Bentonite Modified with Surfactants—Efficient Adsorbents for the Removal of Non-Steroidal Anti-Inflammatory Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bentonite Modification
2.2. Characterization
2.3. Drug Adsorption Experiments
3. Results and Discussion
3.1. OrgBents Characterization
3.1.1. The Content of Exchangeable Cations
3.1.2. XRPD Analysis of B and OrgBents
3.1.3. Textural Properties of B and OrgBents
3.1.4. SEM Analysis of B and OrgBents
3.1.5. Point of Zero Charge of B and OrgBents
3.2. Kinetic and Thermodynamic Studies
3.2.1. Kinetic Study
3.2.2. Thermodynamic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Noguera-Oviedo, K.; Aga, D.S. Lessons Learned from More than Two Decades of Research on Emerging Contaminants in the Environment. J. Hazard. Mater. 2016, 316, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions-a Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Sophia, C.A.; Lima, E.C. Removal of Emerging Contaminants from the Environment by Adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of Pharmaceuticals during Wastewater Treatment and Environmental Risk Assessment Using Hazard Indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A Review on Emerging Contaminants in Wastewaters and the Environment: Current Knowledge, Understudied Areas and Recommendations for Future Monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Gawlik, B.M.; Locoro, G.; Rimaviciute, E.; Contini, S.; Bidoglio, G. EU-Wide Survey of Polar Organic Persistent Pollutants in European River Waters. Environ. Pollut. 2009, 157, 561–568. [Google Scholar] [CrossRef]
- Ahmed, M.J. Adsorption of Non-Steroidal Anti-Inflammatory Drugs from Aqueous Solution Using Activated Carbons: Review. J. Environ. Manag. 2017, 190, 274–282. [Google Scholar] [CrossRef]
- Jun, L.Y.; Mubarak, N.M.; Yee, M.J.; Yon, L.S.; Bing, C.H.; Khalid, M.; Abdullah, E.C. An Overview of Functionalised Carbon Nanomaterial for Organic Pollutant Removal. J. Ind. Eng. Chem. 2018, 67, 175–186. [Google Scholar] [CrossRef]
- Ghemit, R.; Makhloufi, A.; Djebri, N.; Flilissa, A.; Zerroual, L.; Boutahala, M. Adsorptive Removal of Diclofenac and Ibuprofen from Aqueous Solution by Organobentonites: Study in Single and Binary Systems. Groundw. Sustain. Dev. 2019, 8, 520–529. [Google Scholar] [CrossRef]
- Sahnoun, S.; Boutahala, M.; Tiar, C.; Kahoul, A. Adsorption of Tartrazine from an Aqueous Solution by Octadecyltrimethylammonium Bromide-Modified Bentonite: Kinetics and Isotherm Modeling. Comptes Rendus Chim. 2018, 21, 391–398. [Google Scholar] [CrossRef]
- França, D.B.; Trigueiro, P.; Silva Filho, E.C.; Fonseca, M.G.; Jaber, M. Monitoring Diclofenac Adsorption by Organophilic Alkylpyridinium Bentonites. Chemosphere 2020, 242, 125109. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Mallavarapu, M.; Naidu, R. Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption. Appl. Clay Sci. 2010, 48, 92–96. [Google Scholar] [CrossRef]
- Obradović, M.; Daković, A.; Smiljanić, D.; Ožegović, M.; Marković, M.; Rottinghaus, G.E.; Krstić, J. Ibuprofen and Diclofenac Sodium Adsorption onto Functionalized Minerals: Equilibrium, Kinetic and Thermodynamic Studies. Microporous Mesoporous Mater. 2022, 335, 111795. [Google Scholar] [CrossRef]
