Application of NACA 6412 Airfoil for Noise and Vibration Reduction in Evaporator Fan Blades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cooling Tunnel
2.2. Cooling Fan
2.3. Modeling and Flow Analysis
2.4. Measurement of Sound Noise
3. Findings and Discussion
3.1. Pressure Values
3.2. Velocity Distribution
3.3. Noise Measurement Results
4. Vibration Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rama Krishna, S.; Rama Krishna, A.; Ramji, K. Reduction of motor fan noise using CFD and CAA simulations. Appl. Acoust. 2011, 72, 982–992. [Google Scholar] [CrossRef]
- Ekim, S. Reduction of the Noise Generated from Evaporation Fans Inside Ammonia Cooling Tower. Master’s Thesis, Graduate School of Natural and Applied Sciences, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye, 2019. [Google Scholar]
- Cattanei, A.; Ghio, R.; Bongiovı, A. Reduction of the tonal noise annoyance of axial flow fans by means of optimal blade spacing. Appl. Acoust. 2007, 68, 1323–1345. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, J.; Yang, X.; Wang, W.; Ding, Y. Tonal noise reduction by unevenly spaced blades in a forward-curved-blades centrifugal fan. Appl. Acoust. 2019, 146, 172–183. [Google Scholar] [CrossRef]
- Kalmár-Nagy, T.; Dezső Bak, B. Vibration and Noise of an Axial Flow Fan. Period. Polytech. Mech. Eng. 2015, 59, 109–113. [Google Scholar] [CrossRef]
- Benedek, T.; Vad, J. Concerted Aerodynamic and Acoustic Diagnostics of an Axial Flow Industrial Fan, Involving the Phased Array Microphone Technique. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Tóth, B. Phased Array Microphone Measurement of an Axial Flow Fan; BME Department of Fluid Mechanics: Budapest, Hungary, 2014. [Google Scholar]
- World Report on Hearing; World Health Organization: Geneva, Switzerland, 2021.
- Wu, Y.; Pan, D.; Pen, Z.; Ouyan, H. Blade force model for calculating the axial noise of fans with unevenlyspaced blades. Appl. Acoust. 2019, 146, 429–436. [Google Scholar] [CrossRef]
- Angelini, G.; Bonanni, T.; Corsini, A.; Delibra, G.; Tieghi, L.; Volponi, D. Optimization of an axial fan for air cooled condensers. Energy Procedia 2017, 126, 754–761. [Google Scholar] [CrossRef]
- Moreau, S.; Sanjosé, M.; Magne, S. Optimization of tonal noise control with flow obstruction. J. Sound Vib. 2018, 437, 264–275. [Google Scholar] [CrossRef]
- Kudo, T.; Tominaga, T.; Eguchi, T.; Suzuki, A. Development of Noise Reduction Method for Radiator Fun of Automobile. In Proceedings of the JSME Annual Meeting, Fukuoka, Japan, 4 September 2004. [Google Scholar]
- Pochkin, Y.; Khaletskiy, Y. Aircraft fan noise reduction technology using leaned stator blades. Procedia Eng. 2015, 106, 368–376. [Google Scholar] [CrossRef]
- Wang, C. Noise source analysis for two identical small axial-flow fans in series under operating condition. Appl. Acoust. 2017, 129, 13–26. [Google Scholar] [CrossRef]
- Zaheer, Z.; Reby Roy, K.E.; Nair, G.S.; Ragipathi, V.; Niranjan, U.V. CFD analysis of the performance of different airfoils in ground effect. J. Phys. Conf. Ser. 2019, 1355, 012006. [Google Scholar] [CrossRef]
- Khairani, T.C.; Marpaung, T.J.; Suriati. Computational Analysis of Fluid Behaviour Around Airfoil with Navier-Stokes Equation. In Proceedings of the 2018 International Conference on Engineering, Technologies, and Applied Sciences, Bandar Lampung, Indonesia, 18–20 October 2018. [Google Scholar]
