Numerical Simulation Study on Vibration Reduction Effect of Flexible Cutting-Tooth Unit
Abstract
:1. Introduction
2. Vibration-Reduction Mechanism of Flexible Cutting Technology
3. Numerical Simulation
3.1. Constitutive Relation of Rock
3.2. Establishment of the Numerical Models
3.3. Verification of the Numerical Models
4. Analysis of Simulation Results
4.1. The Effect of the Cutting Depth
4.2. The Effect of the Front Rake Angle
4.3. The Effect of the Stiffness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lv, M.R.; Shen, S.G. Research on stick-slip vibration dynamics of drill string. J. Southwest Pet. Univ. Sci. Technol. Ed. 2014, 36, 150–159. [Google Scholar]
- Teng, X.Q.; Di, Q.F.; Li, N.; Chen, F.; Zhou, B.; Wang, M. Measurement and analysis of stick-slip vibration characteristics of drill string in ultra-deep wells. Pet. Drill. Tech. 2017, 45, 32–39. [Google Scholar]
- Jia, X.L.; Zhong, X.L.; Liu, S.H.; Ji, Z.H. Analysis of stick-slip vibration characteristics of deep well drill string. Oil Field Equip. 2018, 47, 7. [Google Scholar]
- Wang, G.M.; Li, D.; Ni, X.H. Research progress of special-shaped cutting teeth of PDC bit. Oil Field Equip. 2022, 51, 76–83. [Google Scholar]
- Durrand, C.J.; Skeem, M.R.; Crockett, R.B.; Hall, H.R. Super-hard, thick, shaped PDC cuters for hard rock driling: Development and test results. In Proceedings of the 35th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 1–3 February 2010. [Google Scholar]
- Zhao, D.P.; Ma, S.S.; Niu, T.J.; Li, S.C.; Zhang, C.L.; Fang, H.J. Performance characterization of curved polycrystalline diamond composite sheet for hard rock drilling. Diam. Abras. Eng. 2016, 36, 83–86. [Google Scholar]
- Zhao, D.P.; Ma, S.S.; Niu, T.J.; Li, S.C.; Zhang, C.L.; Fang, H.J. Development of non-planar polycrystalline diamond compacts for oil drilling. Diam. Abras. Eng. 2017, 37, 49–52. [Google Scholar]
- Liu, J.H.; Ling, W.X.; Wang, H. Study on rock breaking mechanism and field test of non-planar triangular PDC tooth. Pet. Drill. Tech. 2021, 49, 46–50. [Google Scholar]
- Xu, G.P.; Liang, H.Y.; He, L.M.; Li, M.H. Development of high quality diamond compact (PDC) for oilfield drilling. Min. Metall. Eng. 2005, 25, 66–68+72. [Google Scholar]
- Johnson, D.M.; Klug, F.J. Polycrystalline Diamond Compact Cutter with Reduced Failure during Brazing. U.S. Patent 6,042,463, 19 November 1998. [Google Scholar]
- Gao, K.; Li, M.; Dong, B.; Sun, Y.H.; Sun, Y.; Liu, J. Bionic coupling polycrystalline diamond composite sheet drill bit. Pet. Explor. Dev. 2014, 41, 485–489. [Google Scholar] [CrossRef]
- Yang, X.W.; Peng, Q.; Feng, X.; Liu, Y.; Ke, X.H.; Liu, B.C.; Tu, J.B. Numerical simulation of matrix interface shape on PDC residual stress. China Pet. Mach. 2023, 51, 82–88. [Google Scholar]
- Han, L.J.; Yang, C.X. Key drilling and completion technologies of shale oil horizontal wells in Jiyang Depression. Pet. Drill. Technol. 2021, 49, 22–28. [Google Scholar]
- Wang, M. Optimization design and application of PDC bit in complex lithology formation. West-China Explor. Eng. 2023, 35, 70–72. [Google Scholar]
- Jaggi, A.; Upadhaya, S.; Chowdhury, A.R. Successful PDC/RSS Vibration Management Using Innovative Depth-of-Cut Control Technology: Panna Field, Offshore India. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, Amsterdam, The Netherlands, 20–22 February 2007. [Google Scholar]
- Jain, J.R.; Ledgerwood, L.W.; Hoffmann, O.J.; Schwefe, T.; Fuselier, D.M. Mitigation of Torsional Stick-Slip Vibrations in Oil Well Drilling through PDC Bit Design: Putting Theories to the Test. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011. [Google Scholar]
- Zheng, J. New progress of diamond bit abroad. China Pet. Mach. 2016, 44, 31–36. [Google Scholar]
- Jain, J.R.; Ricks, G.; Baxter, B.; Vempati, C.; Peters, V.; Bilen, J.M.; Spencer, R.; Stibbe, H. A Step Change in Drill-Bit Technology With Self-Adjusting Polycrystalline-Diamond-Compact Bits. Soc. Pet. Eng. Drill. Complet. 2016, 31, 286–294. [Google Scholar] [CrossRef]
- Kenneth, E.; Russell, S.C. Innovative Ability to Change Drilling Responses of a PDC Bit at the Rigsite Using Interchangeable Depth-of-Cut Control Features. In Proceedings of the IADC/SPE Drilling Conference and Exhibition, Fort Worth, TX, USA, 1–3 March 2016. [Google Scholar]
