropy Slate. Rock Mech. Rock Eng. 2018, 52, 981–990. [Google Scholar] [CrossRef]
- Ye, H.; Li, X.; Lei, T.; Li, L.; Wang, Q.; Li, N. Dynamic response characteristics and damage rule of graphite ore rock under different strain rates. Sci. Rep. 2023, 13, 2151. [Google Scholar] [CrossRef]
- Wu, H.; Fan, A.; Zheng, Z.; Wang, M.; Li, S.; Zhang, B.; Liu, Y. Dynamic mechanical properties and failure behaviors of brittle rock materials with a tunnel-shaped opening subjected to impact loads. J. Mater. Res. Technol. 2023, 25, 3285–3297. [Google Scholar] [CrossRef]
- Lu, A.; Chang, X.; Hu, S.; Xia, Y.; Li, M.; Zhang, H. Impact of Moisture Content on the Brittle-Ductile Transition and Microstructure of Sandstone under Dynamic Loading Conditions. Adv. Civ. Eng. 2021, 2021, 6690171. [Google Scholar] [CrossRef]
- Liu, D.; Li, D.; Zhao, F.; Wang, C. Fragmentation characteristics analysis of sandstone fragments based on impact rockburst test. J. Rock Mech. Geotech. Eng. 2014, 6, 251–256. [Google Scholar] [CrossRef]
- Cen, D.; Huang, D.; Song, Y.; Jiang, Q. Direct Tensile Behavior of Limestone and Sandstone with Bedding Planes at Different Strain Rates. Rock Mech. Rock Eng. 2020, 53, 2643–2651. [Google Scholar] [CrossRef]
- Cen, D.; Li, Y.; Huang, D. Mechanical behavior of the weak bedding plane within sandstone subjected to dynamic load of cyclic tension. Bull. Eng. Geol. Environ. 2022, 81, 424. [Google Scholar] [CrossRef]
- Zhou, T.; Zhu, J.; Xie, H. Mechanical and Volumetric Fracturing Behaviour of Three-Dimensional Printing Rock-like Samples Under Dynamic Loading. Rock Mech. Rock Eng. 2020, 53, 2855–2864. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, C.; Maimaitiyusupu, S.; Zhu, Z. Investigation on Properties of Rock Joint in Compression Dynamic Test. KSCE J. Civ. Eng. 2019, 23, 3854–3863. [Google Scholar] [CrossRef]
- Yan, Z.; Dai, F.; Zhu, J.; Xu, Y. Dynamic Cracking Behaviors and Energy Evolution of Multi-flawed Rocks Under Static Pre-compression. Rock Mech. Rock Eng. 2021, 54, 5117–5139. [Google Scholar] [CrossRef]
- Yan, Z.; Dai, F.; Liu, Y.; Du, H. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading. Bull. Eng. Geol. Environ. 2020, 79, 5535–5552. [Google Scholar] [CrossRef]
- Li, P.; Cai, M.; Gao, Y.; Guo, Q.; Miao, S.; Ren, F.; Wang, Y. Mechanical responses and fracturing behavior of jointed rock masses with a cavity under different dynamic loads. Int. J. Impact Eng. 2023, 178, 104608. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Chen, P.; Li, H.; Lou, P. Dynamic Mechanical Properties and Fragment Fractal Characteristics of Fractured Coal–Rock-Like Combined Bodies in Split Hopkinson Pressure Bar Tests. Nat. Resour. Res. 2020, 29, 3179–3195. [Google Scholar] [CrossRef]
- Tao, M.; Zhao, H.; Li, X.; Li, X.; Du, K. Failure characteristics and stress distribution of pre-stressed rock specimen with circular cavity subjected to dynamic loading. Tunn. Undergr. Space Technol. 2018, 81, 1–15. [Google Scholar] [CrossRef]
- Chang, S.; Xu, J.Y.; Bai, E.L.; Zheng, G.H.; Lv, X.C. Static and dynamic mechanical properties and deterioration of bedding sandstone subjected to freeze-thaw cycles: Considering bedding structure effect. Sci. Rep. 2020, 10, 12790. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, H.; Li, D.; Li, H.; Liu, Z. Strength and Failure Characteristics of Natural and Water-Saturated Coal Specimens under Static and Dynamic Loads. Shock Vib. 2018, 2018, 3526121. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Li, X.; Cao, W.; Du, X. Dynamic Response and Energy Evolution of Sandstone Under Coupled Static–Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications. Rock Mech. Rock Eng. 2019, 53, 1305–1331. [Google Scholar] [CrossRef]
