Safety of Hydrogen Storage Technologies
Abstract
:1. Introduction
2. Hydrogen Storage Methods
2.1. High-Pressure Storage
2.2. Liquid Hydrogen Storage
2.3. Methanol Storage
2.4. Salt Cavern Storage
3. Recent Solutions to Safety Problems
3.1. Safety Problems and Potential Solutions in High-Pressure Storage
3.2. Safety Problems and Potential Solutions in Liquid Hydrogen Storage
3.3. Safety Problems and Potential Solutions in Methanol Storage
3.4. Safety Problems and Potential Solutions in Salt Cavern Storage
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- King, M.; Jain, A.; Bhakar, R.; Mathur, J.; Wang, J.H. Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK. Renew. Sustain. Energy Rev. 2021, 139, 110705. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Kang, C.Q. Challenges and Prospects for Constructing the New-type Power System Towards a Carbon Neutrality Future. Proc. CSEE 2022, 42, 2806–2819. [Google Scholar]
- Yan, H.G.; Zhang, W.; Kang, J.D.; Yuan, T.J. The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China. Energies 2023, 16, 4837. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- El Haj Assad, M.; Khosravi, A.; Malekan, M.; Rosen, M.A.; Nazari, M.A. Energy storage. In Design and Performance Optimization of Renewable Energy Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 205–219. [Google Scholar]
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Hassan, I.A.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Liu, X.X.; Xu, P.; Liu, P.F.; Zhao, Y.Z.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Burheim, O.S. Hydrogen for Energy Storage. In Engineering Energy Storage; Academic Press: Cambridge, MA, USA, 2017; pp. 147–192. [Google Scholar]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen storage for mobility: A review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef]
- Langmi, H.W.; Engelbrecht, N.; Modisha, P.M.; Bessarabov, D. Hydrogen storage. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 455–486. [Google Scholar]
- Wang, X.Y.; Li, B.; Jin, X.; Han, B.; Shu, C.-M. Ultimate pressure-bearing capacity of Type III onboard high-pressure hydrogen storage tanks under typical accident scenarios. J. Energy Storage 2023, 63, 107135. [Google Scholar] [CrossRef]
- Dadashzadeh, M.; Kashkarov, S.; Makarov, D.; Molkov, V. Risk assessment methodology for onboard hydrogen storage. Int. J. Hydrogen Energy 2018, 43, 6462–6475. [Google Scholar] [CrossRef]
- Valenti, G. Hydrogen liquefaction and liquid hydrogen storage. In Compendium of Hydrogen Energy; Volume 2: Hydrogen Storage, Transportation and Infrastructure; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2016; pp. 27–51. [Google Scholar]
- Züttel, A. Hydrogen storage methods. Naturwissenschaften 2004, 91, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Zohuri, B. Cryogenics and Liquid Hydrogen Storage. In Hydrogen Energy; Springer: Cham, Switzerland, 2019; pp. 121–139. [Google Scholar]
- Correa-Jullian, C.; Groth, K.M. Data requirements for improving the Quantitative Risk Assessment of liquid hydrogen storage systems. Int. J. Hydrogen Energy 2022, 47, 4222–4235. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Özcan, Ö.; Akin, A.N. Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: An optimization study. Int. J. Hydrogen Energy 2019, 44, 14117–14126. [Google Scholar] [CrossRef]
- Behrens, M.; Armbrüster, M. Methanol steam reforming. In Catalysis for Alternative Energy Generation; Springer: New York, NY, USA, 2012; pp. 175–235. [Google Scholar]
- Dowson, G.; Styring, P. Conversion of carbon dioxide to oxygenated organics. In Carbon Dioxide Utilization; Elsevier: Amsterdam, The Netherlands, 2015; pp. 141–159. [Google Scholar]
- Bielinski, E.A.; Förster, M.; Zhang, Y.Y.; Bernskoetter, W.H.; Hazari, N.; Holthausen, M.C. Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst. ACS Catal. 2015, 5, 2404–2415. [Google Scholar] [CrossRef]
- Andérez-Fernández, M.; Vogt, L.K.; Fischer, S.; Zhou, W.; Jiao, H.J.; Garbe, M.; Elangovan, S.; Junge, K.; Junge, H.; Ludwig, R.; et al. A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Angew. Chem. Int. Ed. 2017, 56, 559–562. [Google Scholar] [CrossRef]
- Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.; Gladiali, S.; Beller, M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 2013, 495, 85–89. [Google Scholar] [CrossRef]
- Van de Watering, F.F.; Lutz, M.; Dzik, W.I.; de Bruin, B.; Reek, J.N.H. Reactivity of a Ruthenium–Carbonyl Complex in the Methanol Dehydrogenation Reaction. ChemCatChem 2016, 8, 2752–2756. [Google Scholar] [CrossRef]
- Fujita, K.-i.; Kawahara, R.; Aikawa, T.; Yamaguchi, R. Hydrogen Production from a Methanol–Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions. Angew. Chem. Int. Ed. 2015, 54, 9057–9060. [Google Scholar] [CrossRef]
- Campos, J.; Sharninghausen, L.S.; Manas, M.G.; Crabtree, R.H. Methanol Dehydrogenation by Iridium N-Heterocyclic Carbene Complexes. Inorg. Chem. 2015, 54, 5079–5084. [Google Scholar] [CrossRef]
- Onishi, N.; Laurenczy, G.; Beller, M.; Himeda, Y. Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coord. Chem. Rev. 2018, 373, 317–332. [Google Scholar] [CrossRef]
- Behrens, M. Chemical hydrogen storage by methanol: Challenges for the catalytic methanol synthesis from CO2. Recyl. Catal. 2015, 2, 78–86. [Google Scholar] [CrossRef]
- Sonthalia, A.; Kumar, N.; Tomar, M.; Geo, V.E.; Thiyagarajan, S.; Pugazhendhi, A. Moving ahead from hydrogen to methanol economy: Scope and challenges. Clean Technol. Environ. Policy 2023, 25, 551–575. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zou, X.; Gao, W. Flammable gas leakage risk assessment for methanol to hydrogen refueling stations and liquid hydrogen refueling stations. Int. J. Hydrogen Energy 2024, 54, 1286–1294. [Google Scholar] [CrossRef]
- Portarapillo, M.; di Benedetto, A.; Russo, D.; Turco, M. Preliminary Risk Evaluation of Methanol/water Storage in Fuel Cell Integrated Systems for Onboard Applications. Chem. Eng. Trans. 2023, 99, 133–138. [Google Scholar]
- Ozarslan, A. Large-scale hydrogen energy storage in salt caverns. Int. J. Hydrogen Energy 2012, 37, 14265–14277. [Google Scholar] [CrossRef]
- Lankof, L.; Urbanczyk, K.; Tarkowski, R. Assessment of the potential for underground hydrogen storage in salt domes. Renew. Sustain. Energy Rev. 2022, 160, 112309. [Google Scholar] [CrossRef]
- Malachowska, A.; Lukasik, N.; Mioduska, J.; Gebicki, J. Hydrogen Storage in Geological Formations—The Potential of Salt Caverns. Energies 2022, 15, 5038. [Google Scholar] [CrossRef]
- Matos, C.R.; Carneiro, J.F.; Silva, P.P. Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification. J. Energy Storage 2019, 21, 241–258. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B.; Tarkowski, P. Storage of hydrogen, natural gas, and carbon dioxide—Geological and legal conditions. Int. J. Hydrogen Energy 2021, 46, 20010–20022. [Google Scholar] [CrossRef]
- Peng, T.J.; Wan, J.F.; Liu, W.; Li, J.C.; Xia, Y.; Yuan, G.J.; Jurado, M.J.; Fu, P.; He, Y.X.; Liu, H.M. Choice of hydrogen energy storage in salt caverns and horizontal cavern construction technology. J. Energy Storage 2023, 60, 106489. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Tarkowski, R.; Czapowski, G. Salt domes in Poland—Potential sites for hydrogen storage in caverns. Int. J. Hydrogen Energy 2018, 43, 21414–21427. [Google Scholar] [CrossRef]
- Aftab, A.; Hassanpouryouzband, A.; Xie, Q.; Machuca, L.L.; Sarmadivaleh, M. Toward a Fundamental Understanding of Geological Hydrogen Storage. Ind. Eng. Chem. Res. 2022, 61, 3233–3253. [Google Scholar] [CrossRef]
- Zhu, S.J.; Shi, X.L.; Yang, C.H.; Li, Y.P.; Li, H.; Yang, K.; Wei, X.X.; Bai, W.Z.; Liu, X. Hydrogen loss of salt cavern hydrogen storage. Renew. Energy 2023, 218, 119267. [Google Scholar] [CrossRef]
- Portarapillo, M.; di Benedetto, A. Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns. Energies 2021, 14, 2856. [Google Scholar] [CrossRef]
- Sambo, C.; Dudun, A.; Samuel, S.A.; Esenenjor, P.; Muhammed, N.S.; Haq, B. A review on worldwide underground hydrogen storage operating and potential fields. Int. J. Hydrogen Energy 2022, 47, 22840–22880. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hydrogen: Seizing Today’s Opportunities. Available online: https://doi.org/10.1787/1e0514c4-en (accessed on 17 September 2024).
