Numerical Modeling of Hydraulic Fracturing Interference in Multi-Layer Shale Oil Wells
Abstract
:1. Introduction
2. Coupled Flow and Geomechanics Model
3. Non-Planar Hydraulic Fracture Model
4. Numerical Study and Discussion
4.1. Depletion-Induced Stress Evolutions in Different Layers
4.2. Non-Planar Hydraulic Fracturing in Vertically Infilled Wells
5. Conclusions
- (1)
- Pressure depletion induced by parent-well production is significant within the SRV, while the correspondingly induced in situ stress alterations are observed both inside and outside the SRV.
- (2)
- The interwell and interlayer interference is jointly affected by infill-well fracturing timing, cluster design, and the candidate infill well’s depth. The interference is the strongest when the parent and infill wells are in the same layer. In addition, the interference is augmented by the prolonged legacy production in the parent well and by an increased cluster number per fracture stage in the infill well.
- (3)
- Stronger interwell and interlayer interference does not always indicate a greater tendency for fracture hits or connections between parent- and infill-well fractures. When the parent-well-depletion-induced in situ stress alteration is sufficient, infill-well fractures propagated at various depths can be pushed away by the stress reorientation, and parent-well fracture protection can be achieved.
- (4)
- Based on the observations in this specific numerical study, it is recommended that a combination of coupled flow and geomechanical simulation and infill-well fracturing prediction is carried out before the placement and completion of infill wells. It helps to address the non-monotonic relationship between interwell interference and the fracture hit potential.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, A.; Guo, X.; Yu, H.; Huang, L.; Shi, S.; Cheng, N. A parametric study of hydraulic fracturing interference between fracture clusters and stages based on numerical modeling. Energy Explor. Exploit. 2021, 39, 65–85. [Google Scholar] [CrossRef]
- Kerr, R.A. Natural gas from shale bursts onto the scene. Science 2010, 328, 1624–1626. [Google Scholar] [CrossRef]
- Weijermars, R.; Sorek, N.; Sen, D.; Ayers, W.B. Eagle Ford Shale play economics: US versus Mexico. J. Nat. Gas Sci. Eng. 2017, 38, 345–372. [Google Scholar] [CrossRef]
- Yang, X. Reservoir space characteristics and exploration of shale oil mobility of the Jurassic Lianggaoshan Formation shale in the northeastern Sichuan Basin. Pet. Sci. Bull. 2024, 9, 196–212. [Google Scholar]
- Zou, C.N.; Zhu, R.K.; Bai, B.; Yang, Z.; Hou, L.H.; Zha, M.; Li, T.T. Significance, Geologic Characteristics, Resource Potential and Future Challenges of Tight Oil and Shale Oil. Bull. Mineral. Petrol. Geochem. 2015, 34, 3–17. [Google Scholar]
- Ajani, A.A.; Kelkar, M.G. Interference study in shale plays. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012. SPE-151045-MS. [Google Scholar]
- King, G.E.; Valencia, R.L. Well Integrity for Fracturing and Re-Fracturing: What Is Needed and Why? In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 9–11 February 2016. SPE-179120-MS. [Google Scholar]
- Huang, L.; Jiang, P.; Zhao, X.; Yang, L.; Lin, J.; Guo, X. A Modeling Study of the Productivity of Horizontal Wells in Hydrocarbon-Bearing Reservoirs: Effects of Fracturing Interference. Geofluids 2021, 2021, 2168622. [Google Scholar] [CrossRef]
- Cao, R.; Li, R.; Girardi, A.; Chowdhury, N.; Chen, C. Well Interference and Optimum Well Spacing for Wolfcamp Development at Permian Basin. In Proceedings of the Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017. URTeC-2691962-MS. [Google Scholar]
