Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds
Abstract
:1. Introduction
2. Plant-Based Antimicrobials
2.1. Medicinal Plants
Name of Compounds | Name of Plant | Structure | Active Concentration | Microbial Pathogens | Biological Role | References |
---|---|---|---|---|---|---|
Medicinal plant | ||||||
Lectin | Lantana camara | - | 10 μg/disk | Klebsiella pnuemoniae, Pseudomonas aeruginosa, Escherichia coli |
| [37] |
Lantic acid | 7.81 mg/mL 0.97 mg/mL | E. coli, Staphylococcus aureus |
| [49] | ||
Rhein | Cassia alata L. | IC50 of 2.5 μg/mL | Acidovorax avenae subsp. cattlvae |
| [50] | |
Emodin | 32 μg/mL 64 μg/mL | Candida albicans, C. parapsilosis |
| [51] | ||
Kaempferol | 13.0 μg/mL | Methicillin-resistant Staphylococcus aureus (MRSA) |
| [52] | ||
Waltherione G | Waltheria indica (Malvaceae) | 100 μg/mL | Staphylococcus epidermidis |
| [53] | |
Dalpanitin | Derris scandens | 23 μg/mL 94 μg/mL 94 μg/mL | S. aureus, E. coli, P. aeruginosa |
| [54] | |
5,7-dihydroxy-2′,3′,4′-trimethoxyisoflavanone | Desmodium styracifolium | 125 μg/mL | Acidovorax avenae subsp.cattleyae. |
| [38] | |
Luteolin | Euphorbia humifusa | 32 μg/mL | S. aureus |
| [55] | |
3-[3-(3-pyridinyl)-1,2,4- oxadiazol-5-yl] benzonitrile | Tropaeolum tuberosum | 100 μg/mL 100 μg/mL 150 μg/mL | Bacillus cereus, S. aureus, P. aeruginosa |
| [56] | |
Hyperin | Canarium patentinervium | 50 μg/mL | S. aureus |
| [57] | |
3-phenylpropionic acid | Zygophyllum mandavillei | 15.62 μg/mL 7.81 μg/mL 7.81 μg/mL 3.90 μg./mL | Xanthomonas oryzae, Pseudomonas syringae, Aspergillus flavus, Fusarium solani |
| [58] | |
3,3′-di-O-methyl ellagic acid | Afzelia africana | 2.5 μg/mL 2.5 μg/mL 1.25 μg/mL | Streptococcus mutans, S. aureus, Bacillus subtilis |
| [59] | |
Galangin 3-methyl ether | Lychnophora markgravii | >0.5 μg/mL 0.05 μg/mL 0.5 μg/mL 0.055 μg/mL | Kocuria rhizophila, S. aureus, S. epidermidis, S. mutans |
| [60] | |
Allicin | Allium sativum | 128 μg/mL 64 μg/mL 64 μg/mL | K. penumonia, P. aeruginosa, S. agalactiae |
| [61] | |
Resveratrol | Picea abies | - | S. aureus, P. aeruginosa, C. albicans |
| [39] | |
Extract | Zataria multiflora Boiss | - | - | Acinetobacter baumannii |
| [40] |
Extract | Casearia sylvestris | - | - | Helicobacter pylori |
| [62] |
Rhodomyrtone | Rhodomyrtus tomentosa | - | Propionibacterium acnes |
| [41] | |
Extract | Nigella sativa | - | - | P. acnes |
| [63] |
Rhodomyrtosone B | Rhodomyrtus tomentosa | 1.25 µg/mL 0.62 µg/mL 0.62 µg/mL | S. aureus, MRSA, B. cereus |
| [64] | |
Extract | Daphne genkwa | - | 35,000 mg/mL | MRSA |
| [65] |
Thymohydroquinone dimethyl ether | Ayapana triplinervis | IC50 45 µg/mL | Zika Virus |
| [66] | |
Methyl gallate | Polygonum chinense Linn | - | Influenza virus |
| [67] | |
Non-medicinal | ||||||
Lectin | Portulaca elatior | - | 0.185 μg/mL 1.48 μg/mL 1.48 μg/mL 1.48 μg/mL | Pectobacterium sp., C. albicans, Candida tropicalis, Candida krusei |
| [68] |
8.1 μg/mL 32.5 μg/mL 4.06 μg/mL 16 μg/mL | E. faeclis, P. aeruginosa, S. aureus, C. albcans |
| [69] | |||
Asiatic acid | Punica granatum L. | 64 μg/mL 16 μg/mL | Mycobacterium smegmatis, S. aureus |
| [70] | |
Punicalagin | 1.2 μg/mL 0.6 μg/mL 0.6 μg/mL | C. albicans, P. aeruginosa, S. epidermidis |
| [71] | ||
Ellagic acid | 31.62 μg/mL | MRSA |
| [72] | ||
1,4-naphthalenedione-5-hydroxy-2-methyl | Diospyros maritima | 5 μg/mL 0.625 μg/mL | Aeromonas hydrophila, S. aureus |
| [73] | |
1,2,4,6-tetra-O-galloyl-β-glucose | Sedum takesimense | 32 μg/mL 128 μg/mL 128 μg/mL 32 μg/mL 128 μg/mL 16 μg/mL | E. coli, P. aeruginosa, Salmonella tyrphimurium, B. cereus, Listeria monocytogenes, S. aureus |
| [74] | |
3″,4′,4′″,5,5″,7,7″-heptahydoxy-3-8″-biflavone | Garcinia kola | 64 μg/mL 64 μg/mL 64 μg/mL | S. mutans, Streptococcus mitis, Streptococcus downei |
| [75] | |
(8E)-4- geranyl-3,5-dihydroxybenzophenone | 162.5 μg/mL 15.6 μg/mL | Prophyromonas gingivalis, Streptococcus sobrinus |
| [76] | ||
(E)-3-(1-oxobut-2-en-2-yl)glutaric acid | Olea europaea | 18 mg/mL | P. syringae |
| [77] | |
Oleuropein | 625 μg/mL 625 μg/mL 625 μg/mL | S. mutans, P. gingivalism, Fusobacterium nucleatum |
| [78] | ||
Berberine | Berberis hispanica | 5 μg/mL | S. aureus |
| [79] | |
2-hydroxy-1,4-naphthoquinone | Plumbago zeylanica | 100 μg/mL | E. coli |
| [80] | |
Heneicosane | 10 μg/mL | S. pneumoniae, A. fumigatus |
| [81] | ||
Abietic acid | Pinus merkusii | 9.36 μg/mL | S. mutans |
| [82] | |
3-(2′,4′,6′,6′-tetramethylcyclohexa-1′,4′-dienyl)acrylic acid | Viola odorata | 64 μg/mL 128 μg/mL 32 μg/mL | S. aureus, P. aeruginosa, S. pyogenes |
| [83] | |
Aromadendrin-4′-methyl ether | Ventilago madraspatana | 78 μg/mL 312 μg/mL | S. aureus, C. albicans |
| [84] | |
Mangiferin | Mangifera indica | 7.81 μg/mL 1.95 μg/mL 1.95 μg/mL | E.coli, S.aureus, C. albicans |
| [85] | |
Myricetin-3- O-rhamnoside | Prosopis africana | 8 μg/mL 8 μg/mL 16 μg/mL 16 μg/mL 32 μg/mL | S. aureus, Enterococcus faeclais, P. aeruginosa, E. coli, K. pneumoniae |
| [86] | |
Extract | Arachis hypogaea L. | NA | IC50 1.3 μg/mL | Human influenza viruses |
| [87] |
Extract | Prunus dulcis | NA | 0.2 mg/mL | Herpes simplex virus 1 |
| [88] |
Seaweeds | ||||||
Digalactosyldiacylglycerol | Fucus vesiculosus | IC50 87 μg/mL | S. aureus |
| [89] | |
Fucoidan | - | 3.13 mg/mL 0.2 mg/mL | E. coli, S. typhimurium |
| [90] | |
Hydroxyphenophytin B | Chlorella vulgaris | 0.3 mg/mL 1.2 mg/mL | A. ochraceus, A. carbonarus |
| [91] | |
Fucofuroeckol-A | Eisenia bicyclis | 16~32 μg/mL | L. monocytogenes |
| [92] | |
Pheophytin a | Syringodium isoetifolium | 6.2 μg/mL 12.5 μg/mL 12.5 μg/mL | Salmonella typhi, E. coli, P. aeruginosa |
