Flow Visualisation and Evaluation Studies on Metalworking Fluid Applications in Manufacturing Processes—Methods and Results
Abstract
:1. Introduction
- Drilling processes (ejector deep hole drilling, discontinuous drilling, and vibration-assisted drilling);
- Electrochemical machining processes—PECM (with and without magnetic field);
- Sawing process;
- Turning process.
2. Manufacturing Processes and Setups for MWF Analyses
2.1. Ejector Deep Hole Drilling (SPP 2231-TP03)
2.2. Discontinuous Drilling (SPP 2231-TP04)
2.3. Vibration-Assisted Drilling—VAD (SPP 2231-TP08)
2.3.1. Materials and Methods (VAD-TP08)
2.3.2. Results and Discussion (VAD-TP08)
2.3.3. Summary (VAD-TP08)
2.4. Circular Saw with Internal Coolant Supply—ICS (SPP 2231-TP09)
2.5. Precise Electrochemical Machining—PECM (SPP 2231-TP10)
2.5.1. Concept and Experimental Setup (PECM-TP10)
2.5.2. Measurement Results (PECM-TP10)
2.5.3. Summary and Outlook (PECM-TP10)
2.6. Machining with Flood and Jet Cooling (SPP 2231-TP11)
2.6.1. Evaluation Method (TP11)
2.6.2. Results and Discussion (TP11)
2.6.3. Conclusion (TP11)
2.7. Electrochemical Machining with Superimposed Magnetic Field—MPECM (SPP 2231-TP12)
2.7.1. Experimental Setup (MPECM-TP12)
2.7.2. Data Analysis and Post-Processing (MPECM-TP12)
2.7.3. Results and Discussion (MPECM-TP12)
3. Conclusions
- Ejector deep hole drilling: PIV was shown to be an efficient and valid analysis tool, allowing quantitative and qualitative comparisons and evaluations of the flow characteristics in the tool system in the experimentally recorded MWF flow.
- Discontinuous drilling: By comparing the flow simulation with high-speed PTV experiments, a qualified method is established to validate the numerical work and to optimise the heat transfer from the highly loaded cutting edges to the fluid in parallel with the process analysis.
- Vibration-assisted drilling: Shadowgraphy proved capable of distinguishing different flow regimes and generating a regime map to characterise the MQL flow behaviour as a function of the operating conditions of air and MWF input pressures.
- Circular saw with internal coolant supply: Two test setups showed that an internal coolant supply has a significant effect on the curling of the chip formation process and that a 0° inflow angle appears to be the best in terms of cost–benefit assessment.
- Precise electrochemical machining: An analogue test rig for observing gas transport showed that regions with high concentrations of gas bubbles had lower velocities and that these gas bubbles tended to coalesce.
- Flood and jet cooling machining: A method for measuring the velocity distribution over the edges of coolant-free jets was presented, consisting of high-speed imaging to record the jet and edge tracking.
- Superimposed magnetic field electrochemical machining: A quasi-tomographic approach was presented using stereo PIV measurements to reconstruct the three-dimensional flow from the individual measurements.
Author Contributions
Funding
Conflicts of Interest
References
- FluSimPro SPP 2231. Available online: https://flusimpro.isf.maschinenbau.tu-dortmund.de/projekte/ (accessed on 3 July 2023).