- Perez, A.; Pérez, E.; Dupraz, S.; Bolcich, J. Patagonia Wind—Hydrogen Project: Underground Storage and Methanation. In Proceedings of the 21st World Hydrogen Energy Conference 2016, Zaragoza, Spain, 13–16 June 2016. [Google Scholar]
- Pudlo, D.; Ganzer, L.; Henkel, S.; Kühn, M.; Liebscher, A.; de Lucia, M.; Panfilov, M.; Pilz, P.; Reitenbach, V.; Albrecht, D.; et al. The H2STORE Project: Hydrogen Underground Storage—A Feasible Way in Storing Electrical Power in Geological Media? In Clean Energy Systems in the Subsurface: Production, Storage and Conversion; Hou, M., Xie, H., Were, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 395–412. [Google Scholar]
- Simon, J.; Ferriz, A.M.; Correas, L.C. HyUnder—Hydrogen Underground Storage at Large Scale: Case Study Spain. Energy Procedia 2015, 73, 136–144. [Google Scholar] [CrossRef]
- Kabuth, A.; Dahmke, A.; Beyer, C.; Bilke, L.; Dethlefsen, F.; Dietrich, P.; Duttmann, R.; Ebert, M.; Feeser, V.; Görke, U.-J.; et al. Energy storage in the geological subsurface: Dimensioning, risk analysis and spatial planning: The ANGUS+ project. Environ. Earth Sci. 2017, 76, 23. [Google Scholar] [CrossRef]
- Lord, A.S.; Kobos, P.H.; Borns, D.J. Geologic storage of hydrogen: Scaling up to meet city transportation demands. Int. J. Hydrogen Energy 2014, 39, 15570–15582. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B. Use of underground space for the storage of selected gases (CH4, H2, and CO2)—Possible conflicts of interest. Gospod. Surowcami Miner. Resour. Manag. 2021, 37, 141–160. [Google Scholar]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.T.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C.; et al. Enabling large-scale hydrogen storage in porous media—The scientific challenges. Energy Environ. Sci. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Kanaani, M.; Sedaee, B.; Asadian-Pakfar, M. Role of cushion gas on underground hydrogen storage in depleted oil reservoirs. J. Energy Storage 2022, 45, 103783. [Google Scholar] [CrossRef]
- Raza, A.; Arif, M.; Glatz, G.; Mahmoud, M.; Al Kobaisi, M.; Alafnan, S.; Iglauer, S. A holistic overview of underground hydrogen storage: Influencing factors, current understanding, and outlook. Fuel 2022, 330, 125636. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Tashie-Lewis, B.C.; Nnabuife, S.G. Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy—A Technology Review. Chem. Eng. J. Adv. 2021, 8, 10172. [Google Scholar] [CrossRef]
- Moretto, P.; Quong, S. Legal requirements, technical regulations, codes, and standards for hydrogen safety. In Hydrogen Safety for Energy Applications; Butterworth Heinemann: Oxford, UK, 2022; pp. 345–396. [Google Scholar]
- Crist, S.; Sherman, P.M.; Glass, D.R. Study of the highly underexpanded sonic jet. AIAA J. 2012, 4, 68–71. [Google Scholar] [CrossRef]
- Schefer, R.W.; Houf, W.G.; Williams, T.C. Investigation of small-scale unintended releases of hydrogen: Momentum dominated regime. Int. J. Hydrogen Energy 2008, 33, 6373–6384. [Google Scholar] [CrossRef]
- Veser, A.; Kuznetsov, M.; Fast, G.; Friedrich, A.; Kotchourko, N.; Stern, G.; Schwall, M.; Breitung, W. The structure and flame propagation regimes in turbulent hydrogen jets. Int. J. Hydrogen Energy 2011, 36, 2351–2359. [Google Scholar] [CrossRef]
- Ruggles, A.J.; Ekoto, I.W. Ignitability and mixing of underexpanded hydrogen jets. Int. J. Hydrogen Energy 2012, 37, 17549–17560. [Google Scholar] [CrossRef]
- Han, S.H.; Chang, D.; Kim, J.S. Experimental investigation of highly pressurized hydrogen release through a small hole. Int. J. Hydrogen Energy 2014, 39, 9552–9561. [Google Scholar] [CrossRef]
- Schefer, R.W.; Houff, W.G.; Williams, T.C.; Bourne, B.; Colton, J. Characterization of high-pressure, underexpanded hydrogen-jet flames. Int. J. Hydrogen Energy 2007, 32, 2081–2093. [Google Scholar] [CrossRef]
- Khaksarfard, R.; Kameshki, M.R.; Paraschivoiu, M. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model. Shock Waves 2010, 20, 205–216. [Google Scholar] [CrossRef]
- Xiao, J.; Travis, J.R.; Breitung, W. Hydrogen release from a high pressure gaseous hydrogen reservoir in case of a small leak. Int. J. Hydrogen Energy 2011, 36, 2545–2554. [Google Scholar] [CrossRef]
- Bonelli, F.; Viggiano, A.; Magi, V.A. Numerical analysis of hydrogen underexpanded jets under real gas assumption. J. Fluid Eng. 2013, 135, 121101. [Google Scholar] [CrossRef]
- Zhang, J.B.; Zhang, X.; Huang, W.W.; Dong, H.; Wang, T. Isentropic analysis and numerical investigation on high-pressure hydrogen jets with real gas effects. Int. J. Hydrogen Energy 2020, 45, 20256–20265. [Google Scholar] [CrossRef]
- Li, H.; Yan, J. Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes. Appl. Energy 2009, 86, 2760–2770. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook, SRD 69, Thermophysical Properties of Fluid Systems. Available online: https://webbook.nist.gov/chemistry/fluid/ (accessed on 24 August 2024).