| [93] | |
β-carotene | Halopteris scoparia | 0.225 μg/mL 0.1125 μg/mL 0.225 μg/mL | L. monocytogenes, S. aureus, S. enterica |
| [94] | |
Fucoxanthin | Himanthalia elongata | 6.2 μg/mL 12.5 μg/mL | Salmonella typhi, E. coli, P. aeruginosa |
| [95] | |
Ascophyllan HS | Ascophyllum nodosum | - | 167 mg/10 mL/kg | S. penumoniae |
| [96] |
Fucoidan | Undaria pinnatifida | - | 3.52 mg/day | Influenza A (H1N1, PR8) |
| [97] |
Fucoidan | Sargassum swartzii | - | 1.56 μg/mL | HIV-1 p24 |
| [98] |
2.2. Non-Medicinal Plants
2.3. Marine Plants
3. Mechanisms of Action
3.1. Multi-Target Interactions
3.2. Synergistic Interactions
4. Development and Applications
Drug Development from Plant Metabolites
5. Data Collection
6. Conclusions and Future Perspectives
- Continuous research and innovation are very necessary in order to address newly developing health risks and to enhance the efficacy of therapies that are already available. This involves broadening the scope of investigations to include a greater variety of plant species, especially those not used for medical purposes and marine plants, to discover new chemicals that possess distinctive characteristics.
- A dynamic approach to the development of antimicrobial solutions that are both sustainable and effective is presented by the integration of traditional knowledge with new scientific breakthroughs.
- In order to tackle antibiotic resistance, it will be helpful to conduct in-depth research on the multi-target mechanisms of plant-derived antimicrobials and the synergistic effects that these antimicrobials have with conventional antibiotics.
- The enhancement of the pharmacological characteristics of plant metabolites should be the primary focus of developments in semi-synthesis and chemical modification. This will allow for the development of medicines that are more effective and more precisely targeted.
- The development of natural alternatives to synthetic chemicals requires more investigation into plant-based antimicrobials for applications in agriculture, food preservation, and environmental management. This is crucial for the development of natural alternatives.
- In order to advance the study and translate laboratory discoveries into practical applications that can be used in the real world, it will be essential to collaborate across several disciplines, including medicine, chemistry, pharmacology, and botany.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Janik, E.; Ceremuga, M.; Niemcewicz, M.; Bijak, M. Dangerous pathogens as a potential problem for public health. Medicina 2020, 56, 591. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules 2022, 27, 616. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Karaman, R. Antibacterial activity of medicinal plants and their role in wound healing. Future J. Pharm. Sci. 2024, 10, 68. [Google Scholar]
- Nami, S.; Aghebati-Maleki, A.; Morovati, H.; Aghebati-Maleki, L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed. Pharmacother. 2019, 110, 857–868. [Google Scholar]
- Perlin, D.S. Mechanisms of resistance to antifungal agents. Man. Clin. Microbiol. 2015, 5, 2236–2254. [Google Scholar]
- Ma, Y.; Frutos-Beltrán, E.; Kang, D.; Pannecouque, C.; De Clercq, E.; Menéndez-Arias, L.; Liu, X.; Zhan, P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem. Soc. Rev. 2021, 50, 4514–4540. [Google Scholar]
- Terreni, M.; Taccani, M.; Pregnolato, M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef]
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Porras, G.; Chassagne, F.; Lyles, J.T.; Marquez, L.; Dettweiler, M.; Salam, A.M.; Samarakoon, T.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem. Rev. 2020, 121, 3495–3560. [Google Scholar] [PubMed]
- Khan, R.A. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm. J. 2018, 26, 739–753. [Google Scholar]
- Shin, J.; Prabhakaran, V.-S.; Kim, K.-S. The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microb. Pathog. 2018, 116, 209–214. [Google Scholar]
- Sharma, P.; Manchanda, R.; Goswami, R.; Chawla, S. Biodiversity and therapeutic potential of medicinal plants. In Environmental Concerns and Sustainable Development: Volume 2: Biodiversity, Soil and Waste Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 27–44. [Google Scholar]
- Wylie, M.R.; Merrell, D.S. The antimicrobial potential of the neem tree Azadirachta indica. Front. Pharmacol. 2022, 13, 891535. [Google Scholar]
- Ajanaku, C.O.; Ademosun, O.T.; Atohengbe, P.O.; Ajayi, S.O.; Obafemi, Y.D.; Owolabi, O.A.; Akinduti, P.A.; Ajanaku, K.O. Functional bioactive compounds in ginger, turmeric, and garlic. Front. Nutr. 2022, 9, 1012023. [Google Scholar]
- Prajapati, S.K.; Mishra, G.; Malaiya, A.; Jain, A.; Mody, N.; Raichur, A.M. Antimicrobial application potential of phytoconstituents from turmeric and garlic. In Bioactive Natural Products for Pharmaceutical Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 409–435. [Google Scholar]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Mapelli-Brahm, P.; Gómez-Villegas, P.; Gonda, M.L.; León-Vaz, A.; León, R.; Mildenberger, J.; Rebours, C.; Saravia, V.; Vero, S.; Vila, E. Microalgae, seaweeds and aquatic bacteria, archaea, and yeasts: Sources of carotenoids with potential antioxidant and anti-inflammatory health-promoting actions in the sustainability era. Mar. Drugs 2023, 21, 340. [Google Scholar] [CrossRef]
- Banday, A.H.; ul Azha, N.; Farooq, R.; Sheikh, S.A.; Ganie, M.A.; Parray, M.N.; Mushtaq, H.; Hameed, I.; Lone, M.A. Exploring the potential of marine natural products in drug development: A comprehensive review. Phytochem. Lett. 2024, 59, 124–135. [Google Scholar] [CrossRef]