- Wang, Z.; Guo, X.; Zheng, G.; Yu, P.; Wang, W.; Jin, Y.; Chen, G. Effects of parent well spacing on the poroelastic behaviors in the infill zone in shale oil reservoirs: A case study in Jimsar Shale Oil, China. Energy Sci. Eng. 2022, 10, 1043–1054. [Google Scholar] [CrossRef]
- Gakhar, K.; Rodionov, Y.; Defeu, C.; Shan, D.; Malpani, R.; Ejofodomi, E.; Fischer, K.; Hardy, B. Engineering an Effective Completion and Stimulation Strategy for In-Fill Wells. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 24–26 January 2017. SPE-184835-MS. [Google Scholar]
- Yaich, E.; Diaz De Souza, O.C.; Foster, R.A.; Abou-sayed, I.S. A Methodology to Quantify the Impact of Well Interference and Optimize Well Spacing in the Marcellus Shale. In Proceedings of the SPE/CSUR Unconventional Resources Conference–Canada, Calgary, AB, Canada, 30 September–2 October 2014. SPE-171578-MS. [Google Scholar]
- Miller, G.; Lindsay, G.; Baihly, J.; Xu, T. Parent Well Refracturing: Economic Safety Nets in an Uneconomic Market. In Proceedings of the SPE Low Perm Symposium, Denver, CO, USA, 5–6 May 2016. SPE-180200-MS. [Google Scholar]
- Lindsay, G.; Miller, G.; Xu, T.; Shan, D.; Baihly, J. Production Performance of Infill Horizontal Wells vs. Pre-Existing Wells in the Major US Unconventional Basins. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 23–25 January 2018. SPE-189875-MS. [Google Scholar]
- Gupta, J.; Zielonka, M.; Albert, R.A.; El-Rabaa, A.M.; Burnham, H.A.; Choi, N.H. Integrated methodology for optimizing development of unconventional gas resources. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012. SPE-152224-MS. [Google Scholar]
- Safari, R.; Lewis, R.; Ma, X.; Mutlu, U.; Ghassemi, A. Infill-Well Fracturing Optimization in Tightly Spaced Horizontal Wells. SPE J. 2017, 22, 582–595. [Google Scholar] [CrossRef]
- Chen, B.; Ji, J.; Lin, J.; Chen, H.; Wang, X.; Guo, X.; Yang, W.; Lin, J. Experimental and numerical investigation of characteristics of highly heterogeneous rock mechanical responses in tight sandy conglomerate reservoir rock under tri-axial compression. Front. Earth Sci. 2021, 9, 735208. [Google Scholar] [CrossRef]
- Guo, X.; Jin, Y.; Zi, J.; Lin, B. Numerical investigation of the gas production efficiency and induced geomechanical responses in marine methane hydrate-bearing sediments exploited by depressurization through hydraulic fractures. Energy Fuels 2021, 35, 18441–18458. [Google Scholar] [CrossRef]
- Islamov, S.R.; Bondarenko, A.V.; Korobov, G.Y.; Podoprigora, D.G. Complex algorithm for developing effective kill fluids for oil and gas condensate reservoirs. Int. J. Civ. Eng. Technol. 2019, 10, 2697–2713. [Google Scholar]
- Islamov, S.; Islamov, R.; Shelukhov, G.; Sharifov, A.; Sultanbekov, R.; Ismakov, R.; Agliullin, A.; Ganiev, R. Fluid-Loss Control Technology: From Laboratory to Well Field. Processes 2024, 12, 114. [Google Scholar] [CrossRef]
- Belousov, A.; Lushpeev, V.; Sokolov, A.; Sultanbekov, R.; Tyan, Y.; Ovchinnikov, E.; Shvets, A.; Bushuev, V.; Islamov, S. Hartmann–Sprenger Energy Separation Effect for the Quasi-Isothermal Pressure Reduction of Natural Gas: Feasibility Analysis and Numerical Simulation. Energies 2024, 17, 2010. [Google Scholar] [CrossRef]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Coussy, O. Mechanics of Porous Continua, Original Edition; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Dean, R.H.; Gai, X.; Stone, C.M.; Minkoff, S.E. A comparison of techniques for coupling porous flow and geomechanics. SPE J. 2006, 11, 132–140. [Google Scholar] [CrossRef]