- Si, N.; Deng, H.; Li, J.; Pi, G.L. Baker Hughes adaptive PDC bit. Fault-Block Oil Gas Field 2017, 24, 125–130. [Google Scholar]
- Zhu, X.H.; Tang, L.P.; Meng, P.P.; Wang, P.; Wang, Y. Mechanism analysis of stick-slip vibration of PDC bit. Oil Field Equip. 2012, 41, 13–16. [Google Scholar]
- Fu, M.; Li, J.H.; Wu, Y.F.; Li, Y.R. Simulation and mechanism analysis of stick-slip vibration characteristics of drill string. J. Northwest. Polytech. Univ. 2016, 41, 467–472. [Google Scholar]
- He, Z.G.; Shi, L.B.; Li, L.; Kong, L.X.; Kong, L.L.; Zhang, X.N.; Liu, X.Y. Study on stick-slip vibration mechanism based on finite element simulation of single-tooth rock breaking. China Pet. Mach. 2021, 49, 17–26. [Google Scholar]
- Yang, Y.X.; Ren, H.T.; Lin, Z.H.; Wu, M.; Yang, Y. Cutting Teeth and Adopt Diamond Bit of This Cutting Teeth with Damping Function. CN CN208137865U, 2018. [Google Scholar]
- Zhou, R.; Zhang, L.H.; He, B.Y.; Liu, Y.H. Numerical simulation of residual stress field in green power metallurgy compacts by modified Drucker–Prager Cap model. Nonferrous Met. Soc. China Trans. 2013, 23, 2374–2382. [Google Scholar] [CrossRef]
- Luan, M.T.; Yang, X.H.; Yang, Q.; Fan, C.; Ye, X.J. The maximum Mises stress composite fracture criterion considering the three-dimensional stress effect. Rock Soil Mech. 2006, 27, 1647–1652. [Google Scholar]
- Jin, Y.S.; Li, L. Study on Von Mises Stress Process of Structure under Random Vibration Loading. Chin. J. Appl. Mech. 2004, 21, 13–16+157–158. [Google Scholar]
- Xue, G. Analysis of mechanical properties of welded joints based on Mises yield criterion and I1 fracture criterion. Dev. Appl. Mater. 2022, 37, 1–10. [Google Scholar]
- Chen, X.H.; Xu, Y.D.; Song, Y.K.; Han, J.G.; Wu, H.Y.; Cao, Z.X.; Shao, Z.W.; Chen, X.H. Effect of loading mode on fatigue performance of needle valve. Ordnance Mater. Sci. Eng. 2023, 46, 118–124. [Google Scholar]
The Combination of Disc Springs | The Expression of the Relationship between Load and Displacement | |
---|---|---|
A2 | y = 2.0483x − 0.0304 | R² = 0.9987 |
A4 | y = 1.02415x − 0.0304 | R² = 0.9987 |
B4 | y = 0.49795x − 0.0236 | R² = 0.9996 |
C4 | y = −0.0788875x² + 0.442575x − 0.0738 | R² = 0.9948 |
Programme | Front Rake Angle (°) | Type of Support | Preset Cutting Depth (mm) |
---|---|---|---|
Change the cutting depth | 15 | A4 disc-spring combination | 1, 1.3, 1.5, 1.8, 2 |
rigid sleeve | The corresponding actual cutting depth | ||
Change the front rake angle | 5, 10, 20, 25 | A4 disc-spring combination | 1.5 |
rigid sleeve | The corresponding actual cutting depth | ||
Change the disc spring combination | 15 | A2, A4, B4, C4 disc-spring combinations | 1.5 |
rigid sleeve | The corresponding actual cutting depth |
Material | Elastic Modulus (MPa) | Poisson’s Ratio | Tensile Strength (MPa) | Shearing Strength (MPa) | Internal Friction Angle (°) | Compressive Strength (MPa) | Plasticity Coefficient |
---|---|---|---|---|---|---|---|
Limestone rock | 31,200 | 0.171 | 6.758 | 17.12 | 43.62 | 105.951 | 1.32 |
A4 disc-spring combination | 206,000 | 0.3 | |||||
Cemented carbide | 579,000 | 0.22 | |||||
Polycrystalline diamond | 890,000 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Xu, J.; Jia, X.; Zhou, S.; Zhou, C.; Yang, Y.; Zhan, Q. Numerical Simulation Study on Vibration Reduction Effect of Flexible Cutting-Tooth Unit. Processes 2023, 11, 2658. https://doi.org/10.3390/pr11092658
Ren H, Xu J, Jia X, Zhou S, Zhou C, Yang Y, Zhan Q. Numerical Simulation Study on Vibration Reduction Effect of Flexible Cutting-Tooth Unit. Processes. 2023; 11(9):2658. https://doi.org/10.3390/pr11092658
Chicago/Turabian StyleRen, Haitao, Jingwei Xu, Xin Jia, Sheng Zhou, Chunxiao Zhou, Yingxin Yang, and Qi Zhan. 2023. "Numerical Simulation Study on Vibration Reduction Effect of Flexible Cutting-Tooth Unit" Processes 11, no. 9: 2658. https://doi.org/10.3390/pr11092658
APA StyleRen, H., Xu, J., Jia, X., Zhou, S., Zhou, C., Yang, Y., & Zhan, Q. (2023). Numerical Simulation Study on Vibration Reduction Effect of Flexible Cutting-Tooth Unit. Processes, 11(9), 2658. https://doi.org/10.3390/pr11092658