- Sudhakar, M.; Dharani, G.; Paramasivam, A. Evaluation of antimicrobial, antioxidant and cytotoxicity potential of R-phycoerythrin extracted from Gracilaria corticata seaweed. Curr. Res. Green Sustain. Chem. 2023, 6, 100352. [Google Scholar]
- Maleki, N.; Roomiani, L.; Tadayoni, M. Microwave-assisted extraction optimization, antimicrobial and antioxidant properties of carrageenan from red algae (Gracilaria acerosa). J. Food Meas. Charact. 2023, 17, 1156–1166. [Google Scholar]
- Matias, M.; Pinteus, S.; Martins, A.; Silva, J.; Alves, C.; Mouga, T.; Gaspar, H.; Pedrosa, R. Gelidiales are not just agar—Revealing the antimicrobial potential of Gelidium corneum for skin disorders. Antibiotics 2022, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Angelini, P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics 2024, 13, 746. [Google Scholar] [CrossRef] [PubMed]
- AlSheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, I.A.; Al-Sheikh, H.; Tasleem Jan, A.; Haq, Q.M.R. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics 2020, 9, 480. [Google Scholar] [CrossRef]
- Mosaddad, S.A.; Hussain, A.; Tebyaniyan, H. Green alternatives as antimicrobial agents in mitigating periodontal diseases: A narrative review. Microorganisms 2023, 11, 1269. [Google Scholar] [CrossRef]
- Berida, T.I.; Adekunle, Y.A.; Dada-Adegbola, H.; Kdimy, A.; Roy, S.; Sarker, S.D. Plant antibacterials: The challenges and opportunities. Heliyon 2024, 10, e31145. [Google Scholar] [CrossRef]
- Nascimento, T.; Gomes, D.; Simões, R.; da Graça Miguel, M. Tea tree oil: Properties and the therapeutic approach to acne—A review. Antioxidants 2023, 12, 1264. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Liu, Z. A review of plant antipathogenic constituents: Source, activity and mechanism. Pestic. Biochem. Physiol. 2022, 188, 105225. [Google Scholar]
- Sankar, P.; Vijayakaran, K.; Ramya, K. Phytomolecules as an Alternative Medicine to Combat Antimicrobial Resistance. In Handbook on Antimicrobial Resistance: Current Status, Trends in Detection and Mitigation Measures; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–18. [Google Scholar]
- Tiwari, P.; Bajpai, M.; Sharma, A. Antimicrobials from medicinal plants: Key examples, success stories and prospects in tackling antibiotic resistance. Lett. Drug Des. Discov. 2023, 20, 420–438. [Google Scholar] [CrossRef]
- Rizvi, S.A.; Einstein, G.P.; Tulp, O.L.; Sainvil, F.; Branly, R. Introduction to traditional medicine and their role in prevention and treatment of emerging and re-emerging diseases. Biomolecules 2022, 12, 1442. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.E.; Izah, S.C.; Nelson, I.U.; Daniel, K.S. Indigenous Knowledge and Phytochemistry: Deciphering the Healing Power of Herbal Medicine. In Herbal Medicine Phytochemistry: Applications and Trends; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1953–2005. [Google Scholar]
- Paine, M.F.; Roe, A.L. “Green medicine”: The past, present, and future of botanicals. Clin. Pharmacol. Ther. 2018, 104, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, K.Y.; Jagadeesh, N.; Belur, S.; Kulkarni, S.S.; Inamdar, S.R. A lectin with anti-microbial and anti proliferative activities from Lantana camara, a medicinal plant. Protein Expr. Purif. 2020, 170, 105574. [Google Scholar] [PubMed]
- Le Dang, Q.; Do, H.T.T.; Choi, G.J.; Van Nguyen, M.; Vu, H.D.; Pham, G.V.; Ho, C.T.; Nguyen, X.C.; Tran, T.D.; Nghiem, D.T. In vitro and in vivo antimicrobial activities of extracts and constituents derived from Desmodium styracifolium (Osb.) Merr. against various phytopathogenic fungi and bacteria. Ind. Crops Prod. 2022, 188, 115521. [Google Scholar] [CrossRef]
- Shevelev, A.B.; La Porta, N.; Isakova, E.P.; Martens, S.; Biryukova, Y.K.; Belous, A.S.; Sivokhin, D.A.; Trubnikova, E.V.; Zylkova, M.V.; Belyakova, A.V. In vivo antimicrobial and wound-healing activity of resveratrol, dihydroquercetin, and dihydromyricetin against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Pathogens 2020, 9, 296. [Google Scholar] [CrossRef]
- Hassannejad, N.; Bahador, A.; Rudbari, N.H.; Modarressi, M.H.; Parivar, K. In vivo antibacterial activity of Zataria multiflora Boiss extract and its components, carvacrol, and thymol, against colistin-resistant Acinetobacter baumannii in a pneumonic BALB/c mouse model. J. Cell. Biochem. 2019, 120, 18640–18649. [Google Scholar] [CrossRef]
- Wunnoo, S.; Bilhman, S.; Amnuaikit, T.; Ontong, J.C.; Singh, S.; Auepemkiate, S.; Voravuthikunchai, S.P. Rhodomyrtone as a new natural antibiotic isolated from Rhodomyrtus tomentosa leaf extract: A clinical application in the management of acne vulgaris. Antibiotics 2021, 10, 108. [Google Scholar] [CrossRef]
- Mickymaray, S. Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics 2019, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Arip, M.; Selvaraja, M.; Tan, L.F.; Leong, M.Y.; Tan, P.L.; Yap, V.L.; Chinnapan, S.; Tat, N.C.; Abdullah, M.; K, D. Review on plant-based management in combating antimicrobial resistance-mechanistic perspective. Front. Pharmacol. 2022, 13, 879495. [Google Scholar]
- Maran, S.; Yeo, W.W.Y.; Lim, S.-H.E.; Lai, K.-S. Plant secondary metabolites for tackling antimicrobial resistance: A pharmacological perspective. In Antimicrobial Resistance: Underlying Mechanisms and Therapeutic Approaches; Springer: Berlin/Heidelberg, Germany, 2022; pp. 153–173. [Google Scholar]