- Leiden, A.; Arafat, R.; Callegari, M.; Kolb, M.; Herrmann, C.; Wichmann, H. Development and testing of novel mineral oil- and biocide-free glycerol- and propanediol-based fluids for drilling and tapping aluminium alloys. Int. J. Adv. Manuf. Technol. 2023, 126, 2323–2336. [Google Scholar] [CrossRef]
- Rashmi, W.; Osama, M.; Khalid, M.; Rasheed, A.K.; Bhaumik, S.; Wong, W.Y.; Datta, S.; Tcsm, G. Tribological performance of nanographite-based metalworking fluid and parametric investigation using artificial neural network. Int. J. Adv. Manuf. Technol. 2019, 104, 359–374. [Google Scholar] [CrossRef]
- Klocke, F.; König, W. Fertigungsverfahren 1—Drehen, Fräsen, Bohren, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Eltaggaz, A.; Pervaiz, S. (Eds.) Minimum Quantity Lubrication: Environmental Alternatives in Processing; Special Issue: Lubricants; MDPI: Basel, Switzerland, 2023. [Google Scholar]
- Brinksmeier, E.; Meyer, D.; Huesmann-Cordes, A.G.; Herrmann, C. Metalworking fluids—Mechanisms and performance. CIRP Ann. 2015, 64, 605–628. [Google Scholar] [CrossRef]
- Weinert, K.; Inasaki, I.; Sutherland, J.W.; Wakabayashi, T. Dry Machining and Minimum Quantity Lubrication. CIRP Ann. 2004, 53, 511–537. [Google Scholar] [CrossRef]
- Dasch, J.M.; Kurgin, S.K. A characterisation of mist generated from minimum quantity lubrication (MQL) compared to wet machining. Int. J. Mach. Mach. Mater. 2010, 7, 82–95. [Google Scholar] [CrossRef]
- Tai, B.L.; Stephenson, D.A.; Furness, R.J.; Shih, A.J. Minimum Quantity Lubrication (MQL) in Automotive Powertrain Machining. Procedia CIRP 2014, 14, 523–528. [Google Scholar] [CrossRef]
- Jawahir, I.S.; Attia, H.; Biermann, D.; Duflou, J.; Klocke, F.; Meyer, D.; Newman, S.T.; Pusavec, F.; Putz, M.; Rech, J.; et al. Cryogenic manufacturing processes. CIRP Ann. 2016, 65, 713–736. [Google Scholar] [CrossRef]
- Khanna, N.; Agrawal, C.; Pimenov, D.Y.; Singla, A.K.; Machado, A.R.; da Silva, L.R.R.; Gupta, M.K.; Sarikaya, M.; Krolczyk, G.M. Review on design and development of cryogenic machining setups for heat resistant alloys and composites. J. Manuf. Process. 2021, 68, 398–422. [Google Scholar] [CrossRef]
- Daniel, D.M.; Moraes, D.L.d.; Garcia, M.V.; Lopes, J.C.; Rodriguez, R.L.; Ribeiro, F.S.F.; Sanchez, L.E.d.A.; Bianchi, E.C. Application of MQL with cooled air and wheel cleaning jet for greener grinding process. Int. J. Adv. Manuf. Technol. 2022, 125, 435–452. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Feldshtein, E.; Pusavec, F.; Szydlowski, M.; Legutko, S.; Sobczak-Kupiec, A. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int. J. Mach. Tools Manuf. 2016, 100, 81–92. [Google Scholar] [CrossRef]
- Rahim, E.A.; Dorairaju, H. Evaluation of mist flow characteristic and performance in Minimum Quantity Lubrication (MQL) machining. Measurement 2018, 123, 213–225. [Google Scholar] [CrossRef]
- Raval, J.K.; Hung, W.N.P.; Tai, B.L. Multiphase Flow Distribution in MQL Drilling Using Optical Intensity Distribution Based Approach. In Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, PA, USA, 10–14 June 2019. [Google Scholar] [CrossRef]
- Meyer, D.; Schumski, L.; Guba, N.; Espenhahn, B.; Hüsemann, T. Relevance of the region of interaction between the tool and the metalworking fluid for the cooling effect in grinding. CIRP Ann. 2022, 71, 301–304. [Google Scholar] [CrossRef]
- Buss, L.; Schumski, L.; Sölter, J.; Avila, K.; Karpuschewski, B.; Fritsching, U. Minimum Quantity Lubrication (MQL) multiphase dynamics of a vibration-assisted drilling process. Procedia CIRP 2023, 117, 420–425. [Google Scholar] [CrossRef]
- Raval, J.K.; Tai, B.L. Mist Flow in Through-Tool Minimum Quantity Lubrication Drilling: Two-Phase Flow Simulation and Experimental Observation. J. Manuf. Sci. Eng. 2023, 145, 031002. [Google Scholar] [CrossRef]
- Biermann, D.; Bleicher, F.; Heisel, U.; Klocke, F.; Möhring, H.C.; Shih, A. Deep hole drilling. CIRP Ann. 2018, 67, 673–694. [Google Scholar] [CrossRef]
- Astakhov, V.P. Drills: Science and Technology of Advanced Operations, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Gerken, J.F.; Canini, D.; Biermann, D.; Eberhard, P. Analysis of the cooling lubricant flow in the area of cutting edges and guide pads during ejector deep hole drilling. Procedia CIRP 2023, 117, 408–413. [Google Scholar] [CrossRef]
