Effect of Storage Conditions on Physical Properties, Lipid Oxidation, Isoflavones and Antioxidant Capacity of Flour Prepared from Soy Milk By-Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation and Drying
2.2.2. Storage Conditions
2.2.3. Colour
2.2.4. Lipid Oxidation
2.2.5. Extraction of Bioactive Compounds
2.2.6. Isoflavone Content by High-Performance Liquid Chromatography (HPLC)
2.2.7. Antioxidant Capacity
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Change in Moisture Content at Different Weekly Storage Conditions
3.2. Change in Moisture Content and Water Activity of SMB between the Initial and 10-Week Storage at Different Conditions
3.3. Changes in the Colour of SMB between the Initial and 10-Week Storage at Different Conditions
3.4. Lipid Oxidation during Storage
3.5. Changes of Major Isoflavones during Storage
3.6. Changes in the Antioxidant Capacity of SMB12 during Storage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asghar, A.; Afzaal, M.; Saeed, F.; Ahmed, A.; Ateeq, H.; Shah, Y.A.; Islam, F.; Hussain, M.; Akram, N.; Shah, M.A. Valorization and food applications of okara (soybean residue): A concurrent review. Food Sci. Nutr. 2023, 11, 3631–3640. [Google Scholar] [CrossRef] [PubMed]
- Davy, P.; Vuong, Q.V. Soy Milk By-product: Its Composition and Utilisation. Food Rev. Int. 2020, 38, 147–169. [Google Scholar] [CrossRef]
- Swallah, M.S.; Fan, H.; Wang, S.; Yu, H.; Piao, C. Prebiotic Impacts of Soybean Residue (Okara) on Eubiosis/Dysbiosis Condition of the Gut and the Possible Effects on Liver and Kidney Functions. Molecules 2021, 26, 326. [Google Scholar] [CrossRef] [PubMed]
- Jooyandeh, H. Soy products as healthy and functional foods. Middle-East J. Sci. Res. 2011, 7, 71–80. [Google Scholar]
- Davy, P.; Vuong, Q.V. Soybean Processing By-Products and Potential Health Benefits. In Phytochemicals in Soybeans; CRC Press: Boca Raton, FL, USA, 2022; pp. 333–358. [Google Scholar]
- Peñalvo, J.L.; Nurmi, T.; Adlercreutz, H. A simplified HPLC method for total isoflavones in soy products. Food Chem. 2004, 87, 297–305. [Google Scholar] [CrossRef]
- Pinto, M.d.S.; Lajolo, F.M.; Genovese, M.I. Effect of Storage Temperature and Water Activity on the Content and Profile of Isoflavones, Antioxidant Activity, and in Vitro Protein Digestibility of Soy Protein Isolates and Defatted Soy Flours. J. Agric. Food Chem. 2005, 53, 6340–6346. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Murphy, P.A. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 1994, 42, 1666–1673. [Google Scholar] [CrossRef]
- Izumi, T.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kikuchi, M.; Piskula, M.K.; Kubota, Y. Soy Isoflavone Aglycones Are Absorbed Faster and in Higher Amounts than Their Glucosides in Humans. J. Nutr. 2000, 130, 1695–1699. [Google Scholar] [CrossRef]
- Wachiraphansakul, S.; Devahastin, S. Drying kinetics and quality of okara dried in a jet spouted bed of sorbent particles. LWT 2007, 40, 207–219. [Google Scholar] [CrossRef]
- Lazarin, R.A.; Falcão, H.G.; Ida, E.I.; Berteli, M.N.; Kurozawa, L.E. Rotating-Pulsed Fluidized Bed Drying of Okara: Evaluation of Process Kinetic and Nutritive Properties of Dried Product. Food Bioprocess Technol. 2020, 13, 1611–1620. [Google Scholar] [CrossRef]
- Wang, G.; Deng, Y.; Xu, X.; He, X.; Zhao, Y.; Zou, Y.; Liu, Z.; Yue, J. Optimization of air jet impingement drying of okara using response surface methodology. Food Control 2015, 59, 743–749. [Google Scholar] [CrossRef]