- Deb Adhikari, M.; Saha, T.; Tiwary, B.K. Quest for Alternatives to Antibiotics: An Urgent Need of the Twenty-First Century. In Alternatives to Antibiotics: Recent Trends and Future Prospects; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–32. [Google Scholar]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef]
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar]
- Coimbra, A.; Miguel, S.; Ribeiro, M.; Coutinho, P.; Silva, L.; Duarte, A.P.; Ferreira, S. Thymus zygis essential oil: Phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against Staphylococcus aureus. Antibiotics 2022, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Djappa, C.E.T.; Arfao, A.T.; Metsopkeng, C.S.; Alex, M.M.A.; Laurent, S.; Henoumont, C.; Fouotsa, H.; Mkounga, P.; Nkengfack, E.A. Cultivability of Escherichia coli and Staphylococcus aureus in the presence of hydroethanolic extracts of Lantana camara stems and leaves: Importance of bioactive compounds in the cellular inhibition process. Sci. Afr. 2024, 26, e02373. [Google Scholar]
- Pham, D.Q.; Pham, H.T.; Han, J.W.; Nguyen, T.H.; Nguyen, H.T.; Nguyen, T.D.; Nguyen, T.T.T.; Ho, C.T.; Pham, H.M.; Vu, H.D. Extracts and metabolites derived from the leaves of Cassia alata L. exhibit in vitro and in vivo antimicrobial activities against fungal and bacterial plant pathogens. Ind. Crops Prod. 2021, 166, 113465. [Google Scholar]
- Dzoyem, J.P.; Fotso, S.C.; Wansi, J.D.; Tabenkoueng, B.; Tsopgni, W.D.T.; Toze, F.A.A.; McGaw, L.J. Anti-biofilm and anti-quorum sensing activities of extract, fractions and compounds from the leaves of Cassia alata L. against yeast pathogens. Phytomed. Plus 2024, 4, 100621. [Google Scholar]
- Yon, J.-A.-L.; Lee, S.-K.; Keng, J.-W.; Chow, S.-C.; Liew, K.-B.; Teo, S.-S.; Shaik Mossadeq, W.M.; Marriott, P.J.; Akowuah, G.A.; Ming, L.C. Cassia alata (Linnaeus) roxburgh for skin: Natural remedies for atopic dermatitis in Asia and their pharmacological activities. Cosmetics 2022, 10, 5. [Google Scholar] [CrossRef]
- Silva, R.M.; Domingos, L.T.; de Castro, G.M.; Laport, M.S.; Ferreira-Pereira, A.; Lima, M.M.; Cotinguiba, F. Leishmanicidal and antimicrobial activities of 4-quinolone alkaloids from stems of the medicinal plant Waltheria indica (Malvaceae) and their chemotaxonomic significance. J. Braz. Chem. Soc. 2022, 33, 1291–1298. [Google Scholar]
- Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A.A.; Adhikari, A.; Burman, R.; De Silva, E.; Göransson, U.; Hettiarachchi, C.; Gunasekera, S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol. 2020, 246, 112158. [Google Scholar]
- Wu, X.; Ma, G.-L.; Chen, H.-W.; Zhao, Z.-Y.; Zhu, Z.-P.; Xiong, J.; Yang, G.-X.; Hu, J.-F. Antibacterial and antibiofilm efficacy of the preferred fractions and compounds from Euphorbia humifusa (herba euphorbiae humifusae) against Staphylococcus aureus. J. Ethnopharmacol. 2023, 306, 116177. [Google Scholar]
- Ticona, L.A.; Sánchez, Á.R.; Gonzáles, Ó.O.; Doménech, M.O. Antimicrobial compounds isolated from Tropaeolum tuberosum. Nat. Prod. Res. 2021, 35, 4698–4702. [Google Scholar]
- Mogana, R.; Adhikari, A.; Tzar, M.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement. Med. Ther. 2020, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Yehia, R.S.; Osman, G.H.; Assaggaf, H.; Salem, R.; Mohamed, M.S. Isolation of potential antimicrobial metabolites from endophytic fungus Cladosporium cladosporioides from endemic plant Zygophyllum mandavillei. S. Afr. J. Bot. 2020, 134, 296–302. [Google Scholar] [CrossRef]
- Vigbedor, B.Y.; Akoto, C.O.; Neglo, D. Isolation and characterization of 3, 3′-di-O-methyl ellagic acid from the root bark of Afzelia africana and its antimicrobial and antioxidant activities. Sci. Afr. 2022, 17, e01332. [Google Scholar] [CrossRef]
- Hernández Tasco, A.J.; Ramírez Rueda, R.Y.; Alvarez, C.J.; Sartori, F.T.; Sacilotto, A.C.B.; Ito, I.Y.; Vichnewski, W.; Salvador, M.J. Antibacterial and antifungal properties of crude extracts and isolated compounds from Lychnophora markgravii. Nat. Prod. Res. 2020, 34, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Reiter, J.; Levina, N.; Van der Linden, M.; Gruhlke, M.; Martin, C.; Slusarenko, A.J. Diallylthiosulfinate (Allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules 2017, 22, 1711. [Google Scholar] [CrossRef] [PubMed]
- Spósito, L.; Oda, F.B.; Vieira, J.H.; Carvalho, F.A.; dos Santos Ramos, M.A.; de Castro, R.C.; Crevelin, E.J.; Crotti, A.E.M.; Santos, A.G.; da Silva, P.B. In vitro and in vivo anti-Helicobacter pylori activity of Casearia sylvestris leaf derivatives. J. Ethnopharmacol. 2019, 233, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, S.; Zargaran, A.; Farzaei, M.H.; Iranpanah, A.; Heydarpour, F.; Najafi, F.; Rahimi, R. The effect of a hydrogel made by Nigella sativa L. on acne vulgaris: A randomized double-blind clinical trial. Phytother. Res. 2020, 34, 3052–3062. [Google Scholar]
- Zhao, L.-Y.; Liu, H.-X.; Wang, L.; Xu, Z.-F.; Tan, H.-B.; Qiu, S.-X. Rhodomyrtosone B, a membrane-targeting anti-MRSA natural acylgphloroglucinol from Rhodomyrtus tomentosa. J. Ethnopharmacol. 2019, 228, 50–57. [Google Scholar] [CrossRef]
- Kuok, C.-F.; Hoi, S.-O.; Hoi, C.-F.; Chan, C.-H.; Fong, I.-H.; Ngok, C.-K.; Meng, L.-R.; Fong, P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp. Biol. Med. 2017, 242, 731–743. [Google Scholar] [CrossRef]
- Haddad, J.G.; Picard, M.; Bénard, S.; Desvignes, C.; Desprès, P.; Diotel, N.; El Kalamouni, C. Ayapana triplinervis essential oil and its main component thymohydroquinone dimethyl ether inhibit Zika virus at doses devoid of toxicity in zebrafish. Molecules 2019, 24, 3447. [Google Scholar] [CrossRef]