- UK Health and Safety Executive. Failure Rate and Event Data for Use within Risk Assessments. 2012. Available online: https://www.primatech.com/images/docs/failure-rates.pdf (accessed on 29 August 2024).
- Groth, K.; Hecht, E.; Reynolds, J.T.; Blaylock, M.L.; Carrier, E.E. Methodology for Assessing the Safety of Hydrogen Systems: HyRAM 1.1 Technical Reference Manual; SAND2017-2998; Sandia National Laboratories: Albuquerque, NM, USA, 2017. Available online: https://www.osti.gov/biblio/1365456 (accessed on 24 August 2024).
- Hansen, O.R. Hydrogen infrastructure—Efficient risk assessment and design optimization approach to ensure safe and practical solutions. Process Saf. Environ. Prot. 2020, 143, 164–176. [Google Scholar] [CrossRef]
- Hansen, O.R. Hydrogen Safety: Kjørbo Incident, Overview and Perspectives. Presentation at MoZEES Workshop. 23 October 2019. Available online: https://mozees.no/wp-content/uploads/2019/10/Hansen_Hydrogen-safety_Kjoerbo-incident-overview-and-perspectives.pdf (accessed on 24 August 2024).
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Muthukumar, P.; Kumar, A.; Afzal, M.; Bhogilla, S.; Sharma, P.; Parida, A.; Jana, S.; Kumar, E.A.; Pai, R.K.; Jain, I.P. Review on large-scale hydrogen storage systems for better sustainability. Int. J. Hydrogen Energy 2023, 48, 33223–33259. [Google Scholar] [CrossRef]
- Li, X.F.; Ma, X.F.; Zhang, J.; Akiyama, E.; Wang, Y.F.; Song, X.L. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention. Acta Metall. Sin. 2020, 33, 759–773. [Google Scholar] [CrossRef]
- Li, X.F.; Zhang, J.; Fu, Q.Q.; Song, X.L.; Shen, S.C.; Li, Q.Z. A comparative study of hydrogen embrittlement of 20SiMn2CrNiMo, PSB1080 and PH13-8Mo high strength steels. Mater. Sci. Eng. A 2018, 724, 518–528. [Google Scholar] [CrossRef]
- Zhao, T.L.; Liu, Z.Y.; Xu, X.X.; Li, Y.; Du, C.W.; Liu, X.B. Interaction between hydrogen and cyclic stress and its role in fatigue damage mechanism. Corros. Sci. 2019, 157, 146–156. [Google Scholar] [CrossRef]
- Chatzidouros, E.V.; Traidia, A.; Devarapalli, R.S.; Pantelis, D.I.; Steriotis, T.A.; Jouiad, M. Effect of hydrogen on fracture toughness properties of a pipeline steel under simulated sour service conditions. Int. J. Hydrogen Energy 2018, 43, 5747–5759. [Google Scholar] [CrossRef]
- Pallaspuro, S.; Yu, H.Y.; Kisko, A.; Porter, D.; Zhang, Z.L. Fracture toughness of hydrogen charged as-quenched ultra-high-strength steels at low temperatures. Mater. Sci. Eng. A 2017, 688, 109–201. [Google Scholar] [CrossRef]
- Ogawa, Y.; Matsunaga, H.; Yamabe, J.; Yoshikawa, M.; Matsuoka, S. Fatigue limit of carbon and Cr-Mo steels as a small fatigue crack threshold in high-pressure hydrogen gas. Int. J. Hydrogen Energy 2018, 43, 20133–20142. [Google Scholar] [CrossRef]
- Alvaro, A.; Wan, D.; Olden, V.; Barnoush, A. Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt%Si alloy and a X70 pipeline steel. Eng. Fract. Mech. 2019, 219, 106641. [Google Scholar] [CrossRef]
- Suresh, S.; Ritchie, R. On the influence of environment on the load ratio dependence of fatigue thresholds in pressure vessel steel. Eng. Fract. Mech. 1983, 18, 785–800. [Google Scholar] [CrossRef]
- Campari, A.; Ustolin, F.; Alvaro, A.; Paltrinieri, N. A review on hydrogen embrittlement and risk-based inspection of hydrogen technologies. Int. J. Hydrogen Energy 2023, 48, 35316–35346. [Google Scholar] [CrossRef]