- Guedidi, H.; Reinert, L.; Soneda, Y.; Bellakhal, N.; Duclaux, L. Adsorption of Ibuprofen from Aqueous Solution on Chemically Surface-Modified Activated Carbon Cloths. Arab. J. Chem. 2017, 10, S3584–S3594. [Google Scholar] [CrossRef]
- Raupp, Í.N.; Filho, A.V.; Arim, A.L.; Muniz, A.R.C.; da Rosa, G.S. Ibuprofen Adsorption onto Olive Pomace Activated Carbon. Chem. Eng. Technol. 2023, 46, 2395–2403. [Google Scholar] [CrossRef]
- Luo, Z.; Gao, M.; Yang, S.; Yang, Q. Adsorption of Phenols on Reduced-Charge Montmorillonites Modified by Bispyridinium Dibromides: Mechanism, Kinetics and Thermodynamics Studies. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 482, 222–230. [Google Scholar] [CrossRef]
- Gu, Z.; Gao, M.; Luo, Z.; Lu, L.; Ye, Y.; Liu, Y. Bis-Pyridinium Dibromides Modified Organo-Bentonite for the Removal of Aniline from Wastewater: A Positive Role of π-π Polar Interaction. Appl. Surf. Sci. 2014, 290, 107–115. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, M.; Luo, Z.; Yang, S. Enhanced Removal of Bisphenol A from Aqueous Solution by Organo-Montmorillonites Modified with Novel Gemini Pyridinium Surfactants Containing Long Alkyl Chain. Chem. Eng. J. 2016, 285, 27–38. [Google Scholar] [CrossRef]
- De Oliveira, T.; Guégan, R.; Thiebault, T.; Le Milbeau, C.; Muller, F.; Teixeira, V.; Giovanela, M.; Boussafir, M. Adsorption of Diclofenac onto Organoclays: Effects of Surfactant and Environmental (pH and Temperature) Conditions. J. Hazard. Mater. 2017, 323, 558–566. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the BET Equation Applicable to Microporous Adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar] [CrossRef]
- Dubinin, M.M. Physical Adsorption of Gases and Vapors in Micropores. Prog. Surf. Membr. Sci. 1975, 9, 1–70. [Google Scholar] [CrossRef]
- Milonjić, S.K.; Ruvarac, A.L.; Šušić, M.V. The Heat of Immersion of Natural Magnetite in Aqueous Solutions. Thermochim. Acta 1975, 11, 261–266. [Google Scholar] [CrossRef]
- Krajišnik, D.; Daković, A.; Malenović, A.; Kragović, M.; Milić, J. Ibuprofen Sorption and Release by Modified Natural Zeolites as Prospective Drug Carriers. Clay Miner. 2015, 50, 11–22. [Google Scholar] [CrossRef]
- Liu, Z.H.; Ma, Q.G.; Dai, L.; Dang, Z. Occurrence, Removal and Risk Evaluation of Ibuprofen and Acetaminophen in Municipal Wastewater Treatment Plants: A Critical Review. Sci. Total Environ. 2023, 891, 164600. [Google Scholar] [CrossRef]
- De Oliveira, T.; Guégan, R. Coupled Organoclay/Micelle Action for the Adsorption of Diclofenac. Environ. Sci. Technol. 2016, 50, 10209–10215. [Google Scholar] [CrossRef]
- Xi, Y.; Frost, R.L.; He, H. Modification of the Surfaces of Wyoming Montmorillonite by the Cationic Surfactants Alkyl Trimethyl, Dialkyl Dimethyl, and Trialkyl Methyl Ammonium Bromides. J. Colloid Interface Sci. 2007, 305, 150–158. [Google Scholar] [CrossRef]