- Tran, T.T.; Kim, M.; Jang, Y.; Lee, H.W.; Nguyen, H.T.; Nguyen, T.N.; Park, H.W.; Le Dang, Q.; Kim, J.-C. Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense. BMC Complement. Altern. Med. 2017, 17, 162. [Google Scholar]
- da Silva, S.P.; da Silva, J.D.F.; da Costa, C.B.L.; da Silva, P.M.; de Freitas, A.F.S.; da Silva, C.E.S.; da Silva, A.R.; de Oliveira, A.M.; Sá, R.A.; Peixoto, A.R. Purification, characterization, and assessment of antimicrobial activity and toxicity of Portulaca elatior leaf lectin (PeLL). Probiotics Antimicrob. Proteins 2023, 15, 287–299. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.D.F.; da Silva, S.P.; da Silva, P.M.; Vieira, A.M.; de Araújo, L.C.C.; de Albuquerque Lima, T.; de Oliveira, A.P.S.; do Nascimento Carvalho, L.V.; da Rocha Pitta, M.G.; de Melo Rêgo, M.J.B. Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities. Int. J. Biol. Macromol. 2019, 126, 291–297. [Google Scholar] [CrossRef]
- Sun, S.; Huang, S.; Shi, Y.; Shao, Y.; Qiu, J.; Sedjoah, R.-C.A.-A.; Yan, Z.; Ding, L.; Zou, D.; Xin, Z. Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chem. 2021, 351, 129232. [Google Scholar] [CrossRef]
- Gosset-Erard, C.; Zhao, M.; Lordel-Madeleine, S.; Ennahar, S. Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chem. 2021, 352, 129396. [Google Scholar] [CrossRef]
- Dahash, S.L.; Al-Windy, S.B.; Al-Kuraishi, A.H.; Hussien, N.R.; Al-Niemi, M.S.; Al-Kuraishy, H.M. Ellagic acid-rich Pomegranate extracts synergizes moxifloxacin against methicillin resistance Staphylococcus aureus (MRSA). J. Pak. Med. Assoc. 2021, 71, S88–S92. [Google Scholar]
- Isnansetyo, A.; Handayani, D.P.; Istiqomah, I.; Arif, A.; Kaneko, T. An antibacterial compound purified from a tropical coastal plant, Diospyros maritima. Biodiversitas J. Biol. Divers. 2022, 23, 135–142. [Google Scholar] [CrossRef]
- Jeong, E.-T.; Park, S.-K.; Jo, D.-M.; Khan, F.; Choi, T.H.; Yoon, T.-M.; Kim, Y.-M. Synergistic antibacterial activity of an active compound derived from sedum takesimense against methicillin-resistant Staphylococcus aureus and its clinical isolates. J. Microbiol. Biotechnol. 2021, 31, 1288. [Google Scholar] [CrossRef]
- Xu, H.-X.; Mughal, S.; Taiwo, O.; Lee, S.F. Isolation and characterization of an antibacterial biflavonoid from an African chewing stick Garcinia kola Heckel (Clusiaceae). J. Ethnopharmacol. 2013, 147, 497–502. [Google Scholar] [CrossRef]
- Hioki, Y.; Onwona-Agyeman, S.; Kakumu, Y.; Hattori, H.; Yamauchi, K.; Mitsunaga, T. Garcinoic acids and a benzophenone derivative from the seeds of Garcinia kola and their antibacterial activities against oral bacterial pathogenic organisms. J. Nat. Prod. 2020, 83, 2087–2092. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Martos, S.; Garcia, A.; Fernandez-Bolanos, J.G.; Rodriguez-Gutierrez, G.; Fernandez-Bolanos, J. Isolation and characterization of a secoiridoid derivative from two-phase olive waste (alperujo). J. Agric. Food Chem. 2015, 63, 1151–1159. [Google Scholar] [PubMed]
- Karygianni, L.; Cecere, M.; Argyropoulou, A.; Hellwig, E.; Skaltsounis, A.L.; Wittmer, A.; Tchorz, J.P.; Al-Ahmad, A. Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth. BMC Complement. Altern. Med. 2019, 19, 51. [Google Scholar]
- Aribi, I.; Chemat, S.; Hamdi-Pacha, Y.; Luyten, W. Isolation of berberine tannate using a chromatography activity-guided fractionation from root bark of Berberis hispanica Boiss. & Reut. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 894–899. [Google Scholar]
- Patwardhan, R.B.; Dhakephalkar, P.K.; Chopade, B.A.; Dhavale, D.D.; Bhonde, R.R. Purification and characterization of an active principle, lawsone, responsible for the plasmid curing activity of Plumbago zeylanica root extracts. Front. Microbiol. 2018, 9, 2618. [Google Scholar]
- Vanitha, V.; Vijayakumar, S.; Nilavukkarasi, M.; Punitha, V.; Vidhya, E.; Praseetha, P. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind. Crops Prod. 2020, 154, 112748. [Google Scholar]
- Sakunpak, A.; Sueree, L. Thin-Layer Chromatography—Contact Bioautography as a Tool for Bioassay-Guided Isolation of Anti-Streptococcus mutans Compounds from Pinus merkusii Heartwood. JPC–J. Planar Chromatogr. Mod. TLC 2018, 31, 355–359. [Google Scholar]
- Gautam, S.S.; Bithel, N.; Kumar, S.; Painuly, D.; Singh, J. A new derivative of ionone from aerial parts of Viola odorata Linn. and its antibacterial role against respiratory pathogens. Clin. Phytosci. 2017, 2, 4. [Google Scholar] [CrossRef]
- Rajesh, P.; Samaga, P.V.; Ravishankar Rai, V.; Lokanatha Rai, K. In vitro biological activity of aromadendrin-4′-methyl ether isolated from root extract of Ventilago madraspatana Gaertn with relevance to anticandidal activity. Nat. Prod. Res. 2015, 29, 1042–1045. [Google Scholar]
- Yehia, R.S.; Altwaim, S.A. An insight into in vitro antioxidant, antimicrobial, cytotoxic, and apoptosis induction potential of mangiferin, a bioactive compound derived from Mangifera indica. Plants 2023, 12, 1539. [Google Scholar] [CrossRef]
- Matsuete-Takongmo, G.; Meffo-Dongmo, S.C.; Lannang, A.M.; Sewald, N. Antibacterial and Antioxidant Activities of Isolated Compounds from Prosopis africana Leaves. Int. J. Anal. Chem. 2022, 2022, 4205823. [Google Scholar]
- Makau, J.N.; Watanabe, K.; Mohammed, M.M.; Nishida, N. Antiviral activity of peanut (Arachis hypogaea L.) skin extract against human influenza viruses. J. Med. Food 2018, 21, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, C.; Mandalari, G.; Smeriglio, A.; Trombetta, D.; Musarra Pizzo, M.; Pennisi, R.; Sciortino, M.T. Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell. Viruses 2017, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Buedenbender, L.; Astone, F.A.; Tasdemir, D. Bioactive molecular networking for mapping the antimicrobial constituents of the baltic brown alga Fucus vesiculosus. Mar. Drugs 2020, 18, 311. [Google Scholar] [CrossRef] [PubMed]