- Hong, J.H.; Han, M.G.; Chang, S.H. Safety evaluation of 70 MPa-capacity type III hydrogen pressure vessel considering material degradation of composites due to temperature rise. Compos. Struct. 2014, 113, 127–133. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Barhoumi, E.M.; Belgacem, I.B.; Mansir, I.B.; Aliyu, M.; Emori, W.; Uzoma, P.C.; Beitelmal, W.H.; Akyüz, E.; Radwan, A.B.; et al. A focused review of the hydrogen storage tank embrittlement mechanism process. Int. J. Hydrogen Energy 2023, 48, 12935–12948. [Google Scholar] [CrossRef]
- Koyama, M.; Akiyama, E.; Lee, Y.-K.; Raabe, D.; Tsuzaki, K. Overview of hydrogen embrittlement in high-Mn steels. Int. J. Hydrogen Energy 2017, 42, 12706–12723. [Google Scholar] [CrossRef]
- Djukic, M.B.; Bakic, G.M.; Zeravcic, V.S.; Sedmak, A.; Rajicic, B. Hydrogen embrittlement of industrial components: Prediction, prevention, and models. Corrosion 2016, 72, 943–961. [Google Scholar] [CrossRef] [PubMed]
- Safyari, M.; Moshtaghi, M.; Hojo, T.; Akiyama, E. Mechanisms of hydrogen embrittlement in high-strength aluminum alloys containing coherent or incoherent dispersoids. Corros. Sci. 2022, 194, 109895. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. Environmental hydrogen embrittlement associated with decohesion and void formation at soluble coarse particles in a cold-rolled Al–Cu based alloy. Mater. Sci. Eng. 2021, 799, 139850. [Google Scholar] [CrossRef]
- Burille, A.; Scheid, A.; Ferreira, D.C.F.; Santana, L.; Kwietniewski, C.E.F. Hydrogen embrittlement of single-phase strain-hardened nickel-based UNS N08830 alloy. Mater. Sci. Eng. 2021, 803, 140486. [Google Scholar] [CrossRef]
- Fujii, H. Hydrogen embrittlement in titanium and its alloys. Corros. Eng. 2011, 60, 203–210. [Google Scholar]
- Rocha, H.; Antunes, P.; Lafont, U.; Nunes, J.P. Processing and structural health monitoring of a composite overwrapped pressure vessel for hydrogen storage. Struct. Health Monit. 2023, 23, 2391–2406. [Google Scholar] [CrossRef]
- Li, J.; Zhou, D.; Liu, W.-F.; Su, J.-Z.; Fu, M.-S. Novel and facile reduced graphene oxide anchored Ni-Co-Zn-Nd-ferrites composites for microwave absorption. Scr. Mater. 2019, 171, 42–46. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Lee, T.; Lee, J.; Chun, Y.S.; Lee, C.S. Role of Cu on hydrogen embrittlement behavior in Fe–Mn–C–Cu TWIP steel. Int. J. Hydrogen Energy 2015, 40, 7409–7419. [Google Scholar] [CrossRef]
- Ramirez, J.P.B.; Halm, D.; Grandidier, J.-C.; Villalonga, S.; Nony, F. 700 bar type IV high pressure hydrogen storage vessel burst–Simulation and experimental validation. Int. J. Hydrogen Energy 2015, 40, 13183–13192. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Cheng, H.; Yan, K.; Wang, Y.; Liu, Y.; Jin, H.M.; Zheng, Z. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5−xAlx alloys. Int. J. Hydrogen Energy 2017, 42, 24904–24914. [Google Scholar] [CrossRef]
- Winther-Jensen, B.; Fraser, K.; Ong, C.; Forsyth, M.; MaFarlane, D.R. Conducting polymer composite materials for hydrogen generation. Adv. Mater. 2010, 22, 1727–1730. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Lv, H.; Zhou, W.; Zhang, C.M. Review of the Hydrogen Permeability of the Liner Material of Type IV On-Board Hydrogen Storage Tank. World Electr. Veh. J. 2021, 12, 130. [Google Scholar] [CrossRef]
- Aziz, M. Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies 2021, 14, 5917. [Google Scholar] [CrossRef]
- Najjar, Y.S. Hydrogen safety: The road toward green technology. Int. J. Hydrogen Energy 2013, 38, 10716–10728. [Google Scholar] [CrossRef]
- Pritchard, D.K.; Rattigan, W.M. Hazards of Liquid Hydrogen; Health Safety Executive: Buxton, UK, 2010. Available online: https://www.hse.gov.uk/research/rrpdf/rr769.pdf (accessed on 24 August 2024).