- Davidson, E.J. Evaluation Methodology Basics: The Nuts and Bolts of Sound Evaluation; SAGE Publications: Thousand Oaks, CA, USA, 2005. [Google Scholar]
- Yang, T.; Xiaolan, C.; Cheng, H. Aerodynamic Performance Analysis of Axial-fan in Low Pressure Pipeline based on ANSYS CFX. In Proceedings of the Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015), Chongqing, China, 18–20 December 2015. [Google Scholar]
- Kalkan, O.O. Implementation Of K-Epsilon Turbulence Models in a Two Dimensional Parallel Navier-Stokes Solver on Hybrid Grids. Master’s Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Türkiye, 2014. [Google Scholar]
- Huang, B.; Xu, J.; Wang, J.; Xu, L.; Chen, X. Numerical Investigation on the Aerodynamic and Aeroacoustic Characteristics in New Energy Vehicle Cooling Fan with Shroud. Process 2024, 12, 333. [Google Scholar] [CrossRef]
- Zhang, Y.; Rahman, M.M.; Chen, G. Development of k-R turbulence model for wall-bounded flows. Aerosp. Sci. Technol. 2020, 98, 105681. [Google Scholar] [CrossRef]
- Jian, C.; Yuan, H.; Li, G.; Canxing, W.; Liu, C.; Yuanrui, L. Aerodynamic noise prediction of a centrifugal fan considering the volute effect using IBEM. Appl. Acoust. 2018, 132, 182–190. [Google Scholar]
- DIN EN 415-9; Safety of Packaging Machines—Part 9: Noise Measurement Methods for Packaging Machines, Packaging Lines and Associated Equipment, Grade of Accuracy 2 and 3. European Standards: Brussels, Belgium, 2009.
- Fink, D.J. What Is a Safe Noise Level for the Public? Am. J. Public Health 2017, 107, 44–45. [Google Scholar] [CrossRef] [PubMed]
- Şahinoğlu, A.; Rafighi, M.; Kumar, R. An investigation on cutting sound effect on power consumption and surface roughness in CBN tool-assisted hard turning. Proc. IMechE Part E J. Process Mech. Eng. 2022, 236, 1096–1108. [Google Scholar] [CrossRef]
Mode | Frequency (Hz) |
---|---|
1 | 24.514 |
2 | 32.338 |
3 | 47.779 |
4 | 48.568 |
5 | 49.065 |
6 | 50.329 |
Mode | Whirl Direction | Mode Stability | Critical Speed (rpm) | 1500 (rpm) | 2000 (rpm) | 2900 (rpm) | 3000 (rpm) | 3500 (rpm) |
---|---|---|---|---|---|---|---|---|
1 | BW | STABLE | NONE | 24.514 | 21.981 | 18.276 | 17.251 | 16.314 |
2 | BW | STABLE | 1940.3 | 32.338 | 32.338 | 32.337 | 32.337 | 32.337 |
3 | FW | STABLE | 2851.9 | 47.779 | 47.704 | 47.522 | 47.456 | 47.39 |
4 | FW | STABLE | 2929.4 | 48.568 | 48.766 | 48.823 | 48.832 | 48.839 |
5 | BW | STABLE | 2960.9 | 49.065 | 49.169 | 49.336 | 49.398 | 49.463 |
6 | FW | STABLE | NONE | 50.329 | 55.87 | 67.147 | 71.133 | 75.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moralar, A.; Ekim, S. Application of NACA 6412 Airfoil for Noise and Vibration Reduction in Evaporator Fan Blades. Processes 2024, 12, 2377. https://doi.org/10.3390/pr12112377
Moralar A, Ekim S. Application of NACA 6412 Airfoil for Noise and Vibration Reduction in Evaporator Fan Blades. Processes. 2024; 12(11):2377. https://doi.org/10.3390/pr12112377
Chicago/Turabian StyleMoralar, Aytaç, and Serhat Ekim. 2024. "Application of NACA 6412 Airfoil for Noise and Vibration Reduction in Evaporator Fan Blades" Processes 12, no. 11: 2377. https://doi.org/10.3390/pr12112377
APA StyleMoralar, A., & Ekim, S. (2024). Application of NACA 6412 Airfoil for Noise and Vibration Reduction in Evaporator Fan Blades. Processes, 12(11), 2377. https://doi.org/10.3390/pr12112377