Particle Size as an Indicator of Wheat Flour Quality: A Review
Abstract
:1. Introduction
2. Factors Influencing the PS Distribution of Wheat Flour
2.1. Wheat Grinding Process
2.2. Grain Hardness
2.3. Moisture Content, Grain Temperature, and Other Factors
3. Effect of PS on the Chemical Properties of Flour
4. Wheat Flour PS and Cereal-Based Product Quality
4.1. Bread
4.2. Pasta and Noodle Quality
4.3. Cookies
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kheiralipour, K.; Brandão, M.; Holka, M.; Choryński, A. A Review of environmental impacts of wheat production in different agrotechnical systems. Resources 2024, 13, 93. [Google Scholar] [CrossRef]
- Khalid, A.; Hameed, A.; Tahir, M.F. Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Front. Nutr. 2023, 10, 1053196. [Google Scholar] [CrossRef]
- Fradgley, N.S.; Gardner, K.A.; Kerton, M.; Swarbreck, S.M.; Bentley, A.R. Balancing quality with quantity: A case study of UK bread wheat. Plants People Planet 2023, 6, 1000–1013. [Google Scholar] [CrossRef]
- Tian, W.; Zheng, Y.; Wang, W.; Wang, D.; Tilley, M.; Zhang, G.; He, Z.; Li, Y. A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2274–2308. [Google Scholar] [CrossRef] [PubMed]
- Saini, P.; Kumar, N.; Kumar, S.; Mwaurah, P.W.; Panghal, A.; Attkan, A.K.; Singh, V.K.; Garg, M.K.; Singh, V. Bioactive compounds, nutritional benefits and food applications of colored wheat: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 61, 3197–3210. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, R.A.; Singh, T.P.; Rani, M.; Sogi, D.S.; Bhat, M.A. Diversity in Grain, Flour, Amino Acid Composition, Protein Profiling, and Proportion of Total Flour Proteins of Different Wheat Cultivars of North India. Front. Nutr. 2020, 7, 141. [Google Scholar] [CrossRef]
- Gugino, I.M.; Alfeo, V.; Ashkezary, M.R.; Marconi, O.; Pirrone, A.; Francesca, N.; Cincotta, F.; Verzera, A.; Todaro, A. Maiorca wheat malt: A comprehensive analysis of physicochemical properties, volatile compounds, and sensory evaluation in brewing process and final product quality. Food Chem. 2024, 435, 137517. [Google Scholar] [CrossRef]
- Nibin, M.; Varuvel, E.G.; JS, F.J.; Vikneswaran, M. Evaluation of wheat germ oil biofuel in diesel engine with hydrogen, bioethanol dual fuel and fuel ionization strategies. Int. J. Hydrogen Energy 2024, 59, 889–902. [Google Scholar] [CrossRef]
- Pasha, I.; Anjum, F.M.; Morris, C.F. Grain hardness: A major determinant of wheat quality. Food Sci. Technol. Int. 2010, 16, 511–522. [Google Scholar] [CrossRef]
- Tian, X.; Wang, X.; Wang, Z.; Sun, B.; Wang, F.; Ma, S.; Gu, Y.; Qian, X. Particle size distribution control during wheat milling: Nutritional quality and functional basis of flour products—A comprehensive review. Int. J. Food Sci. Technol. 2022, 57, 7556–7572. [Google Scholar] [CrossRef]
- Islam, M.A.; Kulathunga, J.; Ray, A.; Ohm, J.B.; Islam, S. Particle size reduction influences starch and protein functionality, and nutritional quality of stone milled whole wheat flour from hard red spring wheat. Food Biosci. 2024, 61, 104612. [Google Scholar] [CrossRef]
- Sissons, M.; Cutillo, S.; Egan, N.; Farahnaky, A.; Gadaleta, A. Influence of some spaghetti processing variables on technological attributes and the in vitro digestion of starch. Foods 2022, 11, 3650. [Google Scholar] [CrossRef] [PubMed]
