Sorbents Based on Natural Zeolites for Carbon Dioxide Capture and Removal of Heavy Metals from Wastewater: Current Progress and Future Opportunities
Abstract
:1. Introduction
2. Natural Zeolites
Global Reserves of Natural Zeolites
3. Mechanism of CO2 Adsorption on Natural Zeolites
3.1. Natural Zeolites as Sorbents for Carbon Dioxide Capture
The Preparation Methods of Natural Zeolites
Year | Zeolite Type | Preparation Method | Adsorption Capacity CO2 | Process Conditions | Ref. |
---|---|---|---|---|---|
2001 | Natural Mordenite | ion exchange | 1.8 mmol/g | T = 17 °C and 0.26 bar | [91] |
2017 | ZnCHA | ion exchange | 2.7 mmol/g | T = 25 °C and 95 kPa | [92] |
2017 | Tuff natural zeolite Campania | acid treatment | 0.102 mmol/g | T = 25 °C and 1.01325 bar | [93] |
2017 | 13X-K (from kaolin), 13X-B (from bentonite) and 13X-F (from feldspath) | hydrothermal treatment | 6.9 mmol/g | T = 25–55 °C | [94] |
2019 | K-Chabazite | hydrothermal method | 2.42 mmol/g | T = 30 °C and 1 bar | [95] |
2020 | Natural calcite-rich mordenite-clinoptilolite zeolite (Indonesia) | magnetic suspension balance | 5.218 mmol/g | T = 0 °C and 30 bar | [52] |
2019 | Natural clinoptilolite (USA) | ion exchange | 1.2–1.7 mmol/g | T = 30–70 °C and 1 bar | [96] |
2020 | Na-Clino NZ clinoptilolite | ion exchange | 0.6 mmol/g | T = 65 °C | [69] |
2022 | Clinoptilolite | N/A | 3.064 mmol/g | T = 25 °C and 10 bar | [5] |
2023 | NaClino | ion exchange | 2.2 mmol/g | T = 25 °C and 1000 mbar | [84] |
2024 | Natural Clinoptilolite | acid pickling–roasting and by ion exchange | 730 mL/g and 876.7 mL/g (92.5%) | T = 300 °C, 0.4 MPa | [90] |
4. Removal of Heavy Metal Ions from Wastewater Using Natural Zeolites
4.1. Mechanism of Adsorption of Heavy Metals from Wastewater
4.2. Adsorbents for Wastewater Treatment Based on Natural Zeolites
Regeneration and Desorption of Natural Zeolites for Heavy Metal Removal
5. Prospects and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Babu, P.E.; Tejes, P.K.S.; Naik, B.K. Parametric Investigation on CO2 Separation from Flue Gas through Temperature Swing Adsorption Process Using Different Sorbent Materials. Carbon Capture Sci. Technol. 2023, 7, 100103. [Google Scholar] [CrossRef]
- Sheraz, N.; Shah, A.; Haleem, A.; Iftikhar, F.J. Comprehensive Assessment of Carbon-, Biomaterial- and Inorganic-Based Adsorbents for the Removal of the Most Hazardous Heavy Metal Ions from Wastewater. RSC Adv. 2024, 14, 11284–11310. [Google Scholar] [CrossRef] [PubMed]
- Modak, A.; Jana, S. Advancement in Porous Adsorbents for Post-Combustion CO2 Capture. Microporous Mesoporous Mater. 2019, 276, 107–132. [Google Scholar] [CrossRef]
- Newell, P.; Ilgen, A.G. Overview of Geological Carbon Storage (GCS). In Science of Carbon Storage in Deep Saline Formations; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–13. ISBN 978-0-12-812752-0. [Google Scholar]
- Diógenes, T.S.; Santiago, R.G.; Maia, D.A.S.; Gonçalves, D.V.; Azevedo, D.C.S.; Lucena, S.M.P.; Bastos-Neto, M. Experimental and Theoretical Assessment of CO2 Capture by Adsorption on Clinoptilolite. Chem. Eng. Res. Des. 2022, 177, 640–652. [Google Scholar] [CrossRef]
- Liu, H.; Lu, H.; Hu, H. CO2 Capture and Mineral Storage: State of the Art and Future Challenges. Renew. Sustain. Energy Rev. 2024, 189, 113908. [Google Scholar] [CrossRef]
- Wang, X.; Song, C. Carbon Capture From Flue Gas and the Atmosphere: A Perspective. Front. Energy Res. 2020, 8, 560849. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Ma, N.; Li, X.; Huang, Z. CO2 Absorption Enhancement of Fluorinated Ionic Liquids on Nonaqueous Biphasic Absorbents: Experimental and Theoretical Study. Carbon Capture Sci. Technol. 2023, 9, 100147. [Google Scholar] [CrossRef]
- Cheung, O.; Bacsik, Z.; Liu, Q.; Mace, A.; Hedin, N. Adsorption Kinetics for CO2 on Highly Selective Zeolites NaKA and Nano-NaKA. Appl. Energy 2013, 112, 1326–1336. [Google Scholar] [CrossRef]
- Khraisheh, M.; Mukherjee, S.; Kumar, A.; Al Momani, F.; Walker, G.; Zaworotko, M.J. An Overview on Trace CO2 Removal by Advanced Physisorbent Materials. J. Environ. Manag. 2020, 255, 109874. [Google Scholar] [CrossRef]
- Azmi, A.A.; Aziz, M.A.A. Mesoporous Adsorbent for CO2 Capture Application under Mild Condition: A Review. J. Environ. Chem. Eng. 2019, 7, 103022. [Google Scholar] [CrossRef]
- Lee, Z.H.; Lee, K.T.; Bhatia, S.; Mohamed, A.R. Post-Combustion Carbon Dioxide Capture: Evolution towards Utilization of Nanomaterials. Renew. Sustain. Energy Rev. 2012, 16, 2599–2609. [Google Scholar] [CrossRef]
- Singh, V.K.; Anil Kumar, E. Measurement and Analysis of Adsorption Isotherms of CO2 on Activated Carbon. Appl. Therm. Eng. 2016, 97, 77–86. [Google Scholar] [CrossRef]
- Kukulka, W.; Cendrowski, K.; Michalkiewicz, B.; Mijowska, E. MOF-5 Derived Carbon as Material for CO2 Absorption. RSC Adv. 2019, 9, 18527–18537. [Google Scholar] [CrossRef]