- Nimmol, C.; Hirunwat, A. Multistage Impinging Stream Drying for Okara. Appl. Eng. Agric. 2017, 33, 445–450. [Google Scholar] [CrossRef]
- Guimarães, R.M.; Ida, E.I.; Falcão, H.G.; de Rezende, T.A.M.; Silva, J.d.S.; Alves, C.C.F.; da Silva, M.A.P.; Egea, M.B. Evaluating technological quality of okara flours obtained by different drying processes. LWT 2020, 123, 109062. [Google Scholar] [CrossRef]
- Davy, P.; Vuong, Q.V. The fate of phenolics, soysaponins, major isoflavones and antioxidant activity in soy milk by-product during conventional drying process. Futur. Foods 2021, 4, 100084. [Google Scholar] [CrossRef]
- Davy, P.; Kirkman, T.; Scarlett, C.J.; Vuong, Q. Characterisation of a High Fibre Flour Prepared from Soy Milk By-Product and Its Potential Use in White Wheat Bread. Foods 2022, 11, 3921. [Google Scholar] [CrossRef] [PubMed]
- Azanza, M.P.V.; Gascon, F.S. Shelf-stable dried okara from the wet by-product of Philippine soybean curd processing. Philipp. J. Sci. 2015, 144, 171–185. [Google Scholar]
- Sengupta, S.; Chakraborty, M.; Bhowal, J.; Bhattacharya, D.K. Study on the effects of drying process on the composition and quality of wet okara. Int. J. Sci. Environ. Technol. 2012, 1, 319–330. [Google Scholar]
- Voss, G.B.; Rodríguez-Alcalá, L.M.; Valente, L.M.P.; Pintado, M.M. Impact of different thermal treatments and storage conditions on the stability of soybean byproduct (okara). J. Food Meas. Charact. 2018, 12, 1981–1996. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Jha, K. Influence of storage and packaging conditions on the quality of soy flour from sprouted soybean. J. Food Sci. Technol. 2011, 48, 325–328. [Google Scholar] [CrossRef]
- Markovic, I.; Ilic, J.; Markovic, D.; Simonovic, V.; Kosanic, N. Color measurement of food products using CIE L* a* b* and RGB color space. J. Hyg. Eng. Des. 2013, 4, 50–53. [Google Scholar]
- Zielinska, M.; Markowski, M. Color characteristics of carrots: Effect of drying and rehydration. Int. J. Food Prop. 2012, 15, 450–466. [Google Scholar] [CrossRef]
- Xie, H.; Zhou, D.; Hu, X.; Liu, Z.; Song, L.; Zhu, B.-W. Changes in Lipid Profiles of Dried Clams (Mactra chinensis philippi and Ruditapes philippinarum) during Accelerated Storage and Prediction of Shelf Life. J. Agric. Food Chem. 2018, 66, 7764–7774. [Google Scholar] [CrossRef]
- Montero, G.; Günther, G.; Valdés, K.; Arriagada, F.; Morales, J. An HPLC Method for the Determination of Isoflavones and the Evaluation of Their Antioxidant Capacity in Both Homogeneous and Microheterogeneous Systems. J. AOAC Int. 2018, 101, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Agrahar-Murugkar, D.; Jha, K. Effect of drying on nutritional and functional quality and electrophoretic pattern of soyflour from sprouted soybean (Glycine max). J. Food Sci. Technol. 2010, 47, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Kondjoyan, A. A review on surface heat and mass transfer coefficients during air chilling and storage of food products. Int. J. Refrig. 2006, 29, 863–875. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.; McMinn, W.; Magee, T. Moisture sorption isotherm characteristics of food products: A review. Food Bioprod. Process. 2002, 80, 118–128. [Google Scholar] [CrossRef]