- Cañas, S.; Perez-Moral, N.; Edwards, C.H. Effect of cooking, 24 h cold storage, microwave reheating, and particle size on: In vitro starch digestibility of dry and fresh pasta. Food Funct. 2020, 11, 6265–6272. [Google Scholar] [CrossRef] [PubMed]
- Brewer, L.R.; Kubola, J.; Siriamornpun, S.; Herald, T.J.; Shi, Y.C. Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem. 2014, 152, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.; Alavi, S.; Adedeji, A.A.; Zhu, L.; Gwirtz, J.; Thiele, S. Adaptation of conventional wheat flour mill to refine sorghum, corn, and cowpea. AgriEngineering 2024, 6, 1959–1971. [Google Scholar] [CrossRef]
- Memon, A.A.; Mahar, I.; Memon, R.; Soomro, S.; Harnly, J.; Memon, N.; Bhangar, M.I.; Luthria, D.L. Impact of flour particle size on nutrient and phenolic acid composition of commercial wheat varieties. J. Food Compos. Anal. 2020, 86, 103358. [Google Scholar] [CrossRef]
- Wang, N.; Hou, G.G.; Dubat, A. Effects of flour particle size on the quality attributes of reconstituted whole-wheat flour and Chinese southern-type steamed bread. LWT-Food Sci. Technol. 2017, 82, 147–153. [Google Scholar] [CrossRef]
- Dziki, D. Effect of preliminary grinding of the wheat grain on the pulverizing process. J. Food Eng. 2011, 104, 585–591. [Google Scholar] [CrossRef]
- Stamboliadis, E.T. A contribution to the relationship of energy and particle size in the comminution of brittle particulate materials. Miner. Eng. 2002, 15, 707–713. [Google Scholar] [CrossRef]
- Barroso Lopes, R.; Salman Posner, E.; Alberti, A.; Mottin Demiate, I. Pre milling debranning of wheat with a commercial system to improve flour quality. J. Food Sci. Technol. 2022, 59, 3881–3887. [Google Scholar] [CrossRef]
- Krátký, L.; Bímon, V.; Jirout, T.; Dostál, M. Mathematical modelling of particle size characteristics and energy demand for mechanical size reduction of beech chips under different knife mill variables. Biomass Convers. Biorefin. 2024, 14, 14353–14364. [Google Scholar] [CrossRef]
- Parrenin, L.; Danjou, C.; Agard, B.; Beauchemin, R. A decision support tool for the first stage of the tempering process of organic wheat grains in a mill. Int. J. Food Sci. Technol. 2023, 58, 5478–5488. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, Z.; Li, M.; Bian, K.; Guan, E. Heat treatment of wheat for improving moisture diffusion and the effects on wheat milling characteristics. J. Cereal Sci. 2023, 114, 103806. [Google Scholar] [CrossRef]
- Dziki, D. The latest innovations in wheat flour milling: A review. Agric. Eng. 2023, 27, 147–162. [Google Scholar] [CrossRef]
- Lyu, F.; Thomas, M.; Hendriks, W.H.; van der Poel, A.F.B. Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Anim. Feed Sci. Technol. 2020, 261, 114347. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.Z.; Arfat, Y.A. Particle size, rheological and structural properties of whole wheat flour doughs as treated by high pressure. Int. J. Food Prop. 2017, 20, 1829–1842. [Google Scholar] [CrossRef]
- Bala, M.; Tushir, S.; Garg, M.; Meenu, M.; Kaur, S.; Sharma, S.; Mann, S. Wheat milling and recent processing technologies: Effect on nutritional properties, challenges, and strategies. In Wheat Science, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; pp. 219–256. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends Food Sci. Technol. 2020, 97, 147–155. [Google Scholar] [CrossRef]
- Carcea, M.; Turfani, V.; Narducci, V.; Melloni, S.; Galli, V.; Tullio, V. Stone milling versus roller milling in soft wheat: Influence on products composition. Foods 2020, 9, 3. [Google Scholar] [CrossRef]