- Wolf, T.; Iovkov, I.; Biermann, D. Discontinuous Drilling of Inconel 718. MM Sci. J. 2021, 2021, 4569–4575. [Google Scholar] [CrossRef]
- Wolf, T.; Iovkov, I.; Biermann, D. Influence of a Discontinuous Process Strategy on Microstructure and Microhardness in Drilling Inconel 718. J. Manuf. Mater. Process. 2021, 5, 43. [Google Scholar] [CrossRef]
- Fast, M.; Mierka, O.; Turek, S.; Wolf, T.; Biermann, D. Mathematical Modeling of Coolant Flow in Discontinuous Drilling Processes with Temperature Coupling. Proc. Appl. Math. Mech. 2023, 22, e202200142. [Google Scholar] [CrossRef]
- Oezkaya, E.; Michel, S.; Biermann, D. Experimental and computational analysis of the coolant distribution considering the viscosity of the cutting fluid during machining with helical deep hole drills. Adv. Manuf. 2022, 10, 235–249. [Google Scholar] [CrossRef]
- Heyman, J. TracTrac: A fast multi-object tracking algorithm for motion estimation. Comput. Geosci. 2019, 128, 11–18. [Google Scholar] [CrossRef]
- Sadek, A.; Aly, M.; Hamza, K.; Meshreki, M.; Nassef, A.O.; Attia, H. Optimization of Cutting Conditions in Vibration Assisted Drilling of Composites via a Multi-Objective EGO Implementation. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015. [Google Scholar] [CrossRef]
- Bleicher, F.; Wiesinger, G.; Kumpf, C.; Finkeldei, D.; Baumann, C.; Lechner, C. Vibration assisted drilling of CFRP/metal stacks at low frequencies and high amplitudes. Prod. Eng. 2018, 12, 289–296. [Google Scholar] [CrossRef]
- Paulsen, T.; Guba, N.; Sölter, J.; Karpuschewski, B. Influence of the workpiece material on the cutting performance in low frequency vibration assisted drilling. CIRP J. Manuf. Sci. Technol. 2020, 31, 140–152. [Google Scholar] [CrossRef]
- Osman, K.A.; Ünver, H.Ö.; Şeker, U. Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability: A review. Int. J. Adv. Manuf. Technol. 2018, 100, 2311–2332. [Google Scholar] [CrossRef]
- He, T.; Liu, N.; Xia, H.; Wu, L.; Zhang, Y.; Li, D.; Chen, Y. Progress and trend of minimum quantity lubrication (MQL): A comprehensive review. J. Clean. Prod. 2023, 386, 135809. [Google Scholar] [CrossRef]
- Pecat, O. Vibrationsunterstütztes Bohren von Werkstoffverbunden aus CFK und Titan. Ph.D. Thesis, University of Bremen, Bremen, Germany, 2018. [Google Scholar]
- Stampfer, B.; Zanger, F.; Schulze, V. In-Process Analysis of Minimum Quantity Lubrication during Drilling of AISI 4140. In Advances in Production Research, Proceedings of the WPG 2018, Aachen, Germany, 19–20 November; Schmitt, R., Schuh, G., Eds.; Springer: Cham, Switzerlad, 2019; pp. 541–550. [Google Scholar] [CrossRef]
- Möhring, H.-C.; Menze, C.; Werkle, K.T. Internal coolant supply in circular sawing. CIRP Ann. 2023, 72, 353–356. [Google Scholar] [CrossRef]
- Fang, Z.; Obikawa, T. Influence of cutting fluid flow on tool wear in high-pressure coolant turning using a novel internally cooled insert. J. Manuf. Processes 2020, 56, 1114–1125. [Google Scholar] [CrossRef]
- Lakner, T.; Bergs, T.; Döbbeler, B. Additively manufactured milling tool with focused cutting fluid supply. Procedia CIRP 2019, 81, 464–469. [Google Scholar] [CrossRef]
- Tismer, A.; Menze, C.; Straub, P.; Stegmann, J.; Riedelbauch, S.; Möhring, H.-C.; Kabelac, S. Simulation-based evaluation of the 3D fluid dynamics of a coolant lubricant in the narrow-closed cutting gap during circular sawing. Procedia CIRP 2023, 117, 402–407. [Google Scholar] [CrossRef]
- McGeough, J.A. Principles of Electrochemical Machining; Chapman and Hall: London, UK, 1974. [Google Scholar]
- Rajurkar, K.P.; Kozak, J.; Wei, B.; McGeough, J.A. Study of Pulse Electrochemical Machining Characteristics. CIRP Ann. 1993, 42, 231–234. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Ernst, A.; Heib, T.; Hall, T.; Schmidt, G.; Bähre, D. Simulation of the Tool Shape Design for the Electrochemical Machining of Jet Engine Vanes. Procedia CIRP 2018, 68, 762–767. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Zhu, D.; McGeough, J.A.; Kozak, J.; De Silva, A. New Developments in Electro-Chemical Machining. CIRP Ann. 1999, 48, 567–579. [Google Scholar] [CrossRef]