- Lancelot, E.; Fontaine, J.; Grua-Priol, J.; Le-Bail, A. Effect of long-term storage conditions on wheat flour and bread baking properties. Food Chem. 2021, 346, 128902. [Google Scholar] [CrossRef]
- Forsido, S.F.; Welelaw, E.; Belachew, T.; Hensel, O. Effects of storage temperature and packaging material on physico-chemical, microbial and sensory properties and shelf life of extruded composite baby food flour. Heliyon 2021, 7, e06821. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. 2—Chemical deterioration and physical instability of foods and beverages. In Food and Beverage Stability and Shelf Life; Kilcast, D., Subramaniam, P., Eds.; Woodhead Publishing: Sawston, UK, 2011; pp. 29–62. [Google Scholar]
- Rahman, M.S.; Labuza, T.P. Water activity and food preservation. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2007; pp. 465–494. [Google Scholar]
- Chirife, J.; Buera, P. Water Activity, Glass Transition and Microbial Stability in Concentrated/Semimoist Food Systems. J. Food Sci. 1994, 59, 921–927. [Google Scholar] [CrossRef]
- Carter, B.P.; Galloway, M.T.; Morris, C.F.; Weaver, G.L.; Carter, A.H. The case for water activity as a specification for wheat tempering and flour production. Cereal Foods World 2015, 60, 166–170. [Google Scholar] [CrossRef]
- Labuza, T.P.; McNally, L.; Gallagher, D.; Hawkes, J.; Hurtado, F. Stability of intermediate moisture foods. 1. Lipid Oxidation. J. Food Sci. 1972, 37, 154–159. [Google Scholar] [CrossRef]
- Wojdyło, A.; Teleszko, M.; Oszmiański, J. Physicochemical characterisation of quince fruits for industrial use: Yield, turbidity, viscosity and colour properties of juices. Int. J. Food Sci. Technol. 2014, 49, 1818–1824. [Google Scholar] [CrossRef]
- Śmiecińska, K.; Daszkiewicz, T. Lipid oxidation and color changes in beef stored under different modified atmospheres. J. Food Process. Preserv. 2021, 45, e15263. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.; Nawi, N.M.; Abdan, K. Color change kinetics and total carotenoid content of pumpkin as affected by drying temperature. Ital. J. Food Sci. 2017, 29. [Google Scholar] [CrossRef]
- Ly, B.C.K.; Dyer, E.B.; Feig, J.L.; Chien, A.L.; Del Bino, S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020, 140, 3–12.e1. [Google Scholar] [CrossRef]
- Sopiwnyk, E.; Young, G.; Frohlich, P.; Borsuk, Y.; Lagassé, S.; Boyd, L.; Bourré, L.; Sarkar, A.; Dyck, A.; Malcolmson, L. Effect of pulse flour storage on flour and bread baking properties. LWT 2019, 121, 108971. [Google Scholar] [CrossRef]
- Salehi, F.; Kashaninejad, M. Modeling of moisture loss kinetics and color changes in the surface of lemon slice during the combined infrared-vacuum drying. Inf. Process. Agric. 2018, 5, 516–523. [Google Scholar] [CrossRef]
- Krokida, M.; Tsami, E.; Maroulis, Z. Kinetics on color changes during drying of some fruits and vegetables. Dry. Technol. 1998, 16, 667–685. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. The Effect of the Addition of Blue Honeysuckle Berry Juice to Apple Juice on the Selected Quality Characteristics, Anthocyanin Stability, and Antioxidant Properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef]
- Jiménez-Martín, E.; Gharsallaoui, A.; Pérez-Palacios, T.; Carrascal, J.R.; Rojas, T.A. Volatile compounds and physicochemical characteristics during storage of microcapsules from different fish oil emulsions. Food Bioprod. Process. 2015, 96, 52–64. [Google Scholar] [CrossRef]