- Prabhasankar, P.; Haridas Rao, P. Effect of different milling methods on chemical composition of whole wheat flour. Eur. Food Res. Technol. 2001, 213, 465–469. [Google Scholar] [CrossRef]
- Doblado-Maldonado, A.F.; Pike, O.A.; Sweley, J.C.; Rose, D.J. Key issues and challenges in whole wheat flour milling and storage. J. Cereal Sci. 2012, 56, 119–126. [Google Scholar] [CrossRef]
- Guan, E.; Yang, Y.; Pang, J.; Zhang, T.; Li, M.; Bian, K. Ultrafine grinding of wheat flour: Effect of flour/starch granule profiles and particle size distribution on falling number and pasting properties. Food Sci. Nutr. 2020, 8, 2581–2587. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, A.; Dziki, D. Physical properties of shortbread biscuits enriched with dried and powdered fruit and their by-products: A review. Int. Agrophys. 2023, 37, 245–264. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, P.; Kortekangas, A.; Ercili-Cura, D.; Nordlund, E. Impact of ultra-fine milling and air classification on biochemical and techno-functional characteristics of wheat and rye bran. Food Res. Int. 2021, 139, 109971. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Chen, Z.; Zhang, Y.; Li, G.; Wang, Y.; Cui, Q. Micronization effects on structural, functional, and antioxidant properties of wheat bran. Foods 2023, 12, 98. [Google Scholar] [CrossRef]
- Protonotariou, S.; Ritzoulis, C.; Mandala, I. Jet milling conditions impact on wheat flour particle size. J. Food Eng. 2021, 294, 110418. [Google Scholar] [CrossRef]
- Dhiman, A.; Prabhakar, P.K. Micronization in food processing: A comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials. J. Food Eng. 2021, 292, 110248. [Google Scholar] [CrossRef]
- Lin, S.; Jin, X.; Gao, J.; Qiu, Z.; Ying, J.; Wang, Y.; Dong, Z.; Zhou, W. Impact of wheat bran micronization on dough properties and bread quality: Part I—Bran functionality and dough properties. Food Chem. 2021, 353, 129407. [Google Scholar] [CrossRef]
- Rosa, N.N.; Barron, C.; Gaiani, C.; Dufour, C. Ultra-fine grinding increases the antioxidant capacity of wheat bran. J. Cereal Sci. 2013, 57, 84–90. [Google Scholar] [CrossRef]
- Lin, S.; Jin, X.; Gao, J.; Qiu, Z.; Ying, J.; Wang, Y.; Dong, Z.; Zhou, W. Impact of wheat bran micronization on dough properties and bread quality: Part II—Quality, antioxidant and nutritional properties of bread. Food Chem. 2022, 396, 133631. [Google Scholar] [CrossRef]
- Protonotariou, S.; Drakos, A.; Evageliou, V.; Ritzoulis, C.; Mandala, I. Sieving fractionation and jet mill micronization affect the functional properties of wheat flour. J. Food Eng. 2014, 134, 24–29. [Google Scholar] [CrossRef]
- Jin, X.; Lin, S.; Gao, J.; Wang, Y.; Ying, J.; Dong, Z.; Zhou, W. How manipulation of wheat bran by superfine-grinding affects a wide spectrum of dough rheological properties. J. Cereal Sci. 2020, 96, 103081. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, M.; Li, S.; Chen, Y.; Liu, Y.; Sun, D.; Chen, Q.; Yu, H. Preparation of potato granules powder by low temperature ultrafine grinding and its effect on the texture of bread. J. Food Process Eng. 2024, 47, e14693. [Google Scholar] [CrossRef]