- Ismail, I.S.; Rashidi, N.A.; Yusup, S. Production and Characterization of Bamboo-Based Activated Carbon through Single-Step H3PO4 Activation for CO2 Capture. Environ. Sci. Pollut. Res. 2022, 29, 12434–12440. [Google Scholar] [CrossRef]
- Cao, C.; Xuan, W.; Yan, S.; Wang, Q. Zeolites Synthesized from Industrial and Agricultural Solid Waste and Their Applications: A Review. J. Environ. Chem. Eng. 2023, 11, 110898. [Google Scholar] [CrossRef]
- Tao, H.; Qian, X.; Zhou, Y.; Cheng, H. Research Progress of Clay Minerals in Carbon Dioxide Capture. Renew. Sustain. Energy Rev. 2022, 164, 112536. [Google Scholar] [CrossRef]
- Li, N.; Lu, X.; He, M.; Duan, X.; Yan, B.; Chen, G.; Wang, S. Catalytic Membrane-Based Oxidation-Filtration Systems for Organic Wastewater Purification: A Review. J. Hazard. Mater. 2021, 414, 125478. [Google Scholar] [CrossRef]
- Araujo Scharnberg, A.R.; Carvalho De Loreto, A.; Kopp Alves, A. Optical and Structural Characterization of Bi2FexNbO7 Nanoparticles for Environmental Applications. Emerg. Sci. J. 2020, 4, 11–17. [Google Scholar] [CrossRef]
- Es-sahbany, H.; Berradi, M.; Nkhili, S.; Hsissou, R.; Allaoui, M.; Loutfi, M.; Bassir, D.; Belfaquir, M.; El Youbi, M.S. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Mater. Today Proc. 2019, 13, 866–875. [Google Scholar] [CrossRef]
- Markou, G.; Vandamme, D.; Muylaert, K. Using Natural Zeolite for Ammonia Sorption from Wastewater and as Nitrogen Releaser for the Cultivation of Arthrospira Platensis. Bioresour. Technol. 2014, 155, 373–378. [Google Scholar] [CrossRef]
- Hernández-Montoya, V.; Pérez-Cruz, M.A.; Mendoza-Castillo, D.I.; Moreno-Virgen, M.R.; Bonilla-Petriciolet, A. Competitive Adsorption of Dyes and Heavy Metals on Zeolitic Structures. J. Environ. Manag. 2013, 116, 213–221. [Google Scholar] [CrossRef]
- Kumara, G.M.P.; Kawamoto, K. Use of Natural Zeolite and Its Mixtures to Refine High-Concentrated Heavy Metal-Contaminated Wastewater: An Investigation of Simultaneous Removal of Cd (II) and Pb (II) by Batch Adsorption Method. Water Air Soil Pollut. 2021, 232, 463. [Google Scholar] [CrossRef]
- Muslim, W.A.; Al-Nasri, S.K.; Albayati, T.M.; Salih, I.K. Investigation of Bentonite Clay Minerals as a Natural Adsorbents for Cs-137 Real Radioactive Wastewater Treatment. Desalination Water Treat. 2024, 317, 100121. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, Y.; Zhang, C.; Su, X.; Qiao, Y.; Fang, Q.; Huang, J.; Zhang, D. Reducing CO/NO and Absorbing Heavy Metals in Self-Sustained Smouldering of High-Moisture Sludge by Regulating Inert Media with Low-Cost Natural Zeolite. Environ. Pollut. 2023, 337, 122556. [Google Scholar] [CrossRef]
- Lang, Q.; Lu, P.; Yang, X.; Valtchev, V. Zeolites for the environment. Green Carbon. 2024, 2, 12–32. [Google Scholar] [CrossRef]
- Stocker, K.; Ellersdorfer, M.; Lehner, M.; Raith, J.G. Characterization and Utilization of Natural Zeolites in Technical Applications. Braz. J. Dev. 2017, 162, 142–147. [Google Scholar] [CrossRef]
- Inglezakis, J.; Zorpas, A. (Eds.) Zeolite Formation and Deposits. In Handbook of Natural Zeolites; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 28–51. ISBN 978-1-60805-261-5. [Google Scholar]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Biblioteca, I.; Sambucci, M.; Valente, M. Zeolite-Clinoptilolite Conditioning for Improved Heavy Metals Ions Removal: A Preliminary Assessment. Ceram. Int. 2023, 49, 39649–39656. [Google Scholar] [CrossRef]
- Silaghi, M.-C.; Chizallet, C.; Sauer, J.; Raybaud, P. Dealumination Mechanisms of Zeolites and Extra-Framework Aluminum Confinement. J. Catal. 2016, 339, 242–255. [Google Scholar] [CrossRef]
- El Bojaddayni, I.; Emin Küçük, M.; El Ouardi, Y.; Jilal, I.; El Barkany, S.; Moradi, K.; Repo, E.; Laatikainen, K.; Ouammou, A. A Review on Synthesis of Zeolites from Natural Clay Resources and Waste Ash: Recent Approaches and Progress. Miner. Eng. 2023, 198, 108086. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O. Modification of Natural Zeolites and Their Applications for Heavy Metal Removal from Polluted Environments: Challenges, Recent Advances, and Perspectives. Heliyon 2024, 10, e25303. [Google Scholar] [CrossRef]
- Sharma, P.; Sutar, P.P.; Xiao, H.; Zhang, Q. The Untapped Potential of Zeolites in Techno-Augmentation of the Biomaterials and Food Industrial Processing Operations: A Review. J. Future Foods 2023, 3, 127–141. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Thabet, W.M. Natural Zeolites and Zeolite Composites for Heavy Metal Removal from Contaminated Water and Their Applications in Aquaculture Systems: A Review. Egypt. J. Aquat. Res. 2023, 49, 431–443. [Google Scholar] [CrossRef]
- Armbruster, T. Clinoptilotite-Heulandite: Applications and Basic Research. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2001; Volume 135, pp. 13–27. ISBN 978-0-444-50238-4. [Google Scholar]
