Advanced Processes in Water Treatment: Synergistic Effects of Hydrodynamic Cavitation and Cold Plasma on Rhodamine B Dye Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. RhB Quantitative Analysis
2.3. Lab-Scale O3-Assisted RhB Degradation
2.4. Lab-Scale US-Assisted RhB Degradation
2.5. Rotor-Stator HC-Assisted RhB Degradation at Pilot Scale
2.6. Hybrid HC/ED Plasma-Assisted Degradation of RhB
3. Results
3.1. Lab-Scale O3-Assisted RhB Degradation
3.2. Lab-Scale US-Assisted RhB Degradation
3.3. Rotor-Stator HC-Assisted RhB Degradation at Pilot Scale
- Gap between the stator and the rotor;
- Diameter and geometry of both the rotor and stator;
- Presence of dimples, indentations, or vanes on rotor;
- Rotational speed;
- Power of electric motor.
3.4. Pilot-Scale HC/ED-Assisted RhB Degradation
3.5. RhB Degradation: PROS and CONS of Screened AOPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Degradation Rate (%) | |||
---|---|---|---|
Treatment Time (min) | US Alone | US/H2O2 1:100 (RhB: H2O2) | US/H2O2 1:200 (RhB: H2O2) |
5 | 7 | 6 | 4 |
10 | 12 | 11 | 11 |
20 | 27 | 27 | 28 |
30 | 45 | 44 | 52 |
45 | 60 | 67 | 75 |
60 | 72 | 82 | 90 |
Degradation Rate (%) | ||
---|---|---|
Treatment Time (min) | HC Alone | HC/H2O2 1:200 (RhB: H2O2) |
5 | 1 | 2 |
10 | 2 | 5 |
20 | 5 | 11 |
30 | 8 | 17 |
45 | 11 | 25 |
60 | 13 | 33 |
Degradation Rate (%) | |||
---|---|---|---|
Treatment Time (min) | 10 bar | 15 bar | 20 bar |
1 | 40 | 53 | 64 |
2 | 56 | 76 | 84 |
5 | 79 | 93 | 97 |
10 | 94 | 98 | 98 |
References
- Available online: https://www.europarl.europa.eu/topics/en/article/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographics#:~:text=Textile%20production%20is%20estimated%20to,up%20in%20the%20food%20chain (accessed on 1 July 2024).
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Mohod, A.V.; Momotko, M.; Shah, N.S.; Marchel, M.; Imran, M.; Kong, L.; Boczkaj, G. Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs)–Focus on cavitation and photocatalysis-A critical review. Water Resour. Ind. 2023, 30, 100220. [Google Scholar] [CrossRef]
- Al-Tameemi, M.N.A. Detection of gain enhancement in laser-induced fluorescence of rhodamine B lasing dye by silicon dioxide nanostructures-coated cavity. Photonic Sens. 2018, 8, 80–87. [Google Scholar] [CrossRef]
- Deng, F.; Xu, Z. Heteroatom-substituted rhodamine dyes: Structure and spectroscopic properties. Zhongguo Hua Xue Kuai Bao Chin. Chem. Lett. 2019, 30, 1667–1681. [Google Scholar] [CrossRef]
- Kolmakov, K.; Belov, V.N.; Bierwagen, J.; Ringemann, C.; Müller, V.; Eggeling, C.; Hell, S.W. Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chemistry 2010, 16, 158–166. [Google Scholar] [CrossRef]
- Ugwu, M.C.; Oli, A.; Esimone, C.O.; Agu, R.U. Organic cation rhodamines for screening organic cation transporters in early stages of drug development. J. Pharmacol. Toxicol. Methods 2016, 82, 9–19. [Google Scholar] [CrossRef]
- Elbakry, S.; Ali, M.E.A.; Abouelfadl, M.; Badway, N.A.; Salam, K.M.M. Effective removal of organic compounds using a novel cellulose acetate coated by PA/g-CN/Ag nanocomposite membranes. Surf. Interfaces 2022, 29, 101748. [Google Scholar] [CrossRef]
- Li, C.-X.; Wang, R.; Sun, W.; Cui, K.; Fu, X.Z.; Cui, M.; Liu, Y. Efficient degradation of Rhodamine B by visible-light-driven biomimetic Fe(III) complex/peroxymonosulfate system: The key role of FeV=O. J. Environ. Chem. Eng. 2024, 12, 113288. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Microfiltration membrane processes: A review of research trends over the past decade. J. Water Process Eng. 2019, 32, 100941. [Google Scholar] [CrossRef]
- Vedenyapina, M.D.; Kurmysheva, A.Y.; Rakishev, A.K.; Kryazhev, Y.G. Activated carbon as sorbents for treatment of pharmaceutical wastewater. Solid Fuel Chem. 2019, 53, 382–394. [Google Scholar] [CrossRef]