- Tu, M.; Li, Y. Toward the genetic basis and multiple qtls of kernel hardness in wheat. Plants 2020, 9, 1631. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.C.; Kiszonas, A.M.; Wilson, J.; Morris, C.F. Effect of soft kernel texture on the milling properties of soft durum wheat. Cereal Chem. 2016, 93, 513–517. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Markowska-Mendik, A.; Warechowska, M.; Lipiński, S.; Gasparis, S. Correlations between a friabilin content indicator and selected physicochemical and mechanical properties of wheat grain for processing suitability assessment. Processes 2024, 12, 398. [Google Scholar] [CrossRef]
- Acar, O.; Sanal, T.; Köksel, H. Effects of wheat kernel size on hardness and various quality characteristics. Qual. Assur. Saf. Crop. Foods 2019, 11, 459–464. [Google Scholar] [CrossRef]
- Pearson, T.; Wilson, J.; Gwirtz, J.; Maghirang, E.; Dowell, F.; McCluskey, P.; Bean, S. Relationship between single wheat kernel particle-size distribution and Perten SKCS 4100 hardness index. Cereal Chem. 2007, 84, 567–575. [Google Scholar] [CrossRef]
- Germishuys, Z.; Delcour, J.A.; Deleu, L.J.; Manley, M. Characterization of white flour produced from roasted wheats differing in hardness and protein content. Cereal Chem. 2020, 97, 339–348. [Google Scholar] [CrossRef]
- Ni, D.; Yang, F.; Lin, L.; Sun, C.; Ye, X.; Wang, L.; Kong, X. Interrelating grain hardness index of wheat with physicochemical and structural properties of starch extracted therefrom. Foods 2022, 11, 1087. [Google Scholar] [CrossRef]
- Antoine, C.; Peyron, S.; Mabille, F.; Lapierre, C.; Bouchet, B.; Abecassis, J.; Rouau, X. Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. J. Agric. Food Chem. 2003, 51, 2026–2033. [Google Scholar] [CrossRef]
- Warechowska, M.; Markowska, A.; Warechowski, J.; Miś, A.; Nawrocka, A. Effect of tempering moisture of wheat on grinding energy, middlings and flour size distribution, and gluten and dough mixing properties. J. Cereal Sci. 2016, 69, 306–312. [Google Scholar] [CrossRef]
- Chen, Z.; Wassgren, C.; Kingsly Ambrose, R.P. A review of grain kernel damage: Mechanisms, modeling, and testing procedures. Trans. ASABE 2020, 63, 455–475. [Google Scholar] [CrossRef]
- Bressiani, J.; Oro, T.; Santetti, G.S.; Almeida, J.L.; Bertolin, T.E.; Gómez, M.; Gutkoski, L.C. Properties of whole grain wheat flour and performance in bakery products as a function of particle size. J. Cereal Sci. 2017, 75, 269–277. [Google Scholar] [CrossRef]
- Fang, C.; Campbell, G.M. On predicting roller milling performance V: Effect of moisture content on the particle size distribution from first break milling of wheat. J. Cereal Sci. 2003, 37, 31–41. [Google Scholar] [CrossRef]
- Hassoon, W.H.; Dziki, D.; Miś, A.; Biernacka, B. Wheat grinding process with low moisture content: A new approach for wholemeal flour production. Processes 2021, 9, 32. [Google Scholar] [CrossRef]
- Jung, H.; Lee, Y.J.; Yoon, W.B. Effect of moisture content on the grinding process and powder properties in food: A review. Processes 2018, 6, 69. [Google Scholar] [CrossRef]
- Cappelli, A.; Guerrini, L.; Parenti, A.; Palladino, G.; Cini, E. Effects of wheat tempering and stone rotational speed on particle size, dough rheology and bread characteristics for a stone-milled weak flour. J. Cereal Sci. 2020, 91, 102879. [Google Scholar] [CrossRef]
- Pittia, P.; Sacchetti, G. Antiplasticization effect of water in amorphous foods. A review. Food Chem. 2008, 106, 1417–1427. [Google Scholar] [CrossRef]
- Kweon, M.; Martin, R.; Souza, E. Effect of tempering conditions on milling performance and flour functionality. Cereal Chem. 2009, 86, 12–17. [Google Scholar] [CrossRef]