- Kennedy, D.A.; Tezel, F.H. Cation Exchange Modification of Clinoptilolite—Screening Analysis for Potential Equilibrium and Kinetic Adsorption Separations Involving Methane, Nitrogen, and Carbon Dioxide. Microporous Mesoporous Mater. 2018, 262, 235–250. [Google Scholar] [CrossRef]
- Favvas, E.P.; Tsanaktsidis, C.G.; Sapalidis, A.A.; Tzilantonis, G.T.; Papageorgiou, S.K.; Mitropoulos, A.C. Clinoptilolite, a Natural Zeolite Material: Structural Characterization and Performance Evaluation on Its Dehydration Properties of Hydrocarbon-Based Fuels. Microporous Mesoporous Mater. 2016, 225, 385–391. [Google Scholar] [CrossRef]
- Marco, J.F.; Gracia, M.; Gancedo, J.R.; González-Carreño, T.; Arcoya, A.; Seoane, X.L. On the State of Iron in a Clinoptilolite. Hyperfine Interact 1995, 95, 53–70. [Google Scholar] [CrossRef]
- Alshameri, A.; Yan, C.; Al-Ani, Y.; Dawood, A.S.; Ibrahim, A.; Zhou, C.; Wang, H. An Investigation into the Adsorption Removal of Ammonium by Salt Activated Chinese (Hulaodu) Natural Zeolite: Kinetics, Isotherms, and Thermodynamics. J. Taiwan Inst. Chem. Eng. 2014, 45, 554–564. [Google Scholar] [CrossRef]
- Sydorchuk, V.; Vasylechko, V.; Khyzhun, O.; Gryshchouk, G.; Khalameida, S.; Vasylechko, L. Effect of High-Energy Milling on the Structure, Some Physicochemical and Photocatalytic Properties of Clinoptilolite. Appl. Catal. A Gen. 2021, 610, 117930. [Google Scholar] [CrossRef]
- Silva, M.; Lecus, A.; Lin, Y.; Corrao, J. Tailoring Natural Zeolites by Acid Treatments. J. Mater. Sci. Chem. Eng. 2019, 7, 26–37. [Google Scholar] [CrossRef]
- Institute of Natural Resourses, Nakhichevan Department of National Academy of Azerbaijan; Mamedova, G.A. The Investigation of Natural Mineral of Mordenite and Chemical Modification in the Ca(OH)2 Environment. Vestn. SPbSU. Phys. Chem. 2018, 5, 411–418. [Google Scholar] [CrossRef]
- Bruyako, M.G.; Grigor’eva, L.S.; Grigor’eva, A.I.; Moscow State University of Civil Engineering (National Research University) (MGSU). Plasmomodificated Sorbing Agents on the Basis of Zeolite Containing Earth Materials of the Khotynets Deposit Occurrence. Stroitel Stvo Nauka i Obrazovanie 2017, 7, 3. [Google Scholar] [CrossRef]
- Rodríguez-Iznaga, I.; Rodríguez-Fuentes, G.; Petranovskii, V. Ammonium Modified Natural Clinoptilolite to Remove Manganese, Cobalt and Nickel Ions from Wastewater: Favorable Conditions to the Modification and Selectivity to the Cations. Microporous Mesoporous Mater. 2018, 255, 200–210. [Google Scholar] [CrossRef]
- Șenilă, M.; Neag, E.; Tănăselia, C.; Șenilă, L. Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite. Materials 2023, 16, 2965. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Mohamed, A.M.G.; Keshawy, M.; elMoghny, T.A.; Shehata, N. Adsorption of Heavy Metals and Hardness Ions from Groundwater onto Modified Zeolite: Batch and Column Studies. Alex. Eng. J. 2022, 61, 4189–4207. [Google Scholar] [CrossRef]
- Wahono, S.K.; Prasetyo, D.J.; Jatmiko, T.H.; Suwanto, A.; Pratiwi, D.; Hernawan; Vasilev, K. Transformation of Mordenite-Clinoptilolite Natural Zeolite at Different Calcination Temperatures. IOP Conf. Ser. Earth Environ. Sci. 2019, 251, 012009. [Google Scholar] [CrossRef]
- Kokotailo, G.T.; Fyfe, C.A. Perspective. J. Phys. Chem. Solids 1989, 50, 441–447. [Google Scholar] [CrossRef]
- Adam, M.R.; Othman, M.H.D.; Hubadillah, S.K.; Abd Aziz, M.H.; Jamalludin, M.R. Application of Natural Zeolite Clinoptilolite for the Removal of Ammonia in Wastewater. Mater. Today Proc. 2023, S2214785322075794. [Google Scholar] [CrossRef]
- Wahono, S.K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasilev, K. Physico-Chemical Modification of Natural Mordenite-Clinoptilolite Zeolites and Their Enhanced CO2 Adsorption Capacity. Microporous Mesoporous Mater. 2020, 294, 109871. [Google Scholar] [CrossRef]
- Korkuna, O.; Leboda, R.; Skubiszewska-Zie¸ba, J.; Vrublevs’ka, T.; Gun’ko, V.M.; Ryczkowski, J. Structural and Physicochemical Properties of Natural Zeolites: Clinoptilolite and Mordenite. Microporous Mesoporous Mater. 2006, 87, 243–254. [Google Scholar] [CrossRef]
- Cappelletti, P.; Colella, A.; Langella, A.; Mercurio, M.; Catalanotti, L.; Monetti, V.; De Gennaro, B. Use of Surface Modified Natural Zeolite (SMNZ) in Pharmaceutical Preparations Part 1. Mineralogical and Technological Characterization of Some Industrial Zeolite-Rich Rocks. Microporous Mesoporous Mater. 2017, 250, 232–244. [Google Scholar] [CrossRef]
- Abdulina, S.A.; Sadenova, M.A.; Sapargaliev, E.M.; Utegenova, M.E. Peculiarities of zeolite mineral composition of Taizhuzgen deposit. VESTNIK KazNTU 2014, 103, 24–31. (In Russian) [Google Scholar]
- Vasilyanova, L.S.; Lazareva, E.A. Zeolites in Ecology. News of Science of Kazakhstan. 2016, pp. 61–85. Available online: https://nv.nauka.kz/wp-content/uploads/2016/04/nnk-2016-1.pdf (accessed on 13 September 2024). (In Russian).
