Experimental Evaluation of Blockage Resistance and Position Caused by Microparticle Migration in Water Injection Wells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanism of Fine Particles and Suspended Solids Blockage
2.2. Fluids and Samples Preparation
2.3. Physical Experimental Simulation Methods for Blockage Location and Blockage Resistance Due to Fine Particles and Suspended Solids
2.4. Micromorphology Analysis of Blockages
3. Results and Discussion
3.1. Blockage Resistance of Homogeneous Core under Different Injection Flow Rates
3.2. Resistance Analysis of Heterogeneous Core Plugging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, Z.; Li, Y.; Wang, L. Quantitative characterization methods of plugging position of offshore polymer flooding reservoir. Fault-Block Oil Gas Field 2019, 26, 360–363. [Google Scholar]
- Ding, Y.; Zhao, Y.; Wen, X.; Liu, Y.; Feng, M.; Rui, Z. Development and Applications of CO2-Responsive Gels in CO2 Flooding and Geological Storage. Gels 2023, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhao, Y.; Li, J.; Luo, T.; Yang, H. Study on the change law of physical properties after water flooding. Unconv. Oil Gas 2021, 8, 45–61. [Google Scholar]
- Shaowei, W.; Hongyu, Z.; Kexiong, L. An integrated working fluid for blocking removal and sand control in offshore wells blocked by particle migration. Drill. Fluid Complet. Fluid 2021, 38, 391–396. [Google Scholar]
- Yang, R.; Zhang, J.; Chen, H.; Jiang, R.; Sun, Z.; Rui, Z. The injectivity variation prediction model for water flooding oilfields sustainable development. Energy 2019, 189, 116317. [Google Scholar] [CrossRef]
- Cai, J.; Chen, X.; Wu, D.; Chen, B.; Pan, Y. A New Method to Predict Water Breakthrough in Intelligent Completion Horizontal Well. Energy Fuels 2023, 37, 17438–17451. [Google Scholar] [CrossRef]
- Zhang, H.; He, S.; Jiao, C.; Luan, G.; Mo, S.; Lei, G. Investigation of dynamic effect of capillary pressure in ultra-low permeability sandstones. Indian Geotech. J. 2015, 45, 79−88. [Google Scholar] [CrossRef]
- Jia, K.; Zeng, J.; Wang, X.; Li, B.; Gao, X.; Wang, K. Wettability of tight sandstone reservoir and its impacts on the oil migration and accumulation: A case study of Shahejie formation in Dongying depression, Bohai Bay Basin. Energies 2022, 15, 4267. [Google Scholar] [CrossRef]
- Mirzaei, M.; Das, D.B. Dynamic effects in capillary pressure saturations relationships for two-phase flow in 3D porous media: Implications of micro-heterogeneities. Chem. Eng. Sci. 2007, 62, 1927−1947. [Google Scholar] [CrossRef]
- Manthey, S.; Hassanizadeh, S.M.; Helmig, R.; Hilfer, R. Dimensional analysis of two-phase flow including a rate-dependent capillary pressur saturation relationship. Adv. Water Resour. 2008, 31, 1137−1150. [Google Scholar] [CrossRef]
- Sa, J.H.; Sum, A.K. Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications. Appl. Energy 2019, 251, 113352. [Google Scholar] [CrossRef]
- Sui, Y.; Cao, G.; Guo, T.; Li, Z.; Bai, Y.; Li, D.; Zhang, Z. Development of gelled acid system in high-temperature carbonate reservoirs. J. Pet. Sci. Eng. 2022, 216, 110836. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Nguyen, A.V.; Nguyen, K.T.; Rintoul, L.; Dang, L.X. Unexpected inhibition of CO2 gas hydrate formation in dilute TBAB solutions and the critical role of interfacial water structure. Fuel 2016, 185, 517–523. [Google Scholar] [CrossRef]