- Son, Y.; Kim, Y.; Bae, S.; Kim, T.H.; Hwang, Y. Investigation of Chromate Adsorption Efficacy on Organo-Bentonite as Potential in-Situ Adsorbent for Groundwater Remediation. J. Environ. Chem. Eng. 2022, 10, 108778. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Li, Z.; Gallus, L. Surface Configuration of Sorbed Hexadecyltrimethylammonium on Kaolinite as Indicated by Surfactant and Counterion Sorption, Cation Desorption, and FTIR. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 264, 61–67. [Google Scholar] [CrossRef]
- Gulicovski, J.J.; Čerović, L.S.; Milonjić, S.K. Point of Zero Charge and Isoelectric Point of Alumina. Mater. Manuf. Process. 2008, 23, 615–619. [Google Scholar] [CrossRef]
- Smiljanić, D.; Daković, A.; Obradović, M.; Ožegović, M.; Izzo, F.; Germinario, C.; de Gennaro, B. Application of Surfactant Modified Natural Zeolites for the Removal of Salicylic Acid—A Contaminant of Emerging Concern. Materials 2021, 14, 7728. [Google Scholar] [CrossRef]
- Kragović, M.; Daković, A.; Marković, M.; Krstić, J.; Gatta, G.D.; Rotiroti, N. Characterization of Lead Sorption by the Natural and Fe(III)-Modified Zeolite. Appl. Surf. Sci. 2013, 283, 764–774. [Google Scholar] [CrossRef]
- Sun, K.; Shi, Y.; Chen, H.; Wang, X.; Li, Z. Extending Surfactant-Modified 2:1 Clay Minerals for the Uptake and Removal of Diclofenac from Water. J. Hazard. Mater. 2017, 323, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; del Mar Orta, M.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Evaluation of a Modified Mica and Montmorillonite for the Adsorption of Ibuprofen from Aqueous Media. Appl. Clay Sci. 2019, 171, 29–37. [Google Scholar] [CrossRef]
- Maia, G.S.; de Andrade, J.R.; da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Diclofenac Sodium onto Commercial Organoclay: Kinetic, Equilibrium and Thermodynamic Study. Powder Technol. 2019, 345, 140–150. [Google Scholar] [CrossRef]
- Smiljanić, D.; de Gennaro, B.; Izzo, F.; Langella, A.; Daković, A.; Germinario, C.; Rottinghaus, G.E.; Spasojević, M.; Mercurio, M. Removal of Emerging Contaminants from Water by Zeolite-Rich Composites: A First Approach Aiming at Diclofenac and Ketoprofen. Microporous Mesoporous Mater. 2020, 298, 110057. [Google Scholar] [CrossRef]
- Smiljanić, D.; Daković, A.; Obradović, M.; Ožegović, M.; Marković, M.; Rottinghaus, G.E.; de Gennaro, B. Influence of the Type and the Amount of Surfactant in Phillipsite on Adsorption of Diclofenac Sodium. Catalysts 2022, 13, 71. [Google Scholar] [CrossRef]
- Baccar, R.; Sarrà, M.; Bouzid, J.; Feki, M.; Blánquez, P. Removal of Pharmaceutical Compounds by Activated Carbon Prepared from Agricultural By-Product. Chem. Eng. J. 2012, 211–212, 310–317. [Google Scholar] [CrossRef]
- Essandoh, M.; Kunwar, B.; Pittman, C.U.; Mohan, D.; Mlsna, T. Sorptive Removal of Salicylic Acid and Ibuprofen from Aqueous Solutions Using Pine Wood Fast Pyrolysis Biochar. Chem. Eng. J. 2015, 265, 219–227. [Google Scholar] [CrossRef]
- Shin, J.; Kwak, J.; Lee, Y.G.; Kim, S.; Choi, M.; Bae, S.; Lee, S.H.; Park, Y.; Chon, K. Competitive Adsorption of Pharmaceuticals in Lake Water and Wastewater Effluent by Pristine and NaOH-Activated Biochars from Spent Coffee Wastes: Contribution of Hydrophobic and π-π Interactions. Environ. Pollut. 2021, 270, 116244. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.; Bechelany, M.; Nasr, M.; Jarvis, J.; Schaub, T.; Sapkota, R.R.; Miele, P.; Wang, H.; Xu, P. Adsorption and Photocatalytic Oxidation of Ibuprofen Using Nanocomposites of TiO2 Nanofibers Combined with BN Nanosheets: Degradation Products and Mechanisms. Chemosphere 2019, 220, 921–929. [Google Scholar] [CrossRef]