- Ernst, A. Analyse und Modellierung der Einflüsse auf das Arbeitsergebnis der Elektrochemischen Bearbeitung Hochtemperaturfester Werkstoffe für Turbinenstrahltriebwerke. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 2020. [Google Scholar] [CrossRef]
- Tchoupe, E.; Lauwers, D.; Heidemanns, L.; Herrig, T.; Klink, A.; Meinke, M.; Klaas, M.; Schröder, W. Optical in Situ Analysis of Gas Bubble Evolution in Electrochemical Machining Based on Similarity Theory Using Particle Image Velocimetry. Procedia CIRP 2023, 117, 257–262. [Google Scholar] [CrossRef]
- Rommes, B.; Lauwers, D.; Herrig, T.; Meinke, M.; Schrder, W.; Klink, A. Concept for the experimental and numerical study of fluid-structure interaction and gas transport in Precise Electrochemical Machining. Procedia CIRP 2021, 102, 204–209. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Scarano, F.; Kähler, C.J.; Wereley, S.T.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide, 3rd ed.; Springer: Cham, Switzerland, 2018; p. 668. [Google Scholar]
- Klocke, F.; Zeis, M.; Herrig, T.; Harst, S.; Klink, A. Optical in Situ Measurements and Interdisciplinary Modeling of the Electrochemical Sinking Process of Inconel 718. Procedia CIRP 2014, 24, 114–119. [Google Scholar] [CrossRef]
- Tchoupe, E.; Heidemanns, L.F.; Herrig, T.; Klink, A.; Lauwers, D.; Schöder, W. Study of the multiphase electrolyte flow during electrochemical machining (ECM) using dynamic similarity. In Proceedings of the 17th International Symposium on Electrochemical Machining Technology INSECT 2021, Leuven, Belgium, 25–26 November 2021; pp. 15–21. [Google Scholar]
- Versluis, M. High-speed imaging in fluids. Exp. Fluids 2013, 54, 1–35. [Google Scholar] [CrossRef]
- Uhlmann, E.; Barth, E.; Nabbout, K.; Sommerfeld, M.; Bock-Marbach, B.; Kuhnert, J.; Dovgal, A. Cooling Lubricant Boundary Conditions for wet Turning Simulations. Procedia CIRP 2023, 118, 384–389. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Tseng, Q.; Duchemin-Pelletier, E.; Deshiere, A.; Balland, M.; Guillou, H.; Filhol, O.; Théry, M. Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc. Natl. Acad. Sci. USA 2012, 109, 1506–1511. [Google Scholar] [CrossRef]
- Scharnowski, S.; Bross, M.; Kähler, C.J. Accurate turbulence level estimations using PIV/PTV. Exp. Fluids 2018, 60, 1. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer: Berlin, Germany, 1998; p. 255. [Google Scholar]
- Bradley, C. Anodic Dissolution Model Parameterization for Magnetically-Assisted Pulsed Electrochemical Machining (PECM). In Proceedings of the 2018 COMSOL Conference, Boston, MA, USA, 3–5 October 2018. [Google Scholar]
- Bradley, C.; Samuel, J. MHD Electrolyte Flow within an Inter-electrode Gap Driven by a Sinusoidal Electric Field and Constant Magnetic Field. In Proceedings of the 2017 COMSOL Conference, Boston, MA, USA, 4–6 October 2017. [Google Scholar]
- Bradley, C.; Samuel, J. Controlled Phase Interactions Between Pulsed Electric Fields, Ultrasonic Motion, and Magnetic Fields in an Anodic Dissolution Cell. J. Manuf. Sci. Eng. 2018, 140, 041010. [Google Scholar] [CrossRef]
- Tang, L.; Gan, W.M. Experiment and simulation study on concentrated magnetic field-assisted ECM S-03 special stainless steel complex cavity. Int. J. Adv. Manuf. Technol. 2014, 72, 685–692. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Hinds, G. Magnetoelectrolysis—The effect of magnetic fields in electrochemistry. In Proceedings of the 5th International Pamir Conference, Ramatuelle, France, 16–20 September 2002; pp. 1–7. [Google Scholar]
- Qian, S.; Bau, H.H. Magneto-hydrodynamic stirrer for stationary and moving fluids. Sens. Actuators B 2005, 106, 859–870. [Google Scholar] [CrossRef]
- Klocke, F.; König, W. Fertigungsverfahren 3—Abtragen, Generieren und Lasermaterialbearbeitung, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Luther, F.; Schaarschmidt, I.; Schubert, A.; Richter, M. Strömungscharakterisierung im Arbeitsspalt beim magnetfeldüberlagerten elektrochemischen Abtragen. Tech. Mess. 2023, 90, 268–281. [Google Scholar] [CrossRef]
- FlowMaster: Product Manual for DaVis 10.2; LaVision GmbH: Göttingen, Germany, 2021.