- Sun, J.; Sun, L.; Liu, W. Alkaline consumption mechanisms by crude oil: A comparison of sodium carbonate and sodium hydroxide. Colloids Surf. A Physicochem. Eng. Asp. 2008, 315, 38–43. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Ma, C.; Lu, Y.; Han, S.; Chen, C.; Zhang, J. Effect of electrical treatment on structural behaviors of gelled waxy crude oil. Fuel 2019, 253, 647–661. [Google Scholar] [CrossRef]
- Starr, F.W.; Schroder, T.B.; Glotzer, S.C. Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 2002, 35, 4481–4492. [Google Scholar] [CrossRef]
- Avella, M.; Cosco, S.; Di Lorenzo, M.; Di Pace, E.; Errico, M. Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites. Therm. Anal. Calorim. 2005, 80, 131–136. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Wu, Z.J.; Li, Y.; Yang, W.; Li, Y.F. High-Efficiency production of graphene by supercritical CO2 exfoliation with rapid expansion. Langmuir 2018, 34, 7797–7804. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, B.; Ge, T.; Sui, F.; Wang, Y.; Zhang, P.; Chang, X.; Liu, Y.; Wang, Y.; Wang, Z. Tight sandstone reservoir sensitivity and damage mechanism analysis: A case study from Ordos Basin, China and implications for reservoir damage prevention. Energy Geosci. 2022, 3, 394–416. [Google Scholar] [CrossRef]
- Mitra, A.; Harpalani, S.; Liu, S. Laboratory measurement and modeling of coal permeability with continued methane production: Part 1—Laboratory results. Fuel 2012, 94, 110–116. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Ji, H.; Peng, Y.; Liu, Z. Effect of soluble organic matter in coal on its pore structure and methane sorption characteristics. J. Fuel Chem. Technol. 2013, 41, 385–390. [Google Scholar]
- Liu, Y.; She, Y.; Zhang, F.; Feng, Q.; Li, X.; Dong, H.; Sun, S. Mechanism of Nano-depressurization and Injection-Augmenting Technology and Its Application in China’s Oilfields: Recent Advances and Perspectives. Energy Fuels 2022, 36, 10751–10765. [Google Scholar] [CrossRef]
- Yao, B.; Li, C.; Yang, F.; Zhang, Y.; Xiao, Z.; Sun, G. Structural properties of gelled Changqing waxy crude oil benefitted with nanocomposite pour point depressant. Fuel 2016, 184, 544–554. [Google Scholar] [CrossRef]
- Yang, H.; Wang, W.; Tian, Z. Reservoir damage mechanism and protection measures for coal bed methane. J. China Coal Soc. 2014, 39, 158–163. [Google Scholar]
- Cheraghian, G.; Khalili Nezhad, S.S.; Kamari, M.; Hemmati, M.; Masihi, M.; Bazgir, S. Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO2. Int. Nano Lett. 2014, 4, 114. [Google Scholar] [CrossRef]
- Massarotto, P.; Iyer, R.S.; Elma, M.; Nicholson, T. An experimental study on characterizing coal bed methane (CBM) fines production and migration of mineral matter in coal beds. Energy Fuels 2014, 28, 766–773. [Google Scholar] [CrossRef]
- Awan, F.U.R.; Keshavarz, A.; Akhondzadeh, H.; Nosrati, A.; Al-Anssari, S.; Iglauer, S. Optimizing the dispersion of coal fines using sodium dodecyl benzene sulfonate. In Proceedings of the Asia Pacific Unconventional Resources Technology Conference, Brisbane, Australia, 18–19 November 2019. URTEC-198250-MS. [Google Scholar]