- ADL. Final Report on an Investigation of Hazards Associated with the Storage and Handling of Liquid Hydrogen; Report C-61092; Arthur D. Little Inc.: Cambridge, MA, USA, 1960. [Google Scholar]
- Liu, Y.; Liu, Z.; Wei, J.; Lan, Y.; Yang, S.; Jin, T. Evaluation and prediction of the safe distance in liquid hydrogen spill accident. Process. Saf. Environ. Prot. 2021, 146, 1–8. [Google Scholar] [CrossRef]
- EIGA. Safety in Storage, Handling and Distribution; EIGA: Brussels, Belgium, 2019. [Google Scholar]
- Park, W.S.; Yoo, S.W.; Kim, M.H.; Lee, J.M. Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments. Mater. Des. 2010, 31, 3630–3640. [Google Scholar] [CrossRef]
- Qiu, Y.N.; Yang, H.; Tong, L.G.; Wang, L. Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. Metals 2021, 11, 1101. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Li, Q.; Li, T. Selection of tank materials. New Technol. New Prod. China 2020, 4, 80–81. [Google Scholar]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. Effect of strain rate on environmental hydrogen embrittlement susceptibility of a severely cold-rolled Al-Cu alloy. Vacuum 2020, 172, 109057. [Google Scholar] [CrossRef]
- Liu, W.; Du, Y. Research status of low temperature titanium alloy. Rare Metal Lett. 2007, 26, 6–10. [Google Scholar]
- Liu, K.; Wang, R.; Shi, Y.; Gu, A. Low temperature properties of fiber reinforced polymer matrix composites. Cryog. Eng. 2006, 5, 35–44. [Google Scholar]
- Gomeza, A.; Smith, H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis. Aerosp. Sci. Technol. 2019, 95, 105438. [Google Scholar] [CrossRef]
- Hohe, J.; Neubrand, A.; Fliegener, S.; Beckmann, C.; Schober, M.; Weiss, K.P.; Appel, S. Performance of fiber reinforced materials under cryogenic conditions—A review. Compos. Part A Appl. Sci. Manuf. 2020, 141, 106226. [Google Scholar] [CrossRef]
- Heydenreich, R. Cryotanks in future vehicles. Cryogenics 1998, 38, 125–130. [Google Scholar] [CrossRef]
- Sharke, P. H2 Tank Testing. Mech. Eng. Mag. 2004, 126, 20. [Google Scholar]
- Yang, H.N.; Nguyen, T.T.; Park, J.Y.; Heo, H.M.; Lee, J.H.; Baek, U.B.; Lee, Y.-K. Temperature Dependency of Hydrogen Embrittlement in Thermally H-precharged STS 304 Austenitic Stainless Steel. Met. Mater. Int. 2023, 29, 303–314. [Google Scholar] [CrossRef]
- Michler, T.; Naumann, J. Hydrogen environment embrittlement of austenitic stainless steels at low temperatures. Int. J. Hydrogen Energy 2008, 33, 2111–2122. [Google Scholar] [CrossRef]
- Klebanoff, L.E.; Pratt, J.W.; LaFleur, C.B. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry. Int. J. Hydrogen Energy 2017, 42, 757–774. [Google Scholar] [CrossRef]
- Schiaroli, A.; Emrys Scarponi, G.; Antonioni, G.; Cozzani, V. Hazard footprint of alternative fuel storage concepts for hydrogen-powered urban buses. Int. J. Hydrogen Energy 2024, 50, 1430–1442. [Google Scholar] [CrossRef]
- Ghorbani, B.; Zendehboudi, S.; Cata Saady, N.M.; Dusseault, M.B. Hydrogen storage in North America: Status, prospects, and challenges. J. Environment. Chem. Eng. 2023, 11, 109957. [Google Scholar] [CrossRef]
- Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H.-J. Methanol: The Basic Chemical and Energy Feedstock of the Future; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014; Volume 41. [Google Scholar]
- Wang, Q.W.; Zhang, H.; Huang, J.B.; Zhang, P.F. The use of alternative fuels for maritime decarbonization: Special marine environmental risks and solutions from an international law perspective. Front. Mar. Sci. 2023, 9, 1082453. [Google Scholar] [CrossRef]
- American Bureau of Shipping (ABS). Sustainability Whitepaper: Methanol as Marine Fuel. 2021. Available online: https://safety4sea.com/wp-content/uploads/2021/02/Sustainability-Methanol-as-Marine-Fuel.pdf (accessed on 25 August 2024).