Process Variables | Real Process | Experimental Setup |
---|---|---|
Working gap, s (mm) | 0.1 | 10 |
Flow velocity, v (m/s) | 15–50 | 0.15–0.5 |
Volume flow rate, Q (L/min) | 0.45–15 | 45–1500 |
Bubble diameter, db (mm) | 0.001–0.01 | 0.1–1 |
Pressure drop, p (bar/m) | 200 | 2 × 10−4 |
Supply System | Nozzle Diameter | Pressure | Cooling Strategy | Frame Rate | Exposure Time |
---|---|---|---|---|---|
1 | 6.5 mm | 1.0 bar | Flood cooling | 3600 fps | 1/333,000 s |
2.5 bar | |||||
2 | 5 mm | 1.1 bar | Flood cooling | 3600 fps | 1/333,000 s |
2.9 bar | |||||
3 | top = 2 × 1.2 mm bottom = 1.4 mm | 4.7 bar | High-pressure | 30,000 fps | 1/1,000,000 s |
24.2 bar |
Supply System | Pressure (bar) | Flow Rate CC (L/min) | Flow Rate Bulk (L/min) | Error (%) |
---|---|---|---|---|
1 | 1 | 15.15 | 15.43 | −1.81 |
2.5 | 21.36 | 24.35 | −12.28 | |
2 | 1.1 | 10.79 | 13.69 | −21.18 |
2.9 | 15.99 | 21.65 | −26.14 | |
3 | 4.7 | 3.35 | 3.15 | 6.35 |
24.2 | 6.01 | 6.75 | −10.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritsching, U.; Buss, L.; Tonn, T.; Schumski, L.; Gakovi, J.; Hatscher, J.D.; Sölter, J.; Avila, K.; Karpuschewski, B.; Gerken, J.F.; et al. Flow Visualisation and Evaluation Studies on Metalworking Fluid Applications in Manufacturing Processes—Methods and Results. Processes 2023, 11, 2690. https://doi.org/10.3390/pr11092690
Fritsching U, Buss L, Tonn T, Schumski L, Gakovi J, Hatscher JD, Sölter J, Avila K, Karpuschewski B, Gerken JF, et al. Flow Visualisation and Evaluation Studies on Metalworking Fluid Applications in Manufacturing Processes—Methods and Results. Processes. 2023; 11(9):2690. https://doi.org/10.3390/pr11092690
Chicago/Turabian StyleFritsching, Udo, Lizoel Buss, Teresa Tonn, Lukas Schumski, Jurgen Gakovi, Johnson David Hatscher, Jens Sölter, Kerstin Avila, Bernhard Karpuschewski, Julian Frederic Gerken, and et al. 2023. "Flow Visualisation and Evaluation Studies on Metalworking Fluid Applications in Manufacturing Processes—Methods and Results" Processes 11, no. 9: 2690. https://doi.org/10.3390/pr11092690
APA StyleFritsching, U., Buss, L., Tonn, T., Schumski, L., Gakovi, J., Hatscher, J. D., Sölter, J., Avila, K., Karpuschewski, B., Gerken, J. F., Wolf, T., Biermann, D., Menze, C., Möhring, H.-C., Tchoupe, E., Heidemanns, L., Herrig, T., Klink, A., Nabbout, K., ... Richter, M. (2023). Flow Visualisation and Evaluation Studies on Metalworking Fluid Applications in Manufacturing Processes—Methods and Results. Processes, 11(9), 2690. https://doi.org/10.3390/pr11092690