- Shen, K.; Gondal, M.A. Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J. Saudi Chem. Soc. 2017, 21, S120–S127. [Google Scholar] [CrossRef]
- Kidak, R.; Ince, N.H. Ultrasonic destruction of phenol and substituted phenols: A review of current research. Ultrason. Sonochem. 2006, 13, 195–199. [Google Scholar] [CrossRef]
- Vinayagam, V.; Palani, K.N.; Ganesh, S.; Rajesh, S.; Akula, V.V.; Avoodaiappan, R.; Pugazhendhi, A. Recent developments on advanced oxidation processes for degradation of pollutants from wastewater with focus on antibiotics and organic dyes. Environ. Res. 2024, 240, 117500. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wu, Z.; Cannizzo, F.T.; Mantegna, S.; Cravotto, G. Removal of antibiotics from milk via ozonation in a vortex reactor. J. Hazard. Mater. 2022, 440, 129642. [Google Scholar] [CrossRef]
- Verdini, F.; Calcio Gaudino, E.; Canova, E.; Colia, M.C.; Cravotto, G. Highly efficient tetracycline degradation under simultaneous hydrodynamic cavitation and electrical discharge plasma in flow. Ind. Eng. Chem. Res. 2023, 62, 19311–19322. [Google Scholar] [CrossRef]
- Semblante, G.U.; Hai, F.I.; Dionysiou, D.D.; Fukushi, K.; Price, W.E.; Nghiem, L.D. Holistic sludge management through ozonation: A critical review. J. Environ. Manag. 2017, 185, 79–95. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater-A review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Chandrasekara Pillai, K.; Kwon, T.O.; Moon, I.S. Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: Direct versus indirect ozonation reactions. Appl. Catal. B Environ. 2009, 91, 319–328. [Google Scholar] [CrossRef]
- Mecha, A.C.; Onyango, M.S.; Ochieng, A.; Momba, M.N.B. Impact of ozonation in removing organic micro-pollutants in primary and secondary municipal wastewater: Effect of process parameters. Water Sci. Technol. 2016, 74, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Mecha, A.C.; Chollom, M.N. Photocatalytic ozonation of wastewater: A review. Environ. Chem. Lett. 2020, 18, 1491–1507. [Google Scholar] [CrossRef]
- Saxena, S.; Saharan, V.K.; George, S. Enhanced synergistic degradation efficiency using hybrid hydrodynamic cavitation for treatment of tannery waste effluent. J. Clean. Prod. 2018, 198, 1406–1421. [Google Scholar] [CrossRef]
- Chiang, Y.P.; Liang, Y.Y.; Chang, C.N.; Chao, A.C. Differentiating ozone direct and indirect reactions on decomposition of humic substances. Chemosphere 2006, 65, 2395–2400. [Google Scholar] [CrossRef]
- Chu, W.; Ching, M.H. Modeling the ozonation of 2,4-dichlorophoxyacetic acid through a kinetic approach. Water Res. 2003, 37, 39–46. [Google Scholar] [CrossRef]
- Cuiping, B.; Xianfeng, X.; Wenqi, G.; Dexin, F.; Mo, X.; Zhongxue, G.; Nian, X. Removal of rhodamine B by ozone-based advanced oxidation process. Desalination 2011, 278, 84–90. [Google Scholar] [CrossRef]
- Zawadzki, P.; Deska, M. Degradation efficiency and kinetics analysis of an advanced oxidation process utilizing ozone, hydrogen peroxide and persulfate to degrade the dye rhodamine B. Catalysts 2021, 11, 974. [Google Scholar] [CrossRef]
- Zajda, M.; Aleksander-Kwaterczak, U. Wastewater treatment methods for effluents from the confectionery industry–an overview. J. Ecol. Eng. 2019, 20, 293–304. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Cauda, V. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B Environ. 2019, 243, 629–640. [Google Scholar] [CrossRef]
- Paździor, K.; Bilińska, L.; Ledakowicz, S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 2019, 376, 120597. [Google Scholar] [CrossRef]