- Li, Y.; Peng, J.; Zhang, F.; Qiu, Z. Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading. Eng. Geol. 2016, 213, 64–73. [Google Scholar] [CrossRef]
- Cai, X.; Zhou, Z.; Du, X. Water-induced variations in dynamic behavior and failure characteristics of sandstone subjected to simulated geo-stress. Int. J. Rock Mech. Min. Sci. 2020, 130, 104339. [Google Scholar] [CrossRef]
- Ke, B.; Zhang, J.; Deng, H.; Yang, X. Dynamic Characteristics of Sandstone under Coupled Static-Dynamic Loads after Freeze-Thaw Cycles. Appl. Sci. 2020, 10, 3351. [Google Scholar] [CrossRef]
- Du, H.-B.; Dai, F.; Liu, Y.; Xu, Y.; Wei, M.-D. Dynamic response and failure mechanism of hydrostatically pressurized rocks subjected to high loading rate impacting. Soil Dyn. Earthq. Eng. 2020, 129, 105927. [Google Scholar] [CrossRef]
- Du, H.-b.; Dai, F.; Xu, Y.; Yan, Z.; Wei, M.-d. Mechanical responses and failure mechanism of hydrostatically pressurized rocks under combined compression-shear impacting. Int. J. Mech. Sci. 2020, 165, 105219. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, D.; Han, Z.; Xiao, P.; Li, B. Failure characteristics of brittle rock containing two rectangular holes under uniaxial compression and coupled static-dynamic loads. Acta Geotech. 2021, 17, 131–152. [Google Scholar] [CrossRef]
- Xue, W.; Mao, X.; Xu, W.; Zhang, H.; Gao, C. Macro-and meso-scale study on dynamic mechanical properties of shaft lining concrete exposed to high water pressure. Case Stud. Constr. Mater. 2022, 17, e01502. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, L.; Dai, B.; Liu, Y.; Zhang, Z.; Luo, X. Experimental Investigation of Pre-Flawed Rocks under Dynamic Loading: Insights from Fracturing Characteristics and Energy Evolution. Materials 2022, 15, 8920. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Sheng, Q.; Li, N.; Fu, X. The Influence of Strain Rate on the Energy Characteristics and Damage Evolution of Rock Materials Under Dynamic Uniaxial Compression. Rock Mech. Rock Eng. 2020, 53, 3823–3834. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, J.; Dong, X.; Zhang, Y.; Yang, Y.; Zeng, W.; Wang, S. Fractal dimension and energy-damage evolution of deep-bedded sandstone under one-dimensional dynamic and static combined loading. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 177. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, W.; Zhang, J.; Yang, Y.; Fang, K.; Wu, S.; Xing, Y. Effects of Layering Angle and Prestress on Dynamic Load Energy Conversion and Damage Mechanism of Sandstone. Processes 2023, 11, 2641. https://doi.org/10.3390/pr11092641
Fan W, Zhang J, Yang Y, Fang K, Wu S, Xing Y. Effects of Layering Angle and Prestress on Dynamic Load Energy Conversion and Damage Mechanism of Sandstone. Processes. 2023; 11(9):2641. https://doi.org/10.3390/pr11092641
Chicago/Turabian StyleFan, Wenbing, Junwen Zhang, Yang Yang, Kailun Fang, Shaokang Wu, and Yulong Xing. 2023. "Effects of Layering Angle and Prestress on Dynamic Load Energy Conversion and Damage Mechanism of Sandstone" Processes 11, no. 9: 2641. https://doi.org/10.3390/pr11092641
APA StyleFan, W., Zhang, J., Yang, Y., Fang, K., Wu, S., & Xing, Y. (2023). Effects of Layering Angle and Prestress on Dynamic Load Energy Conversion and Damage Mechanism of Sandstone. Processes, 11(9), 2641. https://doi.org/10.3390/pr11092641