- Graikini, D.; Soro, A.B.; Sivagnanam, S.P.; Tiwari, B.K.; Sánchez, L. Bioactivity of Fucoidan-Rich Extracts from Fucus vesiculosus against Rotavirus and Foodborne Pathogens. Mar. Drugs 2023, 21, 478. [Google Scholar] [CrossRef]
- Sultan, Y.Y.; Marrez, D.A. Isolation and purification of antifungal compounds from the green microalga Chlorella vulgaris. J. Appl. Biotechnol. Rep. 2022, 9, 603–613. [Google Scholar]
- Kim, H.-J.; Dasagrandhi, C.; Kim, S.-H.; Kim, B.-G.; Eom, S.-H.; Kim, Y.-M. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes. Indian J. Microbiol. 2018, 58, 105–108. [Google Scholar] [CrossRef]
- Sathyanathan, C.; Jyothirmayi, B.; Sundaram, L.; Abhinand, P.; Eswaramoorthy, R.; Gnanambal, K. Pheophytin a isolated from the seagrass Syringodium isoetifolium plausibly blocks umuC proteins of select bacterial pathogens, in silico. J. Appl. Microbiol. 2016, 121, 1592–1602. [Google Scholar] [CrossRef]
- Hadjkacem, F.; Elleuch, J.; Pierre, G.; Fendri, I.; Michaud, P.; Abdelkafi, S. Production and purification of fucoxanthins and β-carotenes from Halopteris scoparia and their effects on digestive enzymes and harmful bacteria. Environ. Technol. 2024, 45, 2923–2934. [Google Scholar] [CrossRef]
- Rajauria, G.; Abu-Ghannam, N. Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: A TLC-based approach. Int. J. Anal. Chem. 2013, 2013, 802573. [Google Scholar] [CrossRef]
- Okimura, T.; Jiang, Z.; Komatsubara, H.; Hirasaka, K.; Oda, T. Therapeutic effects of an orally administered edible seaweed-derived polysaccharide preparation, ascophyllan HS, on a Streptococcus pneumoniae infection mouse model. Int. J. Biol. Macromol. 2020, 154, 1116–1122. [Google Scholar]
- Richards, C.; Williams, N.A.; Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S.; Park, A.Y. Oral fucoidan attenuates lung pathology and clinical signs in a severe influenza a mouse model. Mar. Drugs 2020, 18, 246. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, S.; Menon, T.; Hanna, L.E.; Suresh, V.; Sathuvan, M.; Manikannan, M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int. J. Biol. Macromol. 2016, 82, 83–88. [Google Scholar] [PubMed]
- Fierascu, R.C.; Fierascu, I.; Baroi, A.M.; Ortan, A. Selected aspects related to medicinal and aromatic plants as alternative sources of bioactive compounds. Int. J. Mol. Sci. 2021, 22, 1521. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Yu, H.; Lim, J.-H.; Choi, J.H.; Park, K.-J.; Lee, J. Seaweed metabolomics: A review on its nutrients, bioactive compounds and changes in climate change. Food Res. Int. 2023, 163, 112221. [Google Scholar]
- Xu, P.; Tan, H.; Jin, W.; Li, Y.; Santhoshkumar, C.; Li, P.; Liu, W. Antioxidative and antimicrobial activities of intertidal seaweeds and possible effects of abiotic factors on these bioactivities. J. Oceanol. Limnol. 2018, 36, 2243–2256. [Google Scholar] [CrossRef]
- Ayrapetyan, O.N.; Obluchinskaya, E.D.; Zhurishkina, E.V.; Skorik, Y.A.; Lebedev, D.V.; Kulminskaya, A.A.; Lapina, I.M. Antibacterial properties of fucoidans from the brown algae Fucus vesiculosus L. of the Barents Sea. Biology 2021, 10, 67. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Bhuyan, P.P.; Behera, P.K.; Mandal, A.K.; Behera, C.; Ki, J.-S.; Adhikary, S.P.; MubarakAli, D. A state-of-the-art review on fucoidan as an antiviral agent to combat viral infections. Carbohydr. Polym. 2022, 291, 119551. [Google Scholar] [CrossRef]
- Jeong, G.-J.; Khan, F.; Tabassum, N.; Cho, K.-J.; Kim, Y.-M. Marine-derived bioactive materials as antibiofilm and antivirulence agents. Trends Biotechnol. 2024, 42, 1288–1304. [Google Scholar] [CrossRef]
- Noorjahan, A.; Mahesh, S.; Anantharaman, P.; Aiyamperumal, B. Antimicrobial potential of seaweeds: Critical review. In Sustainable Global Resources of Seaweeds Volume 1: Bioresources, Cultivation, Trade and Multifarious Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 399–420. [Google Scholar]
- Aribisala, J.O.; Aruwa, C.E.; Sabiu, S. Progressive approach of phenolic acids toward the advancement of antimicrobial drugs. In Advancement of Phenolic Acids in Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2024; pp. 177–210. [Google Scholar]
- Martelli, G.; Giacomini, D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur. J. Med. Chem. 2018, 158, 91–105. [Google Scholar]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, W. The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics 2022, 11, 1215. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.K.; Low, L.Y.; Yap, P.S.X.; Yusoff, K.; Mai, C.W.; Lai, K.S.; Lim, S.H.E. Plant-derived antimicrobials: Insights into mitigation of antimicrobial resistance. Rec. Nat. Prod. 2018, 12, 295–316. [Google Scholar] [CrossRef]
- Jubair, N.; Rajagopal, M.; Chinnappan, S.; Abdullah, N.B.; Fatima, A. Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evid. Based Complement. Altern. Med. 2021, 2021, 3663315. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Eskin, N.M.; Iranshahy, M.; Fazly Bazzaz, B.S. Phytochemicals: A promising weapon in the arsenal against antibiotic-resistant bacteria. Antibiotics 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial activity of quercetin: An approach to its mechanistic principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef] [PubMed]