- Movahed, S.M.A.; Calgaro, L.; Marcomini, A. Trends and characteristics of employing cavitation technology for water and wastewater treatment with a focus on hydrodynamic and ultrasonic cavitation over the past two decades: A Scientometric analysis. Sci. Total Environ. 2023, 858, 159802. [Google Scholar] [CrossRef]
- Manson, T.J. Practical Sonochemistry: User’s Guide in Chemistry and Chemical Engineering; Ellis Horwood Ltd.: Chichester, UK, 1992. [Google Scholar]
- Gogate, P.R. Application of cavitational reactors for water disinfection: Current status and path forward. J. Environ. Manag. 2007, 85, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Kentish, S.; Ashokkumar, M. The physical and chemical effects of ultrasound. In Ultrasound Technologies for Food and Bioprocessing; Food Engineering Series; Feng, H., Barbosa-Canovas, G., Weiss, J., Eds.; Springer: New York, NY, USA, 2011; pp. 1–12. [Google Scholar] [CrossRef]
- Mason, T.J.; Cobley, A.J.; Graves, J.E.; Morgan, D. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason. Sonochem. 2011, 18, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.J.; Lorimer, J.P.; Bates, D.M.; Zhao, Y. Dosimetry in sonochemistry: The use of aqueous terephthalate ion as a fluorescence monitor. Ultrason. Sonochem. 1994, 1, 91–95. [Google Scholar] [CrossRef]
- Lim, M.; Son, Y.; Khim, J. The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A. Ultrason. Sonochem. 2014, 21, 1976–1981. [Google Scholar] [CrossRef] [PubMed]
- Calcio Gaudino, E.; Grillo, G.; Tabasso, S.; Stevanato, L.; Cravotto, G.; Marjamaa, K.; Schories, G. Optimization of ultrasound pretreatment and enzymatic hydrolysis of wheat straw: From lab to semi-industrial scale. J. Clean. Prod. 2022, 380, 134897. [Google Scholar] [CrossRef]
- Xu, D.; Ma, H. Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis. J. Clean. Prod. 2021, 313, 127758. [Google Scholar] [CrossRef]
- Ye, Y.F.; Zhu, Y.; Lu, N.; Wang, X.; Su, Z. Treatment of rhodamine B with cavitation technology: Comparison of hydrodynamic cavitation with ultrasonic cavitation. RSC Adv. 2021, 11, 5096–5106. [Google Scholar] [CrossRef] [PubMed]
- Mehrdad, A.; Hashemzadeh, R. Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide. Ultrason. Sonochem. 2010, 17, 168–172. [Google Scholar] [CrossRef]
- Badve, M.; Gogate, P.; Pandit, A.; Csoka, L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep. Purif. Technol. 2013, 106, 15–21. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, Y.; Zhu, J. Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications. Engineering 2022, 19, 180–198. [Google Scholar] [CrossRef]
- Ferrari, A. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2017, 473, 20160345. [Google Scholar] [CrossRef]
- Sun, X.; Chen, S.; Liu, J.; Zhao, S.; Yoon, J.Y. Hydrodynamic cavitation: A promising technology for industrial-scale synthesis of nanomaterials. Front. Chem. 2020, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Darandale, G.R.; Jadhav, M.V.; Warade, A.R.; Hakke, V.S. Hydrodynamic cavitation a novel approach in wastewater treatment: A review. Mater. Today Proc. 2023, 77, 960–968. [Google Scholar] [CrossRef]
- Wang, B.; Su, H.; Zhang, B. Hydrodynamic cavitation as a promising route for wastewater treatment-A review. Chem. Eng. J. 2021, 412, 128685. [Google Scholar] [CrossRef]
- Khajeh, M.; Taheri, E.; Amin, M.M.; Fatehizadeh, A.; Bedia, J. Combination of hydrodynamic cavitation with oxidants for efficient treatment of synthetic and real textile wastewater. J. Water Process Eng. 2022, 49, 103143. [Google Scholar] [CrossRef]
- Available online: https://www.fbcitalia.it/blog/costo-energia-elettrica-al-kwh-per-aziende-quanto-e-importante (accessed on 1 July 2024).
- Available online: https://www.epic-srl.com/it/sistemi-cavitazionali/pretrattamento-biomasse (accessed on 1 July 2024).