- Boer, D.G.; Langerak, J.; Pescarmona, P.P. Zeolites as Selective Adsorbents for CO2 Separation. ACS Appl. Energy Mater. 2023, 6, 2634–2656. [Google Scholar] [CrossRef]
- Kusumastuti, R.; Sriyono; Pancoko, M.; Butar-Butar, S.L.; Putra, G.E.; Tjahjono, H. Study On The Mechanism of CO2 Adsorption Process on Zeolite 5A as a Molecular Sieve In RDE System: An Infrared Investigation. J. Phys. Conf. Ser. 2019, 1198, 032009. [Google Scholar] [CrossRef]
- Petrovic, B.; Gorbounov, M.; Masoudi Soltani, S. Influence of Surface Modification on Selective CO2 Adsorption: A Technical Review on Mechanisms and Methods. Microporous Mesoporous Mater. 2021, 312, 110751. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. Modification and Functionalization of Zeolites to Improve the Efficiency of CO2 Adsorption: A Review. Case Stud. Chem. Environ. Eng. 2024, 9, 100564. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, R.; Koh, J. Utilization of Zeolites as CO2 Capturing Agents: Advances and Future Perspectives. J. CO2 Util. 2020, 41, 101251. [Google Scholar] [CrossRef]
- Oschatz, M.; Antonietti, M. A Search for Selectivity to Enable CO2 Capture with Porous Adsorbents. Energy Environ. Sci. 2018, 11, 57–70. [Google Scholar] [CrossRef]
- Adsorption by Powders and Porous Solids; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-08-097035-6.
- Pourhakkak, P.; Taghizadeh, A.; Taghizadeh, M.; Ghaedi, M.; Haghdoust, S. Fundamentals of Adsorption Technology. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 33, pp. 1–70. ISBN 978-0-12-818805-7. [Google Scholar]
- Yang, R.T. Gas Separation by Adsorption Processes; Series on Chemical Engineering; Imperial College Press: London, UK; World Scientific Publishing Co.: Singapore, 1997; Volume 1, ISBN 978-1-86094-047-7. [Google Scholar]
- Dziejarski, B.; Serafin, J.; Andersson, K.; Krzyżyńska, R. CO2 Capture Materials: A Review of Current Trends and Future Challenges. Mater. Today Sustain. 2023, 24, 100483. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Hernandez, G.I.; Portillo, R.; Rubio, E.; Petranovskii, V.; Alvarez, K.M.; Velasco, M.D.L.A.; Santamaría, J.D.; Tornero, M.; Paniagua, L.A. CO2 Adsorption on Natural Zeolites from Puebla, México, by Inverse Gas Chromatography. Separations 2023, 10, 238. [Google Scholar] [CrossRef]
- Wu, C.; Huang, Q.; Xu, Z.; Sipra, A.T.; Gao, N.; Vandenberghe, L.P.D.S.; Vieira, S.; Soccol, C.R.; Zhao, R.; Deng, S.; et al. A Comprehensive Review of Carbon Capture Science and Technologies. Carbon Capture Sci. Technol. 2024, 11, 100178. [Google Scholar] [CrossRef]
- Davarpanah, E.; Armandi, M.; Hernández, S.; Fino, D.; Arletti, R.; Bensaid, S.; Piumetti, M. CO2 Capture on Natural Zeolite Clinoptilolite: Effect of Temperature and Role of the Adsorption Sites. J. Environ. Manag. 2020, 275, 111229. [Google Scholar] [CrossRef] [PubMed]
- Omodolor, I.S.; Otor, H.O.; Andonegui, J.A.; Allen, B.J.; Alba-Rubio, A.C. Dual-Function Materials for CO2 Capture and Conversion: A Review. Ind. Eng. Chem. Res. 2020, 59, 17612–17631. [Google Scholar] [CrossRef]
- Rodríguez-Iznaga, I.; Shelyapina, M.G.; Petranovskii, V. Ion Exchange in Natural Clinoptilolite: Aspects Related to Its Structure and Applications. Minerals 2022, 12, 1628. [Google Scholar] [CrossRef]
- Misaelides, P. Application of Natural Zeolites in Environmental Remediation: A Short Review. Microporous Mesoporous Mater. 2011, 144, 15–18. [Google Scholar] [CrossRef]
- Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of Mechanochemistry: From Nanoparticles to Technology. Chem. Soc. Rev. 2013, 42, 7571. [Google Scholar] [CrossRef]
- Prajitno, M.Y.; Harbottle, D.; Hondow, N.; Zhang, H.; Hunter, T.N. The Effect of Pre-Activation and Milling on Improving Natural Clinoptilolite for Ion Exchange of Cesium and Strontium. J. Environ. Chem. Eng. 2020, 8, 102991. [Google Scholar] [CrossRef]
- Mukhtar, N.Z.F.; Borhan, M.Z.; Abdullah, S.; Rusop, M. Nanozeolite Produced by Wet Milling at Different Milling Time. IOP Conf. Ser. Mater. Sci. Eng. 2013, 46, 012007. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Sprynskyy, M.; Terzyk, A.P.; Lebedynets, M.; Namieśnik, J.; Buszewski, B. Porous Structure of Natural and Modified Clinoptilolites. J. Colloid Interface Sci. 2006, 297, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Mihaly-Cozmuta, L.; Mihaly-Cozmuta, A.; Peter, A.; Nicula, C.; Tutu, H.; Silipas, D.; Indrea, E. Adsorption of Heavy Metal Cations by Na-Clinoptilolite: Equilibrium and Selectivity Studies. J. Environ. Manag. 2014, 137, 69–80. [Google Scholar] [CrossRef]
- Akyalcin, S.; Akyalcin, L.; Ertugrul, E. Modification of natural clinoptilolite zeolite to enhance its hydrogen adsorption capacity. Res Chem Intermediat. 2024, 50, 1455–1473. [Google Scholar] [CrossRef]