- Hemery, Y.M.; Mabille, F.; Martelli, M.R.; Rouau, X. Influence of water content and negative temperatures on the mechanical properties of wheat bran and its constitutive layers. J. Food Eng. 2010, 98, 360–369. [Google Scholar] [CrossRef]
- De Bondt, Y.; Liberloo, I.; Roye, C.; Windhab, E.J.; Lamothe, L.; King, R.; Courtin, C.M. The effect of wet milling and cryogenic milling on the structure and physicochemical properties of wheat bran. Foods 2020, 9, 1755. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Sibakov, N.; Sibakov, J.; Lahtinen, P.; Poutanen, K. Wet grinding and microfluidization of wheat bran preparations: Improvement of dispersion stability by structural disintegration. J. Cereal Sci. 2015, 64, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.X.; Guo, X.N.; Xing, J.J.; Zhu, K.X. Effects of tempering with steam on the water distribution of wheat grains and quality properties of wheat flour. Food Chem. 2020, 323, 126842. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, Q.; Hadiatullah, H.; Zhang, J.; Zhang, A.; Yao, Y. Effect of wheat bran steam explosion pretreatment on flavors of nonenzymatic browning products. LWT-Food Sci. Technol. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Pang, T.; Wang, L.; Kong, F.; Yang, W.; Chen, H. Steam explosion pretreatment: Dramatic reduction in energy consumption for wheat bran grinding. J. Cereal Sci. 2024, 117, 103893. [Google Scholar] [CrossRef]
- Gaines, C.S.; Finney, P.L.; Andrews, L.C. Influence of kernel size and shriveling on soft wheat milling and baking quality. Cereal Chem. 1997, 74, 700–704. [Google Scholar] [CrossRef]
- Wang, K.; Taylor, D.; Ruan, Y.; Pozniak, C.J.; Izydorczyk, M.; Fu, B.X. Unveiling the factors affecting milling quality of durum wheat: Influence of kernel physical properties, grain morphology and intrinsic milling behaviours. J. Cereal Sci. 2023, 113, 103755. [Google Scholar] [CrossRef]
- Cammerata, A.; Laddomada, B.; Milano, F.; Camerlengo, F.; Bonarrigo, M.; Masci, S.; Sestili, F. Qualitative characterization of unrefined durum wheat air-classified fractions. Foods 2021, 10, 2817. [Google Scholar] [CrossRef]
- Zhang, L.; García-Pérez, P.; Martinelli, E.; Giuberti, G.; Trevisan, M.; Lucini, L. Different fractions from wheat flour provide distinctive phenolic profiles and different bioaccessibility of polyphenols following in vitro digestion. Food Chem. 2023, 404, 134540. [Google Scholar] [CrossRef]
- Lin, J.; Gu, Y.; Bian, K. Bulk and Surface Chemical Composition of Wheat Flour Particles of Different Sizes. J. Chem. 2019, 2019, 5101684. [Google Scholar] [CrossRef]
- Mirza Alizadeh, A.; Peivasteh-Roudsari, L.; Tajdar-Oranj, B.; Beikzadeh, S.; Barani-Bonab, H.; Jazaeri, S. Effect of Flour PS on Chemical and Rheological Properties of Wheat Flour Dough. Iran. J. Chem. Chem. Eng. 2022, 41, 682–694. [Google Scholar] [CrossRef]
- He, S.; Li, J.; He, Q.; Jian, H.; Zhang, Y.; Wang, J.; Sun, H. Physicochemical and antioxidant properties of hard white winter wheat (Triticum aestivm L.) bran superfine powder produced by eccentric vibratory milling. Powder Technol. 2018, 325, 126–133. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Wang, L.; Li, Z. Effect of PS on the release behavior and functional properties of wheat bran phenolic compounds during in vitro gastrointestinal digestion. Food Chem. 2022, 367, 130751. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Choi, I.; Hyun, J.N.; Jeong, Y.K.; Baik, B.K. Influence of bran particle size on bread-baking quality of whole grain wheat flour and starch retrogradation. Cereal Chem. 2014, 91, 65–71. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, Y.; Fan, M.; Li, Y.; Wang, L.; Qian, H. Wheat bran, as the resource of dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7269–7281. [Google Scholar] [CrossRef]