- Crudo, D.; Bosco, V.; Cavaglià, G.; Grillo, G.; Mantegna, S.; Cravotto, G. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation. Ultrason. Sonochem. 2016, 33, 220–225. [Google Scholar] [CrossRef]
- Mishra, K.P.; Gogate, P.R. Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives. Sep. Purif. Technol. 2010, 75, 385–391. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Guo, P.; Guo, W.; Wang, C. Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2. J. Hazard. Mater. 2009, 169, 486–491. [Google Scholar] [CrossRef]
- Aggelopoulos, C.A. Recent advances of cold plasma technology for water and soil remediation: A critical review. Chem. Eng. J. 2022, 428, 131657. [Google Scholar] [CrossRef]
- Sanito, R.C.; You, S.J.; Wang, Y.F. Degradation of contaminants in plasma technology: An overview. J. Hazard. Mater. 2022, 424, 127390. [Google Scholar] [CrossRef]
- Murugesan, P.; Monica, E.; Moses, J.A.; Anandharamakrishnan, C. Water decontamination using non-thermal plasma: Concepts, applications, and prospects. Environ. Chem. Eng. 2020, 8, 104377. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Kyere-Yeboah, K.; Bique, I.K.; Qiao, X.C. Advances of non-thermal plasma discharge technology in degrading recalcitrant wastewater pollutants. A comprehensive review. Chemosphere 2023, 320, 138061. [Google Scholar] [CrossRef] [PubMed]
- Abramov, V.O.; Abramova, A.V.; Cravotto, G.; Nikonov, R.V.; Fedulov, I.S.; Ivanov, V.K. Flow-mode water treatment under simultaneous hydrodynamic cavitation and plasma. Ultrason. Sonochem. 2021, 70, 105323. [Google Scholar] [CrossRef]
- Pereira, T.C.; Flores, E.M.M.; Abramova, A.V.; Verdini, F.; Calcio Gaudino, E.; Bucciol, F.; Cravotto, G. Simultaneous hydrodynamic cavitation and glow plasma discharge for the degradation of metronidazole in drinking water. Ultrason. Sonochem. 2023, 95, 106388. [Google Scholar] [CrossRef] [PubMed]
- Verdini, F.; Abramova, A.; Boffa, L.; Calcio Gaudino, E.; Cravotto, G. The unveiling of a dynamic duo: Hydrodynamic cavitation and cold plasma for the degradation of furosemide in wastewater. Sci. Rep. 2024, 14, 6805. [Google Scholar] [CrossRef]
- Verdini, F.; Canova, E.; Solarino, R.; Calcio Gaudino, E.; Cravotto, G. Integrated physicochemical processes to tackle high-COD wastewater from pharmaceutical industry. Environ. Pollut. 2024, 342, 123041. [Google Scholar] [CrossRef]
- Nie, S.; Qin, T.; Ji, H.; Nie, S.; Dai, Z. Synergistic effect of hydrodynamic cavitation and plasma oxidation for the degradation of Rhodamine B dye wastewater. J. Water Proc. Eng. 2022, 49, 103022. [Google Scholar] [CrossRef]
- Komarov, S.; Yamamoto, T.; Fang, Y.; Hariu, D. Combined effect of acoustic cavitation and pulsed discharge plasma on wastewater treatment efficiency in a circulating reactor: A case study of Rhodamine B. Ultrason. Sonochem. 2020, 68, 105236. [Google Scholar] [CrossRef]
- Xu, Y.; Komarov, S.; Yamamoto, T.; Kutsuzawa, T. Enhancement and mechanism of rhodamine B decomposition in cavitation-assisted plasma treatment combined with Fenton reactions. Catalysts 2022, 12, 1491. [Google Scholar] [CrossRef]
Inlet Pressure (bar) | Flow Rate (L/h) | τR (min) 1 | tR (min) 2 | n° of Passes 2 |
---|---|---|---|---|
10 | 250 | 0.0024 | 0.02 | 12.50 |
15 | 300 | 0.0020 | 0.02 | 15.00 |
20 | 330 | 0.0018 | 0.02 | 16.50 |
AOP Technology | RhB:H2O2 | Volume Treated (L) | k (min−1) | Degradation Rate (%) |
---|---|---|---|---|
O3 | - | 0.2 | 1.0161 | >99 |
O3 | - | 0.5 | 0.6447 | 92 |
US alone | - | 0.2 | 0.0216 | 72 |
US/H2O2 | 1:100 | 0.2 | 0.0283 | 82 |
US/H2O2 | 1:200 | 0.2 | 0.0364 | 90 |
Technology | Inlet Pressure (bar) | Flow Rate (L/h) | τR (min) | Degradation Rate in Flow-Through (%) |
---|---|---|---|---|
Hybrid HC/ED | 10 | 250 | 0.0024 | 39 |
Hybrid HC/ED | 15 | 300 | 0.0020 | 52 |