- Zheng, S.; Heydenrych, H.R.; Jentys, A.; Lercher, J.A. Influence of Surface Modification on the Acid Site Distribution of HZSM-5. J. Phys. Chem. B 2002, 106, 9552–9558. [Google Scholar] [CrossRef]
- Ates, A. Effect of Alkali-Treatment on the Characteristics of Natural Zeolites with Different Compositions. J. Colloid Interface Sci. 2018, 523, 266–281. [Google Scholar] [CrossRef]
- Oliveira, D.S.; Lima, R.B.; Pergher, S.B.C.; Caldeira, V.P.S. Hierarchical Zeolite Synthesis by Alkaline Treatment: Advantages and Applications. Catalysts 2023, 13, 316. [Google Scholar] [CrossRef]
- Bayrakdar Ates, E. Exploring the Impact of NaOH Pre-Treatment for H2 and CO2 Adsorption on Clinoptilolite. Int. J. Hydrogen Energy 2024, 50, 990–1003. [Google Scholar] [CrossRef]
- Kordala, N.; Wyszkowski, M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 2024, 29, 1069. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, M.; Dosa, M.; Porcaro, N.G.; Bonino, F.; Piumetti, M.; Crocellà, V. Shaped Natural and Synthetic Zeolites for CO2 Capture in a Wide Temperature Range. J. CO2 Util. 2023, 67, 102335. [Google Scholar] [CrossRef]
- Mortazavi, N.; Bahadori, M.; Marandi, A.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I. Enhancement of CO2 Adsorption on Natural Zeolite, Modified Clinoptilolite with Cations, Amines and Ionic Liquids. Sustain. Chem. Pharm. 2021, 22, 100495. [Google Scholar] [CrossRef]
- Cadar, O.; Senila, M.; Hoaghia, M.-A.; Scurtu, D.; Miu, I.; Levei, E.A. Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids. Molecules 2020, 25, 2570. [Google Scholar] [CrossRef]
- Arefi Pour, A.; Sharifnia, S.; NeishaboriSalehi, R.; Ghodrati, M. Performance evaluation of clinoptilolite and 13X zeolites in CO2 separation from CO2/CH4 mixture. J. Nat. Gas Sci. Eng. 2015, 26, 1246–1253. [Google Scholar] [CrossRef]
- Kukobat, R.; Škrbić, R.; Massiani, P.; Baghdad, K.; Launay, F.; Sarno, M.; Cirillo, C.; Senatore, A.; Salčin, E.; Atlagić, S.G. Thermal and Structural Stability of Microporous Natural Clinoptilolite Zeolite. Microporous Mesoporous Mater. 2022, 341, 112101. [Google Scholar] [CrossRef]
- Mambetova, M.M.; Yergaziyeva, G.Y.; Zhoketayeva, A.B. Physicochemical Characteristics and Carbon Dioxide Sorption Properties of Natural Zeolites. Гoрение и Плa3мохимия 2023, 21, 81–87. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, B.; Duan, X.; Xing, Y. CO2 Capture by Modified Clinoptilolite and Its Regeneration Performance. Int. J. Coal Sci. Technol. 2024, 11, 20. [Google Scholar] [CrossRef]
- Aguilar-Armenta, G.; Hernandez-Ramirez, G.; Flores-Loyola, E.; Ugarte-Castaneda, A.; Silva-Gonzalez, R.; Tabares-Munoz, C.; Jimenez-Lopez, A.; Rodriguez-Castellon, E. Adsorption Kinetics of CO2, O2, N2, and CH4 in Cation-Exchanged Clinoptilolite. J. Phys. Chem. B 2001, 105, 1313–1319. [Google Scholar] [CrossRef]
- Du, T.; Che, S.; Liu, L.; Fang, X. Preparation of Zinc Chabazite (ZnCHA) for CO2 Capture. Res. Chem. Intermed. 2017, 43, 1783–1792. [Google Scholar] [CrossRef]
- Ammendola, P.; Raganati, F.; Chirone, R.; Miccio, F. Preliminary Assessment of Tuff as CO2 Sorbent. Energy Procedia 2017, 114, 46–52. [Google Scholar] [CrossRef]
- Garshasbi, V.; Jahangiri, M.; Anbia, M. Equilibrium CO2 Adsorption on Zeolite 13X Prepared from Natural Clays. Appl. Surf. Sci. 2017, 393, 225–233. [Google Scholar] [CrossRef]
- Gong, H.; Liu, W.; Liu, L.; Goyal, N.; Xiao, P.; Li, G.; Wei, Y.; Du, T. In-Situ Synthesis of an Excellent CO2 Capture Material Chabazite. J. Taiwan Inst. Chem. Eng. 2019, 103, 160–166. [Google Scholar] [CrossRef]
- Kennedy, D.A.; Mujčin, M.; Abou-Zeid, C.; Tezel, F.H. Cation Exchange Modification of Clinoptilolite –Thermodynamic Effects on Adsorption Separations of Carbon Dioxide, Methane, and Nitrogen. Microporous Mesoporous Mater. 2019, 274, 327–341. [Google Scholar] [CrossRef]
- Singh, N.B.; Nagpal, G.; Agrawal, S. Rachna Water Purification by Using Adsorbents: A Review. Environ. Technol. Innov. 2018, 11, 187–240. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Z.; Dai, H.; Lu, X.; Peng, L.; Tan, X.; Shi, L.; Fahim, R. Preparation and Application of Modified Zeolites as Adsorbents in Wastewater Treatment. Water Sci. Technol. 2018, 2017, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Okant, M.; Ugurlar, F.; Alyemeni, M.N.; Ashraf, M.; Ahmad, P. Melatonin-Mediated Nitric Oxide Improves Tolerance to Cadmium Toxicity by Reducing Oxidative Stress in Wheat Plants. Chemosphere 2019, 225, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of Heavy Metals in Wastewater and Soil Samples from Open Drainage Channels in Nairobi, Kenya: Community Health Implication. Sci Rep 2020, 10, 8434. [Google Scholar] [CrossRef]