- Smiljanić, D.; de Gennaro, B.; Daković, A.; Galzerano, B.; Germinario, C.; Izzo, F.; Rottinghaus, G.E.; Langella, A. Removal of Non-Steroidal Anti-Inflammatory Drugs from Water by Zeolite-Rich Composites: The Interference of Inorganic Anions on the Ibuprofen and Naproxen Adsorption. J. Environ. Manag. 2021, 286, 112168. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.X.; Omer, A.M.; Hu, Z.H.; Wang, Y.G.; Yu, D.; Ouyang, X. kun Efficient Adsorption of Diclofenac Sodium from Aqueous Solutions Using Magnetic Amine-Functionalized Chitosan. Chemosphere 2019, 217, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Sabouni, R.; Ghommem, M. Experimental Investigation of Competitive Co-Adsorption of Naproxen and Diclofenac from Water by an Aluminum-Based Metal-Organic Framework. J. Mol. Liq. 2020, 305, 112808. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Moghadam, K.F.; Jafari, A.; Kamarehie, B. Removal of Acetaminophen and Ibuprofen from Aqueous Solutions by Activated Carbon Derived from Quercus Brantii (Oak) Acorn as a Low-Cost Biosorbent. J. Environ. Chem. Eng. 2018, 6, 6807–6815. [Google Scholar] [CrossRef]
- Su, J.; Lin, H.F.; Wang, Q.P.; Xie, Z.M.; Chen, Z.L. Adsorption of Phenol from Aqueous Solutions by Organomontmorillonite. Desalination 2011, 269, 163–169. [Google Scholar] [CrossRef]
- Senturk, H.B.; Ozdes, D.; Gundogdu, A.; Duran, C.; Soylak, M. Removal of Phenol from Aqueous Solutions by Adsorption onto Organomodified Tirebolu Bentonite: Equilibrium, Kinetic and Thermodynamic Study. J. Hazard. Mater. 2009, 172, 353–362. [Google Scholar] [CrossRef]
- Garmia, D.; Zaghouane-Boudiaf, H.; Ibbora, C.V. Preparation and Characterization of New Low Cost Adsorbent Beads Based on Activated Bentonite Encapsulated with Calcium Alginate for Removal of 2,4-Dichlorophenol from Aqueous Medium. Int. J. Biol. Macromol. 2018, 115, 257–265. [Google Scholar] [CrossRef]
Sample | OCaded | Na+ | K+ | Mg2+ | Ca2+ | Σtotal | Exchanged |
---|---|---|---|---|---|---|---|
(meq/100 g) | (%) 2 | ||||||
B | 98.0 1 | ||||||
HB-50 | 49.0 | 0.5 | 0.7 | 6.0 | 43.9 | 51.1 | 100.0 |
HB-75 | 73.5 | 0.5 | 0.9 | 8.0 | 56.9 | 66.3 | 90.2 |
HB-100 | 98.0 | 0.7 | 0.9 | 9.4 | 74.9 | 85.9 | 87.7 |
OB-50 | 49.0 | 0.4 | 0.8 | 6.1 | 45.3 | 52.6 | 100.0 |
OB-75 | 73.5 | 0.6 | 1.0 | 7.8 | 63.9 | 73.3 | 99.7 |
OB-100 | 98.0 | 1.1 3 | 1.0 3 | 8.2 3 | 84.0 3 | 94.3 | 96.2 |
Sample | SBET | Vtot | Vmeso | Vmic |
---|---|---|---|---|
(m2/g) | (cm3/g) | (cm3/g) | (cm3/g) | |
Bentonite 1 | 88.6 | 0.170 | 0.106 | 0.036 |
HB-50 | 10.3 | 0.047 | 0.029 | 0.005 |
HB-75 | 3.0 | 0.033 | 0.010 | 0.001 |
HB-100 | 2.3 | 0.041 | 0.008 | 0.001 |
OB-50 | 4.3 | 0.036 | 0.016 | 0.002 |
OB-75 | 3.5 | 0.063 | 0.009 | 0.002 |
OB-100 1 | 7.2 | 0.055 | 0.023 | 0.003 |
Model | Parameter | IBU | |||||
HB-50 | HB-75 | HB-100 | OB-50 | OB-75 | OB-100 | ||
Experimental data | 4.3 | 14.3 | 26.6 | 9.8 | 25.5 | 42.6 | |
PFO | 0.22 | 0.36 | 0.25 | 0.25 | 0.45 | 0.19 | |
4.0 | 13.1 | 24.7 | 9.1 | 23.3 | 40.2 | ||
0.95 | 0.91 | 0.94 | 0.93 | 0.92 | 0.94 | ||
PSO | 0.08 | 0.04 | 0.01 | 0.04 | 0.03 | 0.01 | |
4.2 | 13.9 | 26.3 | 9.7 | 24.4 | 43.3 | ||
1.4 | 7.7 | 6.9 | 3.8 | 17.9 | 18.7 | ||
0.98 | 0.96 | 0.99 | 0.98 | 0.97 | 0.99 | ||
Model | Parameter | DS | |||||
HB-50 | HB-75 | HB-100 | OB-50 | OB-75 | OB-100 | ||
Experimental data | 20.9 | 35.6 | 43.9 | 27.8 | 43.2 | 47.4 | |
PFO | 0.30 | 0.45 | 0.39 | 0.27 | 0.62 | 0.42 | |
18.3 | 32.8 | 41.3 | 26.0 | 40.7 | 46.1 | ||
0.92 | 0.92 | 0.95 | 0.95 | 0.96 | 0.97 | ||
PSO | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | |
19.4 | 34.5 | 43.3 | 27.7 | 42.2 | 48.1 | ||
8.7 | 23.8 | 37.5 | 15.3 | 53.4 | 46.3 | ||
0.97 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 |
Adsorbent | HB-50 | HB-75 | HB-100 | Drug | ||||||
T | 298 | 308 | 318 | 298 | 308 | 318 | 298 | 308 | 318 | IBU |
ΔG° | 6.03 | 6.15 | 6.31 | 2.38 | 2.39 | 2.40 | −0.17 | −0.26 | −0.37 | |
ΔH° | 1.85 | 2.11 | 2.92 | |||||||
ΔS° | −13.97 | −0.91 | 10.31 | |||||||
Adsorbent | OB-50 | OB-75 | OB-100 | |||||||
T | 298 | 308 | 318 | 298 | 308 | 318 | 298 | 308 | 318 | IBU |
ΔG° | 3.42 | 3.51 | 3.53 | −0.02 | −0.07 | −0.18 | −3.95 | −4.15 | −4.45 | |
ΔH° | 1.73 | 2.49 | 3.44 | |||||||
ΔS° | −5.74 | 8.40 | 24.78 | |||||||
Adsorbent | HB-50 | HB-75 | HB-100 | |||||||
T | 298 | 308 | 318 | 298 | 308 | 318 | 298 | 308 | 318 | DS |
ΔG° | 1.24 | 1.23 | 1.23 | −1.89 | −2.00 | −2.15 | −4.89 | −5.19 | −5.47 | |
ΔH° | 1.43 | 2.01 | 3.86 | |||||||
ΔS° | 0.67 | 13.05 | 29.35 | |||||||
Adsorbent | OB-50 | OB-75 | OB-100 | |||||||
T | 298 | 308 | 318 | 298 | 308 | 318 | 298 | 308 | 318 | DS |
ΔG° | −0.39 | −0.50 | −0.53 | −4.37 | −4.60 | −4.84 | −8.17 | −8.55 | −8.98 | |
ΔH° | 1.68 | 2.61 | 3.92 | |||||||
ΔS° | 6.98 | 23.45 | 40.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obradović, M.; Daković, A.; Smiljanić, D.; Marković, M.; Ožegović, M.; Krstić, J.; Vuković, N.; Milojević-Rakić, M. Bentonite Modified with Surfactants—Efficient Adsorbents for the Removal of Non-Steroidal Anti-Inflammatory Drugs. Processes 2024, 12, 96. https://doi.org/10.3390/pr12010096
Obradović M, Daković A, Smiljanić D, Marković M, Ožegović M, Krstić J, Vuković N, Milojević-Rakić M. Bentonite Modified with Surfactants—Efficient Adsorbents for the Removal of Non-Steroidal Anti-Inflammatory Drugs. Processes. 2024; 12(1):96. https://doi.org/10.3390/pr12010096
Chicago/Turabian StyleObradović, Milena, Aleksandra Daković, Danijela Smiljanić, Marija Marković, Milica Ožegović, Jugoslav Krstić, Nikola Vuković, and Maja Milojević-Rakić. 2024. "Bentonite Modified with Surfactants—Efficient Adsorbents for the Removal of Non-Steroidal Anti-Inflammatory Drugs" Processes 12, no. 1: 96. https://doi.org/10.3390/pr12010096
APA StyleObradović, M., Daković, A., Smiljanić, D., Marković, M., Ožegović, M., Krstić, J., Vuković, N., & Milojević-Rakić, M. (2024). Bentonite Modified with Surfactants—Efficient Adsorbents for the Removal of Non-Steroidal Anti-Inflammatory Drugs. Processes, 12(1), 96. https://doi.org/10.3390/pr12010096