Hybrid HC/ED | 20 | 330 | 0.0018 | 58 |
HC alone | 20 | 330 | 0.0018 | 28 |
Inlet Pressure (bar) | k (min−1) | R2 |
---|---|---|
10 | 0.2983 | 0.9712 |
15 | 0.5256 | 0.9807 |
20 | 0.6598 | 0.9730 |
Inlet Pressure (bar) | Energy Consumption (kWh) | Normalized Energy Consumption (kWh/m3) | Treatment Cost (€/m3) | Energy Efficiency (mg/kWh) 1 |
---|---|---|---|---|
10 | 2.0 | 7.14 | 0.44 | 13.82 |
15 | 2.2 | 7.33 | 0.45 | 13.11 |
20 | 2.9 | 8.79 | 0.55 | 9.94 |
Technology | Pros | Cons |
---|---|---|
Lab-scale O3 | - Fast degradation kinetics - Organic pollutant mineralization - No sludge production - Some plants already scaled-up at industrial level - High mass transfer - Possible simultaneous sterilization | - Batch treatments - High capital and operating maintenance costs at industrial level - Low plant and worker safety - Low O3 solubility in water - Energy cost - Possible formation of hazardous by-products - In site O3 production required |
Lab-scale US | - Lower energy consumption than rotor-stator HC and hybrid HC/ED plasma - Simple system design - Safe for workers - Easy operations | - Low mass transfer (due to the high US frequencies required) - Batch treatments - Low degradation kinetics - Low scalability at industrial level for wastewater treatment - External chemicals required for mineralization of organic pollutants (combined/hybrid process) |
Rotor-stator HC | - Pilot scale - Moderately low treatment cost - Easily scalable at industrial level - Simple system design - Flow or loop treatments - Safe for workers - Easy operations | - Low energy efficiency - Low degradation kinetics - Detailed studies are still required to develop high-efficient rotor-stator devices for wastewater treatment - External chemicals are required to enhance HC treatments |
Hybrid HC/ED plasma | - Pilot scale - Fast degradation kinetics - High energy efficiency - High efficiency already in flow-through - No sludge production - No external chemicals required - In-situ formation of different oxidizing chemicals [16] - pH independence [16] - Possible ED-induced pyrolysis of pollutants - Simple design - Easy operation - Higher efficiency than existing cold-plasma only technologies | - Moderate-high treatment cost - Detailed investigations about degradation mechanism and by-product formation are still required - Possible prior removal of suspended solids required (due to the orifice plate restrictions) - Maintenance of electrodes and hydraulic section (due to working under pressure rather than suction) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdini, F.; Crudo, D.; Bosco, V.; Kamler, A.V.; Cravotto, G.; Calcio Gaudino, E. Advanced Processes in Water Treatment: Synergistic Effects of Hydrodynamic Cavitation and Cold Plasma on Rhodamine B Dye Degradation. Processes 2024, 12, 2128. https://doi.org/10.3390/pr12102128
Verdini F, Crudo D, Bosco V, Kamler AV, Cravotto G, Calcio Gaudino E. Advanced Processes in Water Treatment: Synergistic Effects of Hydrodynamic Cavitation and Cold Plasma on Rhodamine B Dye Degradation. Processes. 2024; 12(10):2128. https://doi.org/10.3390/pr12102128
Chicago/Turabian StyleVerdini, Federico, Daniele Crudo, Valentina Bosco, Anna V. Kamler, Giancarlo Cravotto, and Emanuela Calcio Gaudino. 2024. "Advanced Processes in Water Treatment: Synergistic Effects of Hydrodynamic Cavitation and Cold Plasma on Rhodamine B Dye Degradation" Processes 12, no. 10: 2128. https://doi.org/10.3390/pr12102128
APA StyleVerdini, F., Crudo, D., Bosco, V., Kamler, A. V., Cravotto, G., & Calcio Gaudino, E. (2024). Advanced Processes in Water Treatment: Synergistic Effects of Hydrodynamic Cavitation and Cold Plasma on Rhodamine B Dye Degradation. Processes, 12(10), 2128. https://doi.org/10.3390/pr12102128