- Eberle, S.; Börnick, H.; Stolte, S. Granular Natural Zeolites: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water. Water 2022, 14, 939. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, S.; Qiu, X.; Meng, Y.; Wang, H.; Zhou, S.; Qiao, Q.; Yan, C. Clinoptilolite Based Zeolite-Geopolymer Hybrid Foams: Potential Application as Low-Cost Sorbents for Heavy Metals. J. Environ. Manag. 2023, 330, 117167. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Abdel Rahim, M.M. Sustainable Use of Natural Zeolites in Aquaculture: A Short Review. OFOAJ 2017, 2, 1–6. [Google Scholar] [CrossRef]
- Velarde, L.; Nikjoo, D.; Escalera, E.; Akhtar, F. Bolivian Natural Zeolite as a Low-Cost Adsorbent for the Adsorption of Cadmium: Isotherms and Kinetics. Heliyon 2024, 10, e24006. [Google Scholar] [CrossRef]
- Zanin, E.; Scapinello, J.; De Oliveira, M.; Rambo, C.L.; Franscescon, F.; Freitas, L.; De Mello, J.M.M.; Fiori, M.A.; Oliveira, J.V.; Dal Magro, J. Adsorption of Heavy Metals from Wastewater Graphic Industry Using Clinoptilolite Zeolite as Adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. [Google Scholar] [CrossRef]
- Svobodová, E.; Tišler, Z.; Peroutková, K.; Strejcová, K.; Abrham, J.; Šimek, J.; Gholami, Z.; Vakili, M. Adsorption of Cu(II) and Ni(II) from Aqueous Solutions Using Synthesized Alkali-Activated Foamed Zeolite Adsorbent: Isotherm, Kinetic, and Regeneration Study. Molecules 2024, 29, 2357. [Google Scholar] [CrossRef] [PubMed]
- Senthil Rathi, B.; Senthil Kumar, P.; Natanya Ida Susana, J.; Francia Virgin, J.; Dharani, R.; Sanjay, S.; Rangasamy, G. Recent Research Progress on the Removal of Heavy Metals from Wastewater Using Modified Zeolites: A Critical Review. Desalination Water Treat. 2024, 319, 100573. [Google Scholar] [CrossRef]
- Wang, C.; Yu, J.; Feng, K.; Guo, H.; Wang, L. Alkali Treatment to Transform Natural Clinoptilolite into Zeolite Na–P: Influence of NaOH Concentration. J. Phys. Chem. Solids 2022, 168, 110827. [Google Scholar] [CrossRef]
- Yuna, Z. Review of the Natural, Modified, and Synthetic Zeolites for Heavy Metals Removal from Wastewater. Environ. Eng. Sci. 2016, 33, 443–454. [Google Scholar] [CrossRef]
- Gaikwad, R.W.; Sonawane, A.V.; Hakke, V.S.; Sonawane, S.H.; Gaikwad, M.S.; Lakhera, S.K.; Warade, A.R.; Urgunde, A.B.; Sapkal, V.S. Application of Apophyllite and Thomsonite Natural Zeolite as Modified Adsorbents for the Removal of Zinc from Acid Mine Drainage. Chemosphere 2024, 350, 141095. [Google Scholar] [CrossRef]
- Belova, T.P. Adsorption of Heavy Metal Ions (Cu2+, Ni2+, Co2+ and Fe2+) from Aqueous Solutions by Natural Zeolite. Heliyon 2019, 5, e02320. [Google Scholar] [CrossRef]
- Grifasi, N.; Ziantoni, B.; Fino, D.; Piumetti, M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. Environ. Sci. Pollut. Res. 2024, 12, 1–36. [Google Scholar] [CrossRef]
- Radovanovic, D.; Dikić, J.; Štulović, M.; Anđić, Z.; Kamberović, Ž.; Jevtić, S. Sorption of Pb2+, Zn2+, Cu2+ and Ni2+ Ions on Na-Enriched Natural Zeolite for Wastewater Treatment Process: A Kinetic Approach. Metall. Mater. Eng. 2023, 29, 20–35. [Google Scholar] [CrossRef]
- Adamovich, S.N.; Filatova, E.G.; Pozhidaev, Y.N.; Ushakov, I.A.; Chugunov, A.D.; Oborina, E.N.; Rozentsveig, I.B.; Verpoort, F. Natural Zeolite Modified with 4-(3-Triethoxysilylpropyl) Thiosemicarbazide as an Effective Adsorbent for Cu(II), Co(II) and Ni(II). J. Taiwan Inst. Chem. Eng. 2021, 129, 396–409. [Google Scholar] [CrossRef]
- Aghel, B.; Mohadesi, M.; Gouran, A.; Razmegir, M.H. Use of Modified Iranian Clinoptilolite Zeolite for Cadmium and Lead Removal from Oil Refinery Wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 1239–1250. [Google Scholar] [CrossRef]
- Abatal, M.; Olguin, M.T.; Abdellaoui, Y.; El Bouari, A. Sorption of Cd(II), Ni(II) and Zn(II) by Natural, Sodium, and Acid-Modified Clinoptilolite-Rich Tuff. Environ. Protect. Eng. 2018, 44, 41–59. [Google Scholar] [CrossRef]
- Mehdi, B.; Belkacemi, H.; Brahmi-Ingrachen, D.; Braham, L.A.; Muhr, L. Study of Nickel Adsorption on NaCl-Modified Natural Zeolite Using Response Surface Methodology and Kinetics Modeling. Groundw. Sustain. Dev. 2022, 17, 100757. [Google Scholar] [CrossRef]
- Al-Abbad, E.A.; Al Dwairi, R.A. Removal of Nickel (II) Ions from Water by Jordan Natural Zeolite as Sorbent Material. J. Saudi Chem. Soc. 2021, 25, 101233. [Google Scholar] [CrossRef]
- Faustino, B.; Cobo, D.M.; Vequizo, R.; Candidato, R. Enhanced heavy metal adsorption capacity of surface-functionalized Philippine natural zeolite in simulated wastewater. Open Ceram. 2024, 18, 100612. [Google Scholar] [CrossRef]
- Taamneh, Y.; Sharadqah, S. The Removal of Heavy Metals from Aqueous Solution Using Natural Jordanian Zeolite. Appl. Water Sci. 2017, 7, 2021–2028. [Google Scholar] [CrossRef]
- Elboughdiri, N. The Use of Natural Zeolite to Remove Heavy Metals Cu (II), Pb (II) and Cd (II), from Industrial Wastewater. Cogent Eng. 2020, 7, 1782623. [Google Scholar] [CrossRef]