- Gulkirpik, E.; Toc, M.; Atuna, R.A.; Amagloh, F.K.; Laborde, J.E.A. Evaluation of Oxidative Stability of Full Fat Soybean Flour in Storage and Sensory Quality of Tuo Zaafi-Enriched with Soy Flour as Influenced by Traditional Processing Methods. Foods 2021, 10, 2192. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.D. Fats and Oils Analysis; CRC Press: Boca Raton, FL, USA, 2009; pp. 217–282. [Google Scholar]
- Farhoosh, R.; Einafshar, S.; Sharayei, P. The effect of commercial refining steps on the rancidity measures of soybean and canola oils. Food Chem. 2009, 115, 933–938. [Google Scholar] [CrossRef]
- Prabakaran, M.; Lee, K.-J.; An, Y.; Kwon, C.; Kim, S.; Yang, Y.; Ahmad, A.; Kim, S.-H.; Chung, I.-M. Changes in Soybean (Glycine max L.) Flour Fatty-Acid Content Based on Storage Temperature and Duration. Molecules 2018, 23, 2713. [Google Scholar] [CrossRef] [PubMed]
- Mustakas, G.C.; Albrecht, W.J.; McGhee, J.E.; Black, L.T.; Bookwalter, G.N.; Griffin, E.L., Jr. Lipoxidase deactivation to improve stability, odor and flavor of full-fat soy flours. J. Am. Oil Chem. Soc. 1969, 46, 623–626. [Google Scholar] [CrossRef]
- Jackson, C.-J.; Dini, J.; Lavandier, C.; Rupasinghe, H.; Faulkner, H.; Poysa, V.; Buzzell, D.; DeGrandis, S. Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process. Biochem. 2002, 37, 1117–1123. [Google Scholar] [CrossRef]
- Jankowiak, L.; Trifunovic, O.; Boom, R.M.; van der Goot, A.J. The potential of crude okara for isoflavone production. J. Food Eng. 2014, 124, 166–172. [Google Scholar] [CrossRef]
- Huang, H.; Liang, H.; Kwok, K.-C. Effect of thermal processing on genistein, daidzein and glycitein content in soymilk. J. Sci. Food Agric. 2006, 86, 1110–1114. [Google Scholar] [CrossRef]
- Vaidya, N.A.; Mathias, K.; Ismail, B.; Hayes, K.D.; Corvalan, C.M. Kinetic Modeling of Malonylgenistin and Malonyldaidzin Conversions under Alkaline Conditions and Elevated Temperatures. J. Agric. Food Chem. 2007, 55, 3408–3413. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, S.K. Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk. J. Food Sci. 2016, 81, C593–C599. [Google Scholar] [CrossRef]
- Prabakaran, M.; Lee, J.H.; Ahmad, A.; Kim, S.H.; Woo, K.S.; Kim, M.J.; Chung, I.M. Effect of Storage Time and Temperature on Phenolic Compounds of Soybean (Glycine max L.) Flour. Molecules 2018, 23, 2269. [Google Scholar] [CrossRef] [PubMed]
- Chiou, T.-Y.; Lin, Y.-H.; Su, N.-W.; Lee, M.-H. β-Glucosidase Isolated from Soybean Okara Shows Specificity toward Glucosyl Isoflavones. J. Agric. Food Chem. 2010, 58, 8872–8878. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, M.; Obata, A. β-Glucosidases from Soybeans Hydrolyze Daidzin and Genistin. J. Food Sci. 1993, 58, 144–147. [Google Scholar] [CrossRef]
- Pratt, D.E.; Birac, P.M. Source of antioxidant activity of soybeans and soy products. J. Food Sci. 1979, 44, 1720–1722. [Google Scholar] [CrossRef]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Venere, D. Bioactive Phenolics and Antioxidant Capacity of Some Wild Edible Greens as Affected by Different Cooking Treatments. Foods 2020, 9, 1320. [Google Scholar] [CrossRef]
- Niamnuy, C.; Nachaisin, M.; Laohavanich, J.; Devahastin, S. Evaluation of bioactive compounds and bioactivities of soybean dried by different methods and conditions. Food Chem. 2011, 129, 899–906. [Google Scholar] [CrossRef]
SMB 9% | SMB 12% | SMB 14% | ||
---|---|---|---|---|