- International Maritime Organization (IMO). Methanol as Marine Fuel: Environmental Benefits, Technology Readiness, and Economic Feasibility. Report. No. 2015-1197, Rev. 2. 2016. Available online: https://www.methanol.org/wp-content/uploads/2020/04/IMO-Methanol-Marine-Fuel-21.01.2016.pdf (accessed on 25 August 2024).
- Mahmoudi Zamani, O.A.; Knez, D. Well Integrity in Salt Cavern Hydrogen Storage. Energies 2024, 17, 3586. [Google Scholar] [CrossRef]
- Panfilov, M. Underground and Pipeline Hydrogen Storage; Elsevier Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Dopffel, N.; Jansen, S.; Gerritse, J. Microbial side effects of underground hydrogen storage—Knowledge gaps, risks and opportunities for successful implementation. Int. J. Hydrogen Energy 2021, 46, 8594–8606. [Google Scholar] [CrossRef]
- Jaakkola, S.T.; Ravantti, J.J.; Oksanen, H.M.; Bamford, D.H. Buried alive: Microbes from ancient halite. Trends Microbiol. 2016, 24, 148–160. [Google Scholar] [CrossRef]
- Gregory, S.P.; Barnett, M.J.; Field, L.P.; Milodowski, A.E. Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry. Microorganisms 2019, 7, 53. [Google Scholar] [CrossRef]
- Navaid, H.B.; Emadi, H.; Watson, M. A comprehensive literature review on the challenges associated with underground hydrogen storage. Int. J. Hydrogen Energy 2023, 48, 10603–10635. [Google Scholar] [CrossRef]
- Jahanbakhsh, A.; Potapov-Crighton, A.L.; Mosallanezhad, A.; Kaloorazi, N.T.; Maroto-Valer, M.M. Underground hydrogen storage: A UK perspective. Renew. Sustain. Energy Rev. 2024, 189, 114001. [Google Scholar] [CrossRef]
- Lemieux, A.; Sharp, K.; Shkarupin, A. Preliminary assessment of underground hydrogen storage sites in Ontario, Canada. Int. J. Hydrogen Energy 2019, 44, 15193–15204. [Google Scholar] [CrossRef]
- Wang, T.; Yang, C.; Ma, H.; Daemen, J.J.K.; Wu, H. Safety evaluation of gas storage caverns located close to a tectonic fault. J. Nat. Gas Sci. Eng. 2015, 23, 281–293. [Google Scholar] [CrossRef]
- Wang, Y.; Kowal, J.; Leuthold, M.; Sauer, D.U. Storage system of renewable energy generated hydrogen for chemical industry. Energy Proc. 2012, 29, 657–667. [Google Scholar] [CrossRef]
- Valle-Falcones, L.M.; Grima-Olmedo, C.; Mazadiego-Martínez, L.F.; Hurtado-Bezos, A.; Eguilior-Díaz, S.; Rodríguez-Pons, R. Green Hydrogen Storage in an Underground Cavern: A Case Study in Salt Diapir of Spain. Appl. Sci. 2022, 12, 6081. [Google Scholar] [CrossRef]
- Abreu, J.F.; Costa, A.M.; Costa, P.V.M.; Miranda, A.C.O.; Zheng, Z.Y.; Wang, P.F.; Ebecken, N.F.F.; de Carvalho, R.S.; dos Santos, P.L.P.; Lins, N.; et al. Carbon net zero transition: A case study of hydrogen storage in offshore salt cavern. J. Energy Storage 2023, 62, 106818. [Google Scholar] [CrossRef]
- Zapf, D. Rock mechanical dimensioning of gas storage caverns in the salt dome edge region. In Proceedings of the SMRI Fall 2014 Technical Conference, Groningen, The Netherlands, 28 September–1 October 2014; pp. 855–862. [Google Scholar]
- Wang, T.; Yang, C.; Ma, H.; Li, Y.; Shi, X.; Li, J.; Daemen, J.J.K. Safety evaluation of salt cavern gas storage close to an old cavern. Int. J. Rock Mech. Min. Sci. 2016, 83, 95–106. [Google Scholar] [CrossRef]
- Xiao, N.; Liang, W.; Zhang, S. Feasibility analysis of a single-well retreating horizontal cavern for natural gas storage in bedded salt rock. J. Nat. Gas Sci. Eng. 2022, 99, 104446. [Google Scholar] [CrossRef]
- Jeannin, L.; Myagkiy, A.; Vuddamalay, A. Modelling the operation of gas storage in salt caverns: Numerical approaches and applications. Sci. Technol. Energy Transit. 2022, 77, 6. [Google Scholar] [CrossRef]
- Blanco-Martín, L.; Rouabhi, A.; Billiotte, J.; Hadj-Hassen, F.; Tessier, B.; Hévin, G.; Balland, C.; Hertz, E. Experimental and numerical investigation into rapid cooling of rock salt related to high frequency cycling of storage caverns. Int. J. Rock Mech. Min. Sci. 2018, 102, 120–130. [Google Scholar] [CrossRef]