- Johnson, R.A.; Smith, T.E.; Miller, B. Stability and durability of natural zeolites in practical applications: A review. J. Environ. Manag. 2019, 241, 271–283. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Zhang, Q.; Zhang, S. A review on the regeneration of zeolite adsorbents. Environ. Sci. Pollut. Res. 2020, 27, 2677–2696. [Google Scholar]
- Lee, J.; Kim, J.; Kim, K. Regeneration of zeolite adsorbents for heavy metal removal: A review. J. Hazard. Mater. 2018, 354, 365–382. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhang, H.; Liu, X. Enhanced stability and regeneration of modified zeolites for environmental applications. Mater. Sci. Eng. R Rep. 2021, 141, 100560. [Google Scholar]
- Salman, H.; Shaheen, H.; Abbas, G.; Khalouf, N. Use of Syrian natural zeolite for heavy metals removal from industrial waste water: Factors and mechanism. J. Entomol. Zool. Stud. 2017, 5, 452–461. [Google Scholar]
- El-Arish, N.A.S.; Zaki, R.S.R.M.; Miskan, S.N.; Setiabudi, H.D.; Jaafar, N.F. Adsorption of Pb(II) from Aqueous Solution Using Alkaline-Treated Natural Zeolite: Process Optimization Analysis. Total Environ. Res. Themes 2022, 3–4, 100015. [Google Scholar] [CrossRef]
- Katsou, E.; Malamis, S.; Tzanoudaki, M.; Haralambous, K.J.; Loizidou, M. Regeneration of Natural Zeolite Polluted by Lead and Zinc in Wastewater Treatment Systems. J. Hazard. Mater. 2011, 189, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Lihareva, N.; Dimova, L.; Petrov, O.; Tzvetanova, Y. Ag+ Sorption on Natural and Na-Exchanged Clinoptilolite from Eastern Rhodopes, Bulgaria. Microporous Mesoporous Mater. 2010, 130, 32–37. [Google Scholar] [CrossRef]
- Lata, S.; Singh, P.K.; Samadder, S.R. Regeneration of Adsorbents and Recovery of Heavy Metals: A Review. Int. J. Environ. Sci. Technol. 2015, 12, 1461–1478. [Google Scholar] [CrossRef]
- Mendoza-Barrón, J.; Jacobo-Azuara, A.; Leyva-Ramos, R.; Berber-Mendoza, M.S.; Guerrero-Coronado, R.M.; Fuentes-Rubio, L.; Martínez-Rosales, J.M. Adsorption of Arsenic (V) from a Water Solution onto a Surfactant-Modified Zeolite. Adsorption 2011, 17, 489–496. [Google Scholar] [CrossRef]
- Moazeni, M.; Parastar, S.; Mahdavi, M.; Ebrahimi, A. Evaluation Efficiency of Iranian Natural Zeolites and Synthetic Resin to Removal of Lead Ions from Aqueous Solutions. Appl Water Sci 2020, 10, 60. [Google Scholar] [CrossRef]
- Kabuba, J.; Banza, M. Ion-Exchange Process for the Removal of Ni (II) and Co (II) from Wastewater Using Modified Clinoptilolite: Modeling by Response Surface Methodology and Artificial Neural Network. Results Eng. 2020, 8, 100189. [Google Scholar] [CrossRef]
- Galletti, C.; Dosa, M.; Russo, N.; Fino, D. Zn2+ and Cd2+ Removal from Wastewater Using Clinoptilolite as Adsorbent. Environ. Sci. Pollut. Res. 2021, 28, 24355–24361. [Google Scholar] [CrossRef]
- Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Modifying Natural Zeolites to Improve Heavy Metal Adsorption. Water 2023, 15, 2215. [Google Scholar] [CrossRef]
- Janashvili, N.; Akhalbedashvili, L. Natural Zeolite Clinoptilolite as Adsorbent for Cleaning Waters from Arsenic Ions. Sci. Eur. 2023, 110, 3–8. [Google Scholar] [CrossRef]
- Rakhym, A.B.; Seilkhanova, G.A.; Kurmanbayeva, T.S. Adsorption of Lead (II) Ions from Water Solutions with Natural Zeolite and Chamotte Clay. Mater. Today Proc. 2020, 31, 482–485. [Google Scholar] [CrossRef]
Zeolite Type | Structure Type | Chemical Formula | Symmetry |
---|---|---|---|
Clinoptilolite | HEU | (Na,K,Ca)6[Al6Si10O24]·12H2O | Monoclinic |
Mordenite | MOR | (Na, K)8[Al12Si24O8]·24H2O | Orthorhombic |
Chabazite | CHA | (Ca,Na)2[Al6Si12O24]·6H2O | Phombohedral |
Philipsite | PHI | (K2,Na2,Ca)Al4Si12O24·12H2O | Monoclinic |
Analcime | ANA | Na[AlSi2O6] ·H2O | Cubic |
Erionite | ERI | (Na,K,Ca)1−x[Al12Si24O8]·6H2O | Hexagonal |
Stilbite | STI | (Na,Ca)4Al9Si20O18·7H2O | Monoclinic |
Laumontite | LAU | (Ca2Al10Si12O20)·4H2O | Monoclinic |
Ferrierite | FER | (K,Ca)1−x[Al12Si24O18]·6H2O | Orthorhombic |
Natural Zeolite, Country | Major Oxides Content (%) | Ref | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | K2O | Na2O | Fe2O3 | Al2O3 | FeO | MgO | TiO2 | SiO2/Al2O3 | ||
Natural Zeolite, China | 3.17 | 66.34 | 1.37 | 0.73 | 0.99 | 12.23 | - | 0.98 | 0.16 | 5.4 | [41] |
Transcarpathian clinoptilolite, Ukraine | 3.01 | 67.29 | 2.76 | 0.66 | 1.26 | 12.32 | 0.25 | 0.99 | 0.26 | 5.5 | [42] |
Clinoptilolite, Australia | 2.09 | 68.26 | 4.11 | 0.64 | 1.37 | 12.99 | - | 0.83 | 0.23 | 5.2 | [43] |
Clinoptilolite, Kazakhstan | 3.2 | 65.5 | 2.83 | 2.04 | 0.87 | 14.27 | 0.53 | 0.8 | 0.2 | 4.6 | [44] |
Clinoptilolite, Russia | 2.95 | 72.3 | 3.08 | 0.23 | 3.73 | 9.68 | 0.23 | 1.47 | 0.44 | 7.5 | [45] |
Clinoptilolite, Spain | 3.95 | 68.15 | 2.80 | 0.75 | 1.30 | 12.30 | - | 0.90 | - | 5.5 | [46] |