- Mikelić, A.; Wheeler, M.F. Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 2013, 17, 455–461. [Google Scholar] [CrossRef]
- Kim, J.; Moridis, G.J. Gas flow tightly coupled to elastoplastic geomechanics for tight-and shale-gas reservoirs: Material failure and enhanced permeability. SPE J. 2014, 19, 1110–1125. [Google Scholar] [CrossRef]
- Guo, X.; Jin, Y.; Zi, J.; Lin, J.; Zhu, B. A 3D modeling study of effects of heterogeneity on system responses in methane hydrate reservoirs with horizontal well depressurization. Gas Sci. Eng. 2023, 115, 205001. [Google Scholar] [CrossRef]
- Lecampion, B.; Bunger, A.; Zhang, X. Numerical methods for hydraulic fracture propagation: A review of recent trends. J. Nat. Gas Sci. Eng. 2018, 49, 66–83. [Google Scholar] [CrossRef]
- Hou, B.; Chang, Z.; Fu, W.; Muhadasi, Y.; Chen, M. Fracture Initiation and Propagation in a Deep Shale Gas Reservoir Subject to an Alternating-Fluid-Injection Hydraulic-Fracturing Treatment. SPE J. 2019, 24, 1839–1855. [Google Scholar] [CrossRef]
- Tang, J.; Wu, K.; Li, Y.; Hu, X.; Liu, Q.; Ehlig-Economides, C. Numerical Investigation of the Interactions between Hydraulic Fracture and Bedding Planes with Non-orthogonal Approach Angle. Eng. Fract. Mech. 2018, 200, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Long, M.; Tang, J.; Chen, M.; Fu, X. A hydraulic fracture height mathematical model considering the influence of plastic region at fracture tip. Pet. Explor. Dev. 2020, 47, 184–195. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, M.; Guo, X.; Geng, J.; Li, Y. Investigation of creep and transport mechanisms of CO2 fracturing within natural gas hydrates. Energy 2024, 300, 131214. [Google Scholar] [CrossRef]
- Lee, S.; Mikelic, A.; Wheeler, M.F.; Wick, T. Phase-Field Modeling of Two Phase Fluid Filled Fractures in a Poroelastic Medium. Multiscale Model. Simul. 2018, 16, 1542–1580. [Google Scholar] [CrossRef]
- Cheng, W.; Jiang, G.; Jin, Y. Numerical Simulation on Fracture Path and Nonlinear Closure for Simultaneous and Sequential Fracturing in a Horizontal Well. Comput. Geotech. 2017, 88, 242–255. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Xu, D.; Gao, Y.; Zhang, J.; He, J.; Zhang, F.; Gao, S.; Guo, X. Evolution of near-well damage caused by fluid injection through perforations in wellbores in low-permeability reservoirs: A case study in a shale oil reservoir. Lithosphere 2022, 2022, 3824011. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Wang, W.; Yu, P.; Chen, G.; Lin, J.; Zhu, B.; Guo, X. Coupled thermal-hydraulic-mechanical modeling of near-well stress evolution in naturally fractured formations during drilling. Processes 2023, 11, 1744. [Google Scholar] [CrossRef]
- Mack, M.G.; Elbel, J.L.; Piggott, A.R. Numerical representation of multilayer hydraulic fracturing. In Proceedings of the 33th US Symposium on Rock Mechanics, Santa Fe, NM, USA, 3–5 June 1992. ARMA-92-0335. [Google Scholar]
- Olson, J.E.; Wu, K. Sequential versus Simultaneous Multi-zone Fracturing in Horizontal Wells: Insights from a Non-planar, Multi-frac Numerical Model. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012. SPE-152602-MS. [Google Scholar]
- Wu, K.; Olson, J.E. Simultaneous multifracture treatments: Fully coupled fluid flow and fracture mechanics for horizontal wells. SPE J. 2015, 20, 337–346. [Google Scholar] [CrossRef]
- Wu, K.; Olson, J.E. A simplified three-dimensional displacement discontinuity method for multiple fracture simulations. Int. J. Fract. 2015, 193, 191–204. [Google Scholar] [CrossRef]