- Grgic, D.; Al Sahyouni, F.; Golfier, F.; Moumni, M.; Schoumacker, L. Evolution of gas permeability of rock salt under different loading conditions and implications on the underground hydrogen storage in salt caverns. Rock Mech. Rock Eng. 2022, 55, 691–714. [Google Scholar] [CrossRef]
- Abdin, Z.; Tang, C.G.; Liu, Y.; Catchpole, K. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience 2021, 24, 102966. [Google Scholar] [CrossRef] [PubMed]
- Ott, J.; Gronemann, V.; Pontzen, F.; Fiedler, E.; Grossmann, G.; Kersebohm, D.B.; Weiss, G.; Witte, C. Methanol. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Abdin, Z.; Khalilpour, K.; Catchpole, K. Projecting the levelized cost of large scale hydrogen storage for stationary applications. Energy Convers. Manag. 2022, 270, 116241. [Google Scholar] [CrossRef]
- Le, S.T.; Nguyen, T.N.; Linforth, S.; Ngo, T.D. Safety investigation of hydrogen energy storage systems using quantitative risk assessment. Int. J. Hydrogen Energy 2023, 48, 2861–2875. [Google Scholar] [CrossRef]
Vessel Type | Material Composition | Pressure Range | Applications |
---|---|---|---|
I | Metal | Max. 50 MPa | Stationary (low costs, low energy consumption) |
II | Thick metallic liner wrapped with fiber–resin composite | Not limited | Stationary (medium costs, high energy consumption) |
III | Composite with thick metal liner, which contributes to mechanical resistance | Max. 45–70 MPa | Vehicles and industry (lightweight, but high costs and high energy consumption) |
IV | Composite with polymer liner or very thin metal liner | Max. 100 MPa | Vehicles and high-pressure industrial purposes (most lightweight, but very high costs and very high energy consumption) |
Technique | Risk | Potential Solutions |
---|---|---|
High-pressure storage | Material embrittlement | Polymer coatings of metal vessel parts |
High-pressure storage | Permeation through polymeric materials or gaps | Material research and sensors to detect gaps in time |
High-pressure storage | Human failure | Training and increasing number of sensors |
Liquid hydrogen storage (increased risks) | Dispersion of colder and higher-density hydrogen from storage system | See above |
Liquid hydrogen storage (additional risks) | Physiological risks for people handling the liquid hydrogen | Training and personal protective equipment |
Methanol storage | Leakages of the inflammable gas or toxic fluid | Sensors to detect leakage in time |
Salt cavern storage | Leakage | Sensors to detect leakage in time |
Salt cavern storage | Unconfined vapor cloud explosion | Monitoring system |
Technique | Costs | Scale | Application |
---|---|---|---|
High-pressure storage | Depend on vessel type (cf. Table 1) | Small, up to ~1000 m3 [75] | Stationary/vehicles/industry, depending on vessel type |
Liquid hydrogen storage | High electric energy costs [144] | Small, up to 5 million liters [75] | NASA and carrier ships |
Methanol storage | Higher than liquid H2 for production, lower for shipping [75] | <10 L (lab scale), up to 2000 t (transport) [145] | Transportation; direct use as feedstock instead of reconversion is economically reasonable [75] |
Salt cavern storage | Lowest for large-scale storage [146] | 100,000–1,000,000 m3 [75] | Large-scale, long-term storage [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davies, E.; Ehrmann, A.; Schwenzfeier-Hellkamp, E. Safety of Hydrogen Storage Technologies. Processes 2024, 12, 2182. https://doi.org/10.3390/pr12102182
Davies E, Ehrmann A, Schwenzfeier-Hellkamp E. Safety of Hydrogen Storage Technologies. Processes. 2024; 12(10):2182. https://doi.org/10.3390/pr12102182
Chicago/Turabian StyleDavies, Emma, Andrea Ehrmann, and Eva Schwenzfeier-Hellkamp. 2024. "Safety of Hydrogen Storage Technologies" Processes 12, no. 10: 2182. https://doi.org/10.3390/pr12102182
APA StyleDavies, E., Ehrmann, A., & Schwenzfeier-Hellkamp, E. (2024). Safety of Hydrogen Storage Technologies. Processes, 12(10), 2182. https://doi.org/10.3390/pr12102182