Clinoptilolite, Romania | 3.77 | 65.80 | 1.44 | 1.35 | 2.07 | 12.30 | - | 0.63 | - | 5.3 | [47] |
Clinoptilolite, Greece | 0.76 | 68.25 | 1.66 | 4.12 | 1.41 | 13.19 | - | 1.14 | 0.17 | 5.2 | [39] |
Natural Zeolite, Egypt | 0.55 | 49.0 | 0.58 | 0.29 | 3.48 | 32.6 | - | 0.23 | 1.32 | 1.5 | [48] |
Heavy Metal, mg/L | Harmful to Health | Maximum Permissible Concentration (MPC) | Quantity in Wastewater, mg/L |
---|---|---|---|
Lead (Pb) | Accumulation in bones and tissues, damage to the nervous system, kidneys, cardiovascular system, anemia | 0.03 | 0.1–2.0 |
Cadmium (Cd) | Damage to kidneys, bones, lungs, carcinogenic effect | 0.005 | 0.01–0.1 |
Copper (Cu) | Gastrointestinal irritation, liver and kidney damage, anemia | 1.0 | 0.1–1.5 |
Zinc (Zn) | Toxicity at high concentrations causes nausea, vomiting, diarrhea, organ damage | 5.0 | 0.5–10.0 |
Chrome (Cr) | Skin damage, irritation of mucous membranes, carcinogenic effect (especially Cr VI) | 0.05 (Cr VI), 2.0 (Cr III) | 0.1–1.0 (Cr VI), 1.0–5.0 (Cr III) |
Nickel (Ni) | Allergic reactions, lung damage, carcinogenic effect | 0.1 | 0.1–2.0 |
Mercury (Hg) | Toxic effects on the central nervous system, kidneys, liver, immune system, teratogenic effect | 0.001 | 0.001–0.1 |
Arsenic (As) | Carcinogenic effect, damage to skin, respiratory system, cardiovascular system | 0.01 | 0.01–0.1 |
Year | Adsorbent | Heavy Metal | Concentration of M(II) | Dose (g/L) | Adsorption Capacity | Equilibrium Temperature | Isotherm Model | Ref. |
---|---|---|---|---|---|---|---|---|
2019 | NZ (Russia) | Cu2+, Ni2+, Co2+ and Fe2+ | 0.5–3.5 mg-eq/L | S:L = 1:5 | 0.023; 0.020; 0.011 and 0.021 mg-eq/L | T = 20 ± 2 °C | Langmuir and Freundlich | [114] |
2020 | NZ (Iran) | Pb2+ | 25–250 mg/L | 20–50 g/L | 99.96–99.4% | T = 25 °C, pH = 4.5 | Langmuir and Freundlich | [135] |
2020 | NZ and modified clinoptilolite | Ni2+ and Co2+ | 423.57–721.29 mg/L | 4.1–9.8 g | 92.80 and 33.67% | T = 40.2–53.1 °C, pH = 5.1–6.9 | RSM-CCD and ANN | [136] |
2020 | NZ | Cu2+, Pb2+ and Cd2+ | 100–400 mg/L | 400 mg/L | 94, 99, 70% | T = 25 °C, pH = 5–7 | - | [20] |
2021 | NZ (Greece) | Zn2+ and Cd2+ | 10–200 mg/L | 10–60 g/L | 35 and 50% | T = 25 °C, pH = 4.5 | - | [137] |
2022 | NZ (Indonesia) | Pb2+ | 50–400 mg/L | 0.5–5.0 g/L | 60.75% | T = 27 °C, pH = 2–10 | Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich | [130] |
2022 | NZ (Algerian) | Ni2+ | 10 mg/L | 0.32 g/L | 95.13% | T = 25 °C, pH = 5.27 | Avrami kinetic model and Redlich-Peterson isotherm | [120] |
2023 | NZ Shankanay (Kazakhstan) | Cu2+, Cd2+, Pb2+ and Ni2+ | Cu = 10.52 mcg/mL, Cd = 10.35 mcg/mL) and Pb = 11.02 mcg/mL | 1 g/L | Cu-Cd 99%, Pb—100% and Ni—85% | T = 25 °C, pH = 6 | - | [138] |
2023 | NZ Clinoptilolite (Georgia) | As3+ | 10 mg/L | 20–25 mg/L | 99.6% | T = 25 °C, pH = 4–9 | Langmuir and Henry | [139] |
2024 | BZ and NaBZ (Bolivia) | Cd2+ | 10–500 mg/L | 1 g/L | 78.6 and 96.9% | T = 25 °C, pH = 6 | Langmuir and Freundlich | [107] |
2024 | NZ Apophyllite and Thomsonite (India) | Zn2+ | 50–250 mg/L | 25–700 mg/L | 81.6 and 86.2% | T = 25 °C, pH = 2–6 | Freundlich, Langmuir, Redlich-Peterson, Dubinin-Radushkevich and Temkin isotherms | [113] |
2021 | NZ (Jordan) | Ni2+ | 20 mg/L | 1000 mg/L | 153.846 mg/g | T = 30 °C, pH = 4 | Langmuir and Freundlich. | [121] |
2020 | NZ (Kazakhstan) | Pb2+ | 0.5–5.0 g/L | 5–500 mg/L | 14 mg/g | T = 25 °C, pH = 6 | Langmuir and Freundlich | [140] |
2021 | ZH-TSC (Russia) | Cu2+, Co2+ and Ni2+ | 100 mg/L | 5–90 mg/L | 29.5, 24.9 and 16.6 mg/g | T = 25 °C, pH = 5 | - | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mambetova, M.; Dossumov, K.; Baikhamurova, M.; Yergaziyeva, G. Sorbents Based on Natural Zeolites for Carbon Dioxide Capture and Removal of Heavy Metals from Wastewater: Current Progress and Future Opportunities. Processes 2024, 12, 2071. https://doi.org/10.3390/pr12102071
Mambetova M, Dossumov K, Baikhamurova M, Yergaziyeva G. Sorbents Based on Natural Zeolites for Carbon Dioxide Capture and Removal of Heavy Metals from Wastewater: Current Progress and Future Opportunities. Processes. 2024; 12(10):2071. https://doi.org/10.3390/pr12102071
Chicago/Turabian StyleMambetova, Manshuk, Kusman Dossumov, Moldir Baikhamurova, and Gaukhar Yergaziyeva. 2024. "Sorbents Based on Natural Zeolites for Carbon Dioxide Capture and Removal of Heavy Metals from Wastewater: Current Progress and Future Opportunities" Processes 12, no. 10: 2071. https://doi.org/10.3390/pr12102071
APA StyleMambetova, M., Dossumov, K., Baikhamurova, M., & Yergaziyeva, G. (2024). Sorbents Based on Natural Zeolites for Carbon Dioxide Capture and Removal of Heavy Metals from Wastewater: Current Progress and Future Opportunities. Processes, 12(10), 2071. https://doi.org/10.3390/pr12102071