Integral Effects of Porosity, Permeability, and Wettability on Oil–Water Displacement in Low-Permeability Sandstone Reservoirs—Insights from X-ray CT-Monitored Core Flooding Experiments
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
- The core plug samples were firstly dried for 24 h at 80 °C.
- The core plug samples were placed in a rubber core sleeve, then loaded into a composite carbon fiber core holder.
- The core holder was connected to the core flooding system; the downstream valve was closed while the upstream valve was open, and then vacuuming maintained (−0.1 MPa) from the upstream for 10 h with the confining pressure of 2 MPa.
- The sample was saturated with white oil through injection from the upstream line at a pressure of 15 MPa with the downstream back pressure valve closed and a confining pressure of 2 MPa higher than injection pressure, holding for 10 h.
- Then, the downstream back pressure was set to 15 MPa, and the 23% wt NaI aqueous solution was injected into the sample at a constant flow rate of 0.01 mL/min.
- The CT scans begin when the NaI aqueous solution reached at the top end of the core plug with a frequency of scanning once every 5 min.
- The experiment was terminated at about 10 h after the NaI aqueous solution flowed out from the downstream outlet.
4. Results
4.1. Porosity, Permeability, and Wettability of Samples
4.2. Waterflooding Experiments
4.2.1. Injection Pressure in Waterflooding Experiments
4.2.2. Water Saturation
4.2.3. Displacement Patterns
5. Discussion
5.1. Effects of Porosity, Permeability, and Wettability on Oil/Water Saturation
5.2. Implications for Oil Development in the Low-Permeability Reservoirs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selly, R.C. Elements of Petroleum Geology, 2nd ed.; Academic Press: Cambridge, MA, USA, 1998; pp. 239–253. [Google Scholar]
- Craig, F.F. The Reservoir Engineering Aspects of Waterflooding; HL Doherty Memorial Fund of AIME: New York, NY, USA, 1971. [Google Scholar]
- Anderson, W.G. Wettability literature survey-part 1: Rock/oil/brine interactions and the effects of core handling on wettability. J. Pet. Technol. 1986, 38, 1125–1144. [Google Scholar] [CrossRef]
- Gu, X.Y.; Pu, C.S.; Huang, H.; Huang, F.F.; Li, Y.J.; Liu, Y.; Liu, H.C. Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs. Pet. Explor. Dev. 2017, 44, 1003–1009. [Google Scholar] [CrossRef]
- Ghous, A.; Knackstedt, M.A.; Arns, C.H.; Sheppard, A.P.; Kumar, M.; Sok, R.M.; Senden, T.J.; Latham, S.; Jones, A.C.; Averdunk, H.; et al. 3D Imaging of Reservoir Core at Multiple Scales; Correlations to Petrophysical Properties and Pore Scale Fluid Distributions. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 3–5 December 2008. [Google Scholar]
- Liu, X.J.; Xiong, J.; Liang, L.X.; Yuan, W. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow. Prog. Geophys. 2017, 32, 1019–1028, (In Chinese with English abstract). [Google Scholar]
- Celauro, J.G.; Torrealba, V.A.; Karpyn, Z.T.; Klise, K.A.; Mckemma, S.A. Pore-scale multiphase flow experiments in bead packs of variable wettability. Geofluids 2014, 14, 95–105. [Google Scholar] [CrossRef]
- Zhao, B.Z.; MacMinn, C.W.; Juanes, R. Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. USA 2016, 113, 10251–10256. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, A.; Habibi, A.; Dehghanpour, H.; Wood, J.M. Imbibition oil recovery from tight rocks with dual-wettability behavior. J. Pet. Sci. Eng. 2018, 167, 180–191. [Google Scholar] [CrossRef]
- Rücker, M.; Bartels, W.B.; Singh, K.; Brussee, N.; Coorn, A.; Linde, H.A.; Bonnin, A.; Ott, H.; Hassanizadeh, S.M.; Blunt, M.J.; et al. The effect of mixed wettability on pore-scale flow regimes based on a flooding experiment in Ketton limestone. Geopetrophysical Res. Lett. 2019, 46, 3225–3234. [Google Scholar] [CrossRef]
- Fitch, P.J.R.; Lovell, M.A.; Davies, S.J.; Pritchard, T.; Harvey, P.K. An integrated and quantitative approach to petrophysical heterogeneity. Mar. Pet. Geol. 2015, 63, 82–96. [Google Scholar] [CrossRef]
- Henares, S.; Caracciolo, L.; Viseras, C.; Fernandez, J.; Yeste, L.M. Diagenetic constraints on heterogeneous reservoir quality assessment: A Triassic outcrop analog of meandering fluvial reservoirs. AAPG Bull. 2016, 100, 1377–1398. [Google Scholar] [CrossRef]