- Renzetti, A.; Betts, J.W.; Fukumoto, K.; Rutherford, R.N. Antibacterial green tea catechins from a molecular perspective: Mechanisms of action and structure–activity relationships. Food Funct. 2020, 11, 9370–9396. [Google Scholar] [PubMed]
- Feng, R.; Qu, J.; Zhou, W.; Wei, Q.; Yin, Z.; Du, Y.; Yan, K.; Wu, Z.; Jia, R.; Li, L. Antibacterial activity and mechanism of berberine on avian Pasteurella multocida. Int. J. Clin. Exp. Med. 2016, 9, 22886–22892. [Google Scholar]
- Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules 2021, 26, 3374. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil—New insights into selected therapeutic applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Keyvani-Ghamsari, S.; Rahimi, M.; Khorsandi, K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci. Nutr. 2023, 11, 5856–5872. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Encinar, J.A.; Rodríguez-Díaz, J.C.; Micol, V. Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Curr. Med. Chem. 2020, 27, 2576–2606. [Google Scholar] [CrossRef] [PubMed]
- Guay, I.; Boulanger, S.; Isabelle, C.; Brouillette, E.; Chagnon, F.; Bouarab, K.; Marsault, E.; Malouin, F. Tomatidine and analog FC04–100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp. BMC Pharmacol. Toxicol. 2018, 19, 7. [Google Scholar]
- Castañeda, A.M.; Meléndez, C.M.; Uribe, D.; Pedroza-Díaz, J. Synergistic effects of natural compounds and conventional chemotherapeutic agents: Recent insights for the development of cancer treatment strategies. Heliyon 2022, 8, e09519. [Google Scholar] [CrossRef] [PubMed]
- Atta, S.; Waseem, D.; Fatima, H.; Naz, I.; Rasheed, F.; Kanwal, N. Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi J. Biol. Sci. 2023, 30, 103576. [Google Scholar] [CrossRef]
- MacNair, C.R.; Rutherford, S.T.; Tan, M.-W. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat. Rev. Microbiol. 2024, 22, 262–275. [Google Scholar] [CrossRef]
- Dassanayake, M.K.; Khoo, T.-J.; An, J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: A review of synergistic mechanisms. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 79. [Google Scholar]
- Kim, K.-H.; Yu, D.; Eom, S.-H.; Kim, H.-J.; Kim, D.-H.; Song, H.-S.; Kim, D.-M.; Kim, Y.-M. Fucofuroeckol-A from edible marine alga Eisenia bicyclis to restore antifungal activity of fluconazole against fluconazole-resistant Candida albicans. J. Appl. Phycol. 2018, 30, 605–609. [Google Scholar] [CrossRef]
- Arora, S.; Saquib, S.A.; Algarni, Y.A.; Kader, M.A.; Ahmad, I.; Alshahrani, M.Y.; Saluja, P.; Baba, S.M.; Abdulla, A.M.; Bavabeedu, S.S. Synergistic effect of plant extracts on endodontic pathogens isolated from teeth with root canal treatment failure: An in vitro study. Antibiotics 2021, 10, 552. [Google Scholar] [CrossRef]
- Demgne, O.M.F.; Damen, F.; Fankam, A.G.; Guefack, M.-G.F.; Wamba, B.E.; Nayim, P.; Mbaveng, A.T.; Bitchagno, G.T.; Tapondjou, L.A.; Penlap, V.B. Botanicals and phytochemicals from the bark of Hypericum roeperianum (Hypericaceae) had strong antibacterial activity and showed synergistic effects with antibiotics against multidrug-resistant bacteria expressing active efflux pumps. J. Ethnopharmacol. 2021, 277, 114257. [Google Scholar] [CrossRef]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Custódio, L.; Vitalini, S.; Iriti, M.; Hassani, L. A comparative study of the in vitro antimicrobial and synergistic effect of essential oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with antimicrobial drugs: New approach for health promoting products. Antibiotics 2020, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.-E.; Li, X.-J.; Zhu, X.-F.; Sun, Z.-L.; He, J.-M.; Zloh, M.; Gibbons, S.; Mu, Q. Flavonoids from Artemisia rupestris and their synergistic antibacterial effects on drug-resistant Staphylococcus aureus. Nat. Prod. Res. 2021, 35, 1881–1886. [Google Scholar]
- Eom, S.H.; Kim, D.H.; Lee, S.H.; Yoon, N.Y.; Kim, J.H.; Kim, T.H.; Chung, Y.H.; Kim, S.B.; Kim, Y.M.; Kim, H.W. In vitro antibacterial activity and synergistic antibiotic effects of phlorotannins isolated from Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Phytother. Res. 2013, 27, 1260–1264. [Google Scholar]
- Lee, J.-H.; Eom, S.-H.; Lee, E.-H.; Jung, Y.-J.; Kim, H.-J.; Jo, M.-R.; Son, K.-T.; Lee, H.-J.; Kim, J.H.; Lee, M.-S. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 2014, 29, 47–55. [Google Scholar] [CrossRef]
- Mantravadi, P.K.; Kalesh, K.A.; Dobson, R.C.; Hudson, A.O.; Parthasarathy, A. The quest for novel antimicrobial compounds: Emerging trends in research, development, and technologies. Antibiotics 2019, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef]
- Anwar, N.; Teo, Y.K.; Tan, J.B.L. The role of plant metabolites in drug discovery: Current challenges and future perspectives. In Natural Bio-Active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices; Springer: Berlin/Heidelberg, Germany, 2019; pp. 25–51. [Google Scholar]
- Sharma, A.; Sharma, S.; Kumar, A.; Kumar, V.; Sharma, A.K. Plant secondary metabolites: An introduction of their chemistry and biological significance with physicochemical aspect. In Plant Secondary Metabolites: Physico-Chemical Properties and Therapeutic Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–45. [Google Scholar]
- Lautié, E.; Russo, O.; Ducrot, P.; Boutin, J.A. Unraveling plant natural chemical diversity for drug discovery purposes. Front. Pharmacol. 2020, 11, 397. [Google Scholar]
- Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A.; Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Plant secondary metabolites and their general function in plants. In Lessons on Caffeine, Cannabis & Co: Plant-Derived Drugs and Their Interaction with Human Receptors; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–17. [Google Scholar]