- Taylor, D.W. Fundamentals of Soil Mechanics; Jon Wiley & Sons Inc.: Hoboken, NJ, USA, 1948. [Google Scholar]
- Terzaghi, K. Erdbaumechanik auf Bodenphysikalischer Grundlage; F. Deuticke: Vienna, Austria, 1925. [Google Scholar]
- Yoon, H. Flexible and practical parallel implementation for coupled elastoplastic geomechanics and non-isothermal flow. Int. J. Rock Mech. Min. Sci. 2019, 120, 96–107. [Google Scholar] [CrossRef]
- Zhi, D.M.; Guo, X.Y.; Wang, W.; Jin, Y.; Liu, C.G.; Chen, G.; Wang, Z.L. Fracturing and production analysis of the efficacy of hydraulic fracture stage reduction in the improvement of cost-effectiveness in shale oil development: A case study of Jimsar shale oil, China. Energy Sci. Eng. 2021, 9, 1337–1348. [Google Scholar] [CrossRef]
Eagle Ford Shale | Bakken Shale | Jimsar Shale | |
---|---|---|---|
Lithology and facies | Marine shale | Marine marlite | Lacustrine shale |
Estimated area | 2 × 104 km2 | 7 × 104 km2 | 3 × 104 km2 |
Cumulative payzone thickness | 30–90 m | 2–20 m | 80–200 m |
Fracture Half-Length | Fracture Height | Fracture Network Width |
---|---|---|
100 m | 15 m | 20 m |
Fracture direction | Number of events | Main fracture number in a stage |
NE 26° | 62 | 3 |
Parameter | Value |
---|---|
Matrix permeability | 0.01 mD |
Matrix porosity | 12% |
Young’s modulus | 25 GPa |
Poisson’s ratio | 0.22 |
Oil density | 0.9 g/cm3 |
Initial reservoir pressure | 27 MPa |
Minimum principal stress | 30 MPa |
Maximum principal stress | 35 MPa |
Oil saturation | 75% |
Fracture half-length | 100 m |
Fracture height | 15 m |
Fracture number | 3 |
Fracture spacing | 10 m |
Cumulative thickness | 65 m |
Location of the horizontal wellbore | X = 0 m, −100 m < y < 100 m, z = 0 m |
Infill-well Fracture | Fracture Length (from Left to Right) |
---|---|
z = 0 m, 3-cluster | 202.24 m, 179.44 m, 201.93 m |
z = 15m, 3-cluster | 199.07 m, 179.47 m, 199.93 m |
z = 30 m, 3-cluster | 199.95 m, 178.85 m, 201.18 m |
z = 0 m, 4-cluster | 210.67 m, 182.50 m, 181.04 m, 211.69 m |
z = 15 m, 4-cluster | 209.40 m, 181.39 m, 183.05 m, 211.92 m |
z = 30 m, 4-cluster | 209.44 m, 180.21 m, 181.43 m, 209.78 m |
1-yr, z = 0 m | 1-yr, z = 15 m | 1-yr, z = 30 m | 3-yr, z = 0 m | 3-yr, z = 15 m | 3-yr, z = 30 m | 5-yr, z = 0 m | 5-yr, z = 15 m | 5-yr, z = 30 m | |
---|---|---|---|---|---|---|---|---|---|
Cluster 1 | 2.16 | 2.19 | 2.15 | 2.17 | 2.17 | 2.17 | 2.21 | 2.2 | 2.18 |
Cluster 2 | 1.78 | 1.79 | 1.78 | 1.79 | 1.78 | 1.79 | 1.81 | 1.79 | 1.79 |
Cluster 3 | 2.09 | 2.13 | 2.13 | 2.12 | 2.12 | 2.14 | 2.14 | 2.14 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Aibaibu, A.; Wu, Y.; Chen, B.; Zhou, H.; Zhu, B.; Zhao, X. Numerical Modeling of Hydraulic Fracturing Interference in Multi-Layer Shale Oil Wells. Processes 2024, 12, 2370. https://doi.org/10.3390/pr12112370
Guo X, Aibaibu A, Wu Y, Chen B, Zhou H, Zhu B, Zhao X. Numerical Modeling of Hydraulic Fracturing Interference in Multi-Layer Shale Oil Wells. Processes. 2024; 12(11):2370. https://doi.org/10.3390/pr12112370
Chicago/Turabian StyleGuo, Xinwei, Abulimiti Aibaibu, Yuezhong Wu, Bo Chen, Hua Zhou, Bolong Zhu, and Xiangyun Zhao. 2024. "Numerical Modeling of Hydraulic Fracturing Interference in Multi-Layer Shale Oil Wells" Processes 12, no. 11: 2370. https://doi.org/10.3390/pr12112370
APA StyleGuo, X., Aibaibu, A., Wu, Y., Chen, B., Zhou, H., Zhu, B., & Zhao, X. (2024). Numerical Modeling of Hydraulic Fracturing Interference in Multi-Layer Shale Oil Wells. Processes, 12(11), 2370. https://doi.org/10.3390/pr12112370