- Saïag, J.; Brigaud, B.; Portier, É.; Desaubliaux, G.; Bucherie, A.; Miska, S.; Pagel, M. Sedimentological control on the diagenesis and reservoir quality of tidal sandstones of the Upper Cape Hay Formation (Permian, Bonaparte Basin, Australia). Mar. Pet. Geol. 2016, 77, 597–624. [Google Scholar] [CrossRef]
- Yan, H.J.; He, D.B.; Jia, A.L.; Li, Z.P.; Guo, J.L.; Peng, X.; Meng, F.K.; Li, X.Y.; Zhu, Z.M.; Deng, H.; et al. Characteristics and development model of karst reservoirs in the fourth member of Sinian Dengying Formation in central Sichuan Basin, SW China. Pet. Explor. Dev. 2022, 49, 704–715, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Fathy, D.; El-Balkiemy, A.F.; Makled, W.A.; Hosny, A. Organic geochemical signals of Paleozoic rocks in the southern Tethys, Siwa basin, Egypt: Implications for source rock characterization and petroleum system. Phys. Chem. Earth Parts A/B/C 2023, 130, 103393. [Google Scholar] [CrossRef]
- Haldorsen, H.H. Simulator parameter assignment and the problem of scale in reservoir engineering. Reservoir characterization. In Reservoir Characterization; Lake, L.W., Caroll, H.B., Eds.; Academic Press: Orlando, FL, USA, 1986; pp. 293–340. [Google Scholar]
- Ringrose, P.S.; Martinius, A.W.; Alvestad, J. Multiscale geological reservoir modelling in practice. Geol. Soc. Lond. Spec. Publ. 2008, 309, 123–134. [Google Scholar] [CrossRef]
- Yan, H.J.; Deng, H.; Wan, Y.J.; Yu, J.C.; Xia, Q.Y.; Xu, W.; Luo, R.L.; Cheng, M.H.; Yan, Y.J.; Zhang, L.; et al. The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth Member of Dengying Formation in Moxi area, Sichuan Basin. Nat. Gas Geosci. 2020, 31, 1152–1160, (In Chinese with English abstract). [Google Scholar]
- Jackson, M.D.; Hampson, G.J.; Sech, R.P. Three-dimensional modeling of a shoreface-shelf parasequence reservoir analog: Part 2. Geologic controls on fluid flow and hydrocarbon recovery. AAPG Bull. 2009, 93, 1183–1208. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Khishvand, M.; Piri, M. A pore-scale experimental investigation of process-dependent capillary desaturation. Adv. Water Resour. 2020, 144, 103702. [Google Scholar] [CrossRef]
- Al-Owihan, H.; Al-Wadi, M.; Thakur, S.; Behhehani, S.; Al-Jabari, N.; Dernaika, M.; Koronfol, S. Advanced rock characterization by Dual-Energy CT imaging: A novel method for complex reservoir evaluation. In Proceedings of the IPTC 2014: International Petroleum Technology Conference, Doha, Qatar, 19–22 January 2004; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2014. [Google Scholar]
- AlJallad, O.; Dernaika, M.; Koronfol, S.; Naseer, Y.; Mishra, P. Evaluation of complex carbonates from pore-scale to core-scale. International petroleum technology conference. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 13–15 January 2020; p. 21. [Google Scholar]
- Wang, Z.N.; Luo, X.R.; Lei, Y.H.; Zhang, L.K.; Shi, H.; Lu, J.H.; Cheng, M.; Liu, N.G.; Wang, X.Z.; He, Y.H.; et al. Impact pf detrital composition and diagenesis on the heterogeneity and quality of low-permeability to tight sandstone reservoirs: An example of the Upper Triassic Yanchang Formation in Southeastern Ordos Basin. J. Pet. Sci. Eng. 2020, 195, 107596. [Google Scholar] [CrossRef]
- Fu, J.; Wu, S.H.; Luo, A.X.; Zhang, L.A.; Li, Z.; Li, J.H. Reservoir quality and its controlling factors of Chang 8 and Chang 6 members in LongDong Area, Ordos Basin. Earth Sci. Front. 2013, 20, 98–107, (In Chinese with English abstract). [Google Scholar]
- Robin, M.; Combes, R.; Degreve, F.; Cuiec, L. Wettability of porous media from Environmental Scanning Electron Microscopy: From model to reservoir rocks. In Proceedings of the International Symposium on Oilfield Chemistry, Houston, TX, USA, 18–21 February 1997; Society of Petroleum Engineers: Richardson, TX, USA, 1997. [Google Scholar]
- Wang, Z.N.; Luo, X.R.; Liu, K.Y.; Fan, Y.C.; Wang, X.Z. Impact of chlorites on the wettability of tight oil sandstone reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China. Sci. China Earth Sci. 2021, 64, 951–961. [Google Scholar] [CrossRef]
- SY/T 5336-2006; Practices for Core Analysis. Petroleum and Natural Gas Industry Standards of People’s Republic of China. Petroleum Industry Publishing House: Beijing, China, 2006.