- Das, B.; Baidya, A.T.; Mathew, A.T.; Yadav, A.K.; Kumar, R. Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorganic Med. Chem. 2022, 56, 116614. [Google Scholar]
- Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res. 2021, 35, 4660–4702. [Google Scholar]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Aware, C.B.; Patil, D.N.; Suryawanshi, S.S.; Mali, P.R.; Rane, M.R.; Gurav, R.G.; Jadhav, J.P. Natural bioactive products as promising therapeutics: A review of natural product-based drug development. S. Afr. J. Bot. 2022, 151, 512–528. [Google Scholar]
- Mohammadi, S.; Jafari, B.; Asgharian, P.; Martorell, M.; Sharifi-Rad, J. Medicinal plants used in the treatment of Malaria: A key emphasis to Artemisia, Cinchona, Cryptolepis, and Tabebuia genera. Phytother. Res. 2020, 34, 1556–1569. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.; Feitosa, L.M.; SILVEIRA, F.F.; Boechat, N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. An. Acad. Bras. Ciências 2018, 90, 1251–1271. [Google Scholar] [CrossRef]
- Bakhshi, G.D.; Rangwala, Z.S.; Chauhan, A.R. Systemic enzyme therapy in chronic venous disease: A review. Int. J. Res. Med. Sci. 2021, 9, 2869. [Google Scholar] [CrossRef]
- Uivarosi, V.; Munteanu, A.-C.; Nițulescu, G.M. An overview of synthetic and semisynthetic flavonoid derivatives and analogues: Perspectives in drug discovery. Stud. Nat. Prod. Chem. 2019, 60, 29–84. [Google Scholar]
- Hricovíniová, Z.; Mascaretti, Š.; Hricovíniová, J.; Čížek, A.; Jampílek, J. New unnatural Gallotannins: A way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants 2021, 10, 1288. [Google Scholar] [CrossRef]
- Xu, K.; Ren, X.; Wang, J.; Zhang, Q.; Fu, X.-J.; Zhang, P.-C. Clinical development and informatics analysis of natural and semi-synthetic flavonoid drugs: A critical review. J. Adv. Res. 2023, 63, 269–284. [Google Scholar] [CrossRef]
- Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects-A decade update. Tetrahedron 2021, 78, 131801. [Google Scholar]
- Stojković, D.; Petrović, J.; Carević, T.; Soković, M.; Liaras, K. Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review. Antibiotics 2023, 12, 963. [Google Scholar] [CrossRef]
- Goel, B.; Sahu, B.; Jain, S.K. Plant-derived drug discovery: Introduction to recent approaches. In Botanical Leads for Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–27. [Google Scholar]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur. J. Med. Chem. 2022, 229, 114068. [Google Scholar]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dai, T.; Chen, J.; Chen, M.; Liang, R.; Liu, C.; Du, L.; McClements, D.J. Modification of flavonoids: Methods and influences on biological activities. Crit. Rev. Food Sci. Nutr. 2023, 63, 10637–10658. [Google Scholar] [PubMed]
- Li, C.-Q.; Lei, H.-M.; Hu, Q.-Y.; Li, G.-H.; Zhao, P.-J. Recent advances in the synthetic biology of natural drugs. Front. Bioeng. Biotechnol. 2021, 9, 691152. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Nielsen, J.; Liu, Z. Synthetic biology advanced natural product discovery. Metabolites 2021, 11, 785. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar]
Compound | Plant | Activity | Bacteria | Synergistic Effects | Reference |
---|---|---|---|---|---|
Extract | Daphne genkwa | 35,000 mg/mL | Methicillin-resistant Staphylococcus aureus (MRSA) |
| [65] |
Ellagic acid | - | 31.62 μg/mL | MRSA |
| [72] |
1,2,4,6-tetra-O-galloyl-β-glucose | Sedum takesimense | 32 μg/mL 128 μg/mL 128 μg/mL 32 μg/mL 128 μg/mL 16 μg/mL | Escherichia coli Pseudomonas aeruginosa Salmonella tyrphimurium Bacillus cereus Listeria monocytogenes Staphylococcus aureus |
| [74] |
2-hydroxy-1,4-naphthoquinone | Plumbago zeylanica | 100 μg/mL | E. coli |
| [80] |
Fucofuroeckol-A | Eisenia bicyclis | 16–32 μg/mL | L. monocytogenes |
| [92] |
512 μg/mL | Fluconazole-resistant Candida albicans |
| [126] | ||
Extract | Commiphora molmol | 3.12 mg/mL | C. albicans |
| [127] |
8,8-bis(dihydroconiferyl) diferulate | Hypericum roeperianum | 4 μg/mL 128 μg/mL 32 μg/mL | E. coli Enterobacter aerogenes Klebsiella pneumoniae |
| [128] |
Extract- | Laurus nobilis L. | 0.25 μg/mL 0.25 μg/mL 0.25 μg/mL | C. albicans C. glabrata C. krusei |
| [129] |
Chrysoeriol | Artemisiarupestris | 32 μg/mL | MRSA |
| [130] |
Phlorofucofuroeckol-A | Eisenia bicyclis | 32 μg/mL | MRSA |
| [131] |
32 μg/mL | Propionibacterium acnes |
| [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, D.-M.; Tabassum, N.; Oh, D.K.; Ko, S.-C.; Kim, K.W.; Yang, D.; Kim, J.-Y.; Oh, G.-W.; Choi, G.; Lee, D.-S.; et al. Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds. Processes 2024, 12, 2316. https://doi.org/10.3390/pr12112316
Jo D-M, Tabassum N, Oh DK, Ko S-C, Kim KW, Yang D, Kim J-Y, Oh G-W, Choi G, Lee D-S, et al. Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds. Processes. 2024; 12(11):2316. https://doi.org/10.3390/pr12112316
Chicago/Turabian StyleJo, Du-Min, Nazia Tabassum, Do Kyung Oh, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Ji-Yul Kim, Gun-Woo Oh, Grace Choi, Dae-Sung Lee, and et al. 2024. "Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds" Processes 12, no. 11: 2316. https://doi.org/10.3390/pr12112316
APA StyleJo, D. -M., Tabassum, N., Oh, D. K., Ko, S. -C., Kim, K. W., Yang, D., Kim, J. -Y., Oh, G. -W., Choi, G., Lee, D. -S., Park, S. -K., Kim, Y. -M., & Khan, F. (2024). Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds. Processes, 12(11), 2316. https://doi.org/10.3390/pr12112316