Initial MC% | 9.61 ± 0.15 | 11.76 ± 0.75 | 13.99 ± 0.13 | |
Week 10 MC% (a) | 2 °C covered | 11.20 ± 0.45 * | 11.45 ± 0.46 | 14.00 ± 0.09 |
2 °C uncovered | 19.21 ± 0.39 * | 19.47 ± 0.05 * | 18.85 ± 0.18 * | |
20 °C covered | 10.34 ± 0.20 | 11.01 ± 0.32 | 12.89 ± 0.66 * | |
20 °C uncovered | 13.39 ± 0.78 * | 12.24 ± 0.44 | 12.47 ± 0.26 * | |
40 °C covered | 7.32 ± 0.27 * | 6.61 ± 0.52 * | 6.83 ± 0.18 * | |
40 °C uncovered | 7.88 ± 0.09 * | 7.94 ± 0.27 * | 7.59 ± 0.34 * | |
Initial aw | 0.45 ± 0.03 | 0.57 ± 0.03 | 0.67 ± 0.05 | |
Week 10 aw (b) | 2 °C covered | 0.52 ± 0.003 * | 0.58 ± 0.004 | 0.66 ± 0.003 |
2 °C uncovered | 0.84 ± 0.004 * | 0.82 ± 0.006 * | 0.78 ± 0.006 * | |
20 °C covered | 0.53 ± 0.005 * | 0.50 ± 0.005 * | 0.54 ± 0.005 * | |
20 °C uncovered | 0.62 ± 0.004 * | 0.61 ± 0.003 * | 0.61 ± 0.004 * | |
40 °C covered | 0.18 ± 0.004 * | 0.26 ± 0.01 * | 0.29 ± 0.005 * | |
40 °C uncovered | 0.35 ± 0.001 * | 0.37 ± 0.01 * | 0.41 ± 0.03 * |
SMB 9% | SMB 12% | SMB 14% | ||
---|---|---|---|---|
Week 0 | 88.63 ± 0.31 | 90.43 ± 0.21 | 89.20 ± 0.50 | |
Week 10 L* (a) | 2 °C covered | 88.80 ± 0.08 | 87.67 ± 0.29 * | 88.00 ± 0.42 * |
2 °C uncovered | 88.73 ± 0.45 | 88.60 ± 0.37 * | 88.33 ± 0.12 | |
20 °C covered | 87.37 ± 0.31 * | 87.83 ± 0.50 * | 87.83 ± 0.12 * | |
20 °C uncovered | 88.47 ± 0.17 | 89.00 ± 0.43 * | 88.57 ± 0.17 | |
40 °C covered | 87.60 ± 0.29 * | 87.00 ± 0.25 * | 86.70 ± 0.29 * | |
40 °C uncovered | 88.70 ± 0.08 | 88.80 ± 0.37 * | 88.23 ± 0.33 * | |
Week 0 | 0 | 0 | 0 | |
Week 10 ΔE (b) | 2 °C covered | 2.14 ± 0.10 d | 2.95 ± 0.25 cd | 1.23 ± 0.45 ab |
2 °C uncovered | 1.27 ± 0.02 bc | 1.84 ± 0.39 ab | 2.21 ± 0.11 c | |
20 °C covered | 1.35 ± 0.17 c | 2.88 ± 0.45 bcd | 1.84 ± 0.07 bc | |
20 °C uncovered | 0.99 ± 0.12 b | 1.49 ± 0.41 a | 0.79 ± 0.04 a | |
40 °C covered | 1.24 ± 0.07 bc | 3.56 ± 0.21 d | 2.58 ± 0.27 c | |
40 °C uncovered | 0.34 ± 0.08 a | 2.09 ± 0.07 abc | 1.33 ± 0.23 ab |
p-anisidine (pAV/g) | Week 0 | Week 6 | Week 10 | Week 20 | |
2 °C | 0.2 ± 0.1 | nd | 1.2 ± 0.2 a | 0.7 ± 0.1 a | |
20 °C | 0.2 ± 0.1 | 0.3 ± 0.1 a | 0.7 ± 0.2 ab | 0.5 ± 0.2 a | |
40 °C | 0.2 ± 0.1 | 0.2 ± 0.1 a | 0.6 ± 0.4 b | 2.4 ± 0.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davy, P.; Akanbi, T.O.; Scarlett, C.J.; Kirkman, T.; Vuong, Q. Effect of Storage Conditions on Physical Properties, Lipid Oxidation, Isoflavones and Antioxidant Capacity of Flour Prepared from Soy Milk By-Product. Processes 2024, 12, 76. https://doi.org/10.3390/pr12010076
Davy P, Akanbi TO, Scarlett CJ, Kirkman T, Vuong Q. Effect of Storage Conditions on Physical Properties, Lipid Oxidation, Isoflavones and Antioxidant Capacity of Flour Prepared from Soy Milk By-Product. Processes. 2024; 12(1):76. https://doi.org/10.3390/pr12010076
Chicago/Turabian StyleDavy, Philip, Taiwo O. Akanbi, Christopher J. Scarlett, Timothy Kirkman, and Quan Vuong. 2024. "Effect of Storage Conditions on Physical Properties, Lipid Oxidation, Isoflavones and Antioxidant Capacity of Flour Prepared from Soy Milk By-Product" Processes 12, no. 1: 76. https://doi.org/10.3390/pr12010076
APA StyleDavy, P., Akanbi, T. O., Scarlett, C. J., Kirkman, T., & Vuong, Q. (2024). Effect of Storage Conditions on Physical Properties, Lipid Oxidation, Isoflavones and Antioxidant Capacity of Flour Prepared from Soy Milk By-Product. Processes, 12(1), 76. https://doi.org/10.3390/pr12010076