- Bai, T.; Chen, Z.; Aminossadati, S.M. Experimental investigation on the impact of coal fines generation and migration on coal permeability. J. Pet. Sci. Eng. 2017, 159, 257–266. [Google Scholar] [CrossRef]
- Zeinijahromi, A.; Vaz, A.; Bedrikovetsky, P. Productivity impairment of gas wells due to fines migration. In Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, USA, 15–17 February 2012. SPE 151774. [Google Scholar]
- Prempeh, K.; Chequer, L.; Badalyan, A.; Bedrikovetsky, P. Effects of kaolinite on fines migration and formation damage. In Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, LA, USA, 19–21 February 2020. SPE-199293-MS. [Google Scholar]
- Wei, G.; Di, Q.F. Seepage model and experiments of drag reduction by nanoparticle adsorption. J. Hydrodyn. 2013, 25, 871–876. [Google Scholar]
- Ma, C.; Zhang, J.; Feng, K.; Li, Z.; Chen, C.; Huang, Q.; Lu, Y. Influence of asphaltenes on the performance of electrical treatment of waxy oil. J. Pet. Sci. Eng. 2019, 180, 31–40. [Google Scholar] [CrossRef]
- Moghadasi, J.; Müller-Steinhagen, H.; Jamialahmadi, M.; Sharif, A. Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Pet. Sci. Eng. 2004, 43, 163–181. [Google Scholar] [CrossRef]
- EI-Amin, M.F.; Salama, A.; Sun, S. Numerical and dimensional analysis of nanoparticles transport with two-phase flow in porous media. J. Pet. Sci. Eng. 2015, 128, 53–64. [Google Scholar] [CrossRef]
- Singh, S.B.; De, M. Thermally exfoliated graphene oxide for hydrogen storage. Mater. Chem. Phys. 2020, 239, 122102. [Google Scholar] [CrossRef]
Water Sample | Ion Concentration mg/L | PH | |||||||
---|---|---|---|---|---|---|---|---|---|
Ion Types | K+ | Na+ | Ca2+ | Mg2+ | Fe2+ | Cl− | SO42− | HCO3− | |
Injection Water | 344 | 11 × 103 | 428 | 11 × 103 | 0.17 | 1.78 × 103 | 2.36 × 104 | 93.4 | 8.18 |
Injection Water | Suspended Solids mg/L | Median Particle Size d µm | Oil Content mg/L |
---|---|---|---|
Value | 3–5 | 4 | 20 |
Non-Homogeneous Core Segments | Segment AB | Segment BC | Segment CD | Segment DE |
---|---|---|---|---|
Permeability/mD | 195 | 397 | 812 | 1030 |
Non-Homogeneous Core Segments | Segment AB | Segment BC | Segment CD | Segment DE |
---|---|---|---|---|
Permeability/mD | 1050 | 796 | 410 | 210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Chen, H.; Cao, Y.; Wen, M.; Zhai, X.; Zhang, X.; Hao, T.; Peng, J.; Zhu, W. Experimental Evaluation of Blockage Resistance and Position Caused by Microparticle Migration in Water Injection Wells. Processes 2024, 12, 2275. https://doi.org/10.3390/pr12102275
Yu J, Chen H, Cao Y, Wen M, Zhai X, Zhang X, Hao T, Peng J, Zhu W. Experimental Evaluation of Blockage Resistance and Position Caused by Microparticle Migration in Water Injection Wells. Processes. 2024; 12(10):2275. https://doi.org/10.3390/pr12102275
Chicago/Turabian StyleYu, Jifei, Huan Chen, Yanfeng Cao, Min Wen, Xiaopeng Zhai, Xiaotong Zhang, Tongchuan Hao, Jianlin Peng, and Weitao Zhu. 2024. "Experimental Evaluation of Blockage Resistance and Position Caused by Microparticle Migration in Water Injection Wells" Processes 12, no. 10: 2275. https://doi.org/10.3390/pr12102275
APA StyleYu, J., Chen, H., Cao, Y., Wen, M., Zhai, X., Zhang, X., Hao, T., Peng, J., & Zhu, W. (2024). Experimental Evaluation of Blockage Resistance and Position Caused by Microparticle Migration in Water Injection Wells. Processes, 12(10), 2275. https://doi.org/10.3390/pr12102275