- Akin, S.; Kovscek, A.R. Computed tomography in petroleum engineering research. Geol. Soc. Lond. Spec. Publ. 2003, 215, 23–38. [Google Scholar] [CrossRef]
- Wang, Z.N.; Luo, X.R.; Liu, K.Y.; Lei, Y.H.; Zhang, L.K.; Cheng, M.; Wang, X.Z. Evaluation of pore-scale wettability in the tight sandstone reservoirs of the Upper Triassic Yanchang Formation, Ordos Basin, China. Mar. Pet. Geol. 2022, 138, 105528. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.P.; Qi, Y. Characteristics of NMR water displacing oil and influencing factors in extra-low permeable sandstones: Taking the Yanchang Group in Ordos Basin as an example. Geol. J. China Univ. 2013, 19, 364–372. [Google Scholar]
- Lenormand, R.; Zarcone, E.; Touboul, E. Numberical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 1988, 189, 165–187. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Luo, X.R.; Miao, S.; Wang, W.M.; Zhou, B.; Huang, Y.Z. The patterns and its effect factors of secondary hydrocarbon migration. Pet. Geol. Exp. 2003, 25, 69–75, (In Chinese with English abstract). [Google Scholar]
- Zhou, B.; Jin, Z.J.; Luo, X.R.; Wang, Y.; Zhang, F.Q. Discussion on the efficiency of secondary oil-gas migration. Acta Pet. Sin. 2008, 29, 522–526, (In Chinese with English abstract). [Google Scholar]
- Habibi, A.; Xu, M.X.; Dehghanpour, H.; Bryan, D.; Uswak, G. Understanding rock-fluid interactions in the Montney tight oil play. In Proceedings of the SPE/CSUR Unconventional Resources Conference, Calgary, AB, Canada, 20–22 October 2015; Society of Petroleum Engineers: Richardson, TX, USA, 2015. [Google Scholar]
- Anderson, W.G. Wettability literature survey-part 6: The effects of wettability on waterflooding. J. Pet. Technol. 1987, 39, 1605–1622. [Google Scholar] [CrossRef]
- Kathel, P.; Mohanty, K.K. Wettability alteration in a tight oil reservoir. Energy Fuels 2013, 27, 6460–6468. [Google Scholar] [CrossRef]
- Brady, P.V.; Bryan, C.R.; Thyne, G.; Li, H.N. Altering wettability to recover more oil from tight formations. J. Unconv. Oil Gas Resour. 2016, 15, 79–83. [Google Scholar] [CrossRef]
- Khishvand, M.; Alizadeh, A.H.; Kohshour, I.O.; Piri, M.; Prasad, R.S. In situ characterization of wettability alteration and displacement mechanisms govering recovery enhancement due to low-salinity waterflooding. Water Resour. Res. 2016, 53, 4427–4443. [Google Scholar] [CrossRef]
No. | Well Name | Depth (m) | Length (cm) | Diameter (cm) | Porosity (%) | Permeability (×10−3μm2) | Wettability |
---|---|---|---|---|---|---|---|
1# | Xi119 | 2085.50 | 4.03 | 2.51 | 14.28 | 1.71 | Oil-wet |
2# | Z202 | 2285.50 | 4.09 | 2.50 | 8.71 | 0.21 | Oil-wet |
3# | Z202 | 2288.30 | 4.93 | 2.53 | 8.17 | 0.19 | Oil-wet |
4# | Z339 | 1857.89 | 3.69 | 2.50 | 11.70 | 0.52 | Water-wet |
5# | Z339 | 2162.78 | 4.30 | 2.54 | 10.03 | 0.30 | Water-wet |
6# | S40 | 1645.40 | 4.05 | 2.50 | 8.39 | 0.10 | Water-wet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, K.; Zhang, C.; Yan, H.; Yu, J.; Yu, B.; Liu, J.; Jiang, T.; Dan, W.; Hu, C. Integral Effects of Porosity, Permeability, and Wettability on Oil–Water Displacement in Low-Permeability Sandstone Reservoirs—Insights from X-ray CT-Monitored Core Flooding Experiments. Processes 2023, 11, 2786. https://doi.org/10.3390/pr11092786
Wang Z, Liu K, Zhang C, Yan H, Yu J, Yu B, Liu J, Jiang T, Dan W, Hu C. Integral Effects of Porosity, Permeability, and Wettability on Oil–Water Displacement in Low-Permeability Sandstone Reservoirs—Insights from X-ray CT-Monitored Core Flooding Experiments. Processes. 2023; 11(9):2786. https://doi.org/10.3390/pr11092786
Chicago/Turabian StyleWang, Zhongnan, Keyu Liu, Chaoqian Zhang, Haijun Yan, Jing Yu, Biao Yu, Jianliang Liu, Tailiang Jiang, Weidong Dan, and Caizhi Hu. 2023. "Integral Effects of Porosity, Permeability, and Wettability on Oil–Water Displacement in Low-Permeability Sandstone Reservoirs—Insights from X-ray CT-Monitored Core Flooding Experiments" Processes 11, no. 9: 2786. https://doi.org/10.3390/pr11092786
APA StyleWang, Z., Liu, K., Zhang, C., Yan, H., Yu, J., Yu, B., Liu, J., Jiang, T., Dan, W., & Hu, C. (2023). Integral Effects of Porosity, Permeability, and Wettability on Oil–Water Displacement in Low-Permeability Sandstone Reservoirs—Insights from X-ray CT-Monitored Core Flooding Experiments. Processes, 11(9), 2786. https://doi.org/10.3390/pr11092786