- Lin, S.; Gao, J.; Jin, X.; Wang, Y.; Dong, Z.; Ying, J.; Zhou, W. Whole-wheat flour influences dough properties, bread structure and: In vitro starch digestibility. Food Funct. 2020, 11, 3610–3620. [Google Scholar] [CrossRef]
- Zeng, F.; Weng, Y.; Yang, Y.; Liu, Q.; Yang, J.; Jiao, A.; Jin, Z. Effects of wheat gluten addition on dough structure, bread quality and starch digestibility of whole wheat bread. Int. J. Food Sci. Technol. 2023, 58, 3522–3537. [Google Scholar] [CrossRef]
- Lapčíková, B.; Burešová, I.; Lapčík, L.; Dabash, V.; Valenta, T. Impact of particle size on wheat dough and bread characteristics. Food Chem. 2019, 297, 124938. [Google Scholar] [CrossRef]
- Pang, J.; Guan, E.; Yang, Y.; Li, M.; Bian, K. Effects of wheat flour particle size on flour physicochemical properties and steamed bread quality. Food Sci. Nutr. 2021, 9, 4691–4700. [Google Scholar] [CrossRef]
- Ma, S.; Wang, C.; Li, L.; Wang, X. Effects of particle size on the quality attributes of wheat flour made by the milling process. Cereal Chem. 2020, 97, 172–182. [Google Scholar] [CrossRef]
- Guan, E.; Pang, J.; Yang, Y.; Zhang, T.; Li, M.; Bian, K. Effects of wheat flour particle size on physicochemical properties and quality of noodles. J. Food Sci. 2020, 85, 4209–4214. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, D.W.; Anderson, M.J.; Desjardins, R.G.; Edwards, N.M.; Dexter, J.E. Effects of flour particle size and starch damage on processing and quality of white salted noodles. Cereal Chem. 2002, 79, 64–71. [Google Scholar] [CrossRef]
- Alzuwaid, N.T.; Fellows, C.M.; Laddomada, B.; Sissons, M. Impact of wheat bran particle size on the technological and phytochemical properties of durum wheat pasta. J. Cereal Sci. 2020, 95, 103033. [Google Scholar] [CrossRef]
- Chen, J.S.; Fei, M.J.; Shi, C.L.; Tian, J.C.; Sun, C.L.; Zhang, H.; Ma, Z.; Dong, H.X. Effect of particle size and addition level of wheat bran on quality of dry white Chinese noodles. J. Cereal Sci. 2011, 53, 217–224. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Guan, E.; Zhang, Y.; Wang, X. Physicochemical properties of wheat granular flour and quality characteristics of the corresponding fresh noodles as affected by particle size. LWT-Food Sci. Technol. 2024, 204, 116439. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, Q.Q.; Guo, Y.Y.; Xu, F. Effect of flour particle size on the qualities of semi-dried noodles and fine dried noodles. J. Food Process. Preserv. 2021, 45, e15632. [Google Scholar] [CrossRef]
- Barak, S.; Mudgil, D.; Khatkar, B.S. Effect of flour particle size and damaged starch on the quality of cookies. J. Food Sci. Technol. 2014, 51, 1342–1348. [Google Scholar] [CrossRef]
- Mulargia, L.I.; Lemmens, E.; Gebruers, K.; D′udekem D′acoz, P.; Wouters, A.G.B.; Delcour, J.A. The particle sizes of milled wheat fractions affect the in vitro starch digestibility and quality parameters of wire-cut cookies made thereof. Food Funct. 2024, 15, 7974–7987. [Google Scholar] [CrossRef]
- Protonotariou, S.; Batzaki, C.; Yanniotis, S.; Mandala, I. Effect of jet milled whole wheat flour in biscuits properties. LWT-Food Sci. Technol. 2016, 74, 106–113. [Google Scholar] [CrossRef]
- Boz, H. Effect of flour and sugar particle size on the properties of cookie dough and cookie. Czech J. Food Sci. 2019, 37, 120–127. [Google Scholar] [CrossRef]
- Hussein, A.M.S.; Ibrahim, G.E. Effects of various brans on quality and volatile compounds of bread. Foods Raw Mater. 2019, 7, 35–41. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Jiang, P.; Zhu, Y.; Zhang, W.; Li, R.; Tan, B. The effect of wheat bran dietary fibre and raw wheat bran on the flour and dough properties: A comparative study. LWT-Food Sci. Technol. 2023, 173, 114304. [Google Scholar] [CrossRef]
- Ronda, F.; Perez-Quirce, S.; Lazaridou, A.; Biliaderis, C.G. Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocoll. 2015, 48, 197–207. [Google Scholar] [CrossRef]
- Both, J.; Biduski, B.; Gómez, M.; Bertolin, T.E.; Friedrich, M.T.; Gutkoski, L.C. Micronized whole wheat flour and xylanase application: Dough properties and bread quality. J. Food Sci. Technol. 2021, 58, 3902–3912. [Google Scholar] [CrossRef]
- Guerra-Oliveira, P.; Fernández-Peláez, J.; Gallego, C.; Gómez, M. Effects of particle size in wasted bread flour properties. Int. J. Food Sci. Technol. 2022, 57, 4782–4791. [Google Scholar] [CrossRef]
- Joubert, M.; Morel, M.H.; Lullien-Pellerin, V. Pasta color and viscoelasticity: Revisiting the role of particle size, ash, and protein content. Cereal Chem. 2018, 95, 386–398. [Google Scholar] [CrossRef]
- Sacchetti, G.; Cocco, G.; Cocco, D.; Neri, L.; Mastrocola, D. Effect of semolina particle size on the cooking kinetics and quality of spaghetti. Procedia Food Sci. 2011, 1, 1740–1745. [Google Scholar] [CrossRef]
- Andrea, B.; Maria, A.; Alessandra, M. Pasta-making process: A narrative review on the relation between process variables and pasta quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef]
- Gazza, L.; Galassi, E.; Nocente, F.; Natale, C.; Taddei, F. Cooking quality and chemical and technological characteristics of wholegrain einkorn pasta obtained from micronized flour. Foods 2022, 11, 2905. [Google Scholar] [CrossRef]
- Niu, M.; Hou, G.G.; Wang, L.; Chen, Z. Effects of superfine grinding on the quality characteristics of whole-wheat flour and its raw noodle product. J. Cereal Sci. 2014, 60, 382–388. [Google Scholar] [CrossRef]
- Biernacka, B.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R.; Siastała, M. Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT-Food Sci. Technol. 2017, 77, 186–192. [Google Scholar] [CrossRef]
- Li, Y.; Zou, Q.; Song, S.; Sun, T.T.; Li, J.J.; Luo, Y.Y.; Ling, Y.; Wang, X.; Han, Y.; Zeng, X.; et al. Functional properties of chitosan-xylose Maillard reaction products and their application to semi-dried noodle. Carbohydr. Polym. 2013, 21, 1972–1977. [Google Scholar]
- Sarkar, A.; Fu, B.X. Impact of quality improvement and milling innovations on durum wheat and end products. Foods 2022, 11, 1796. [Google Scholar] [CrossRef] [PubMed]
- Vignola, M.B.; Bustos, M.C.; Pérez, G.T. Comparison of quality attributes of refined and whole wheat extruded pasta. LWT-Food Sci. Technol. 2018, 89, 329–335. [Google Scholar] [CrossRef]
- Steglich, T.; Bernin, D.; Moldin, A.; Topgaard, D.; Langton, M. Bran particle size influence on pasta microstructure, water distribution, and sensory properties. Cereal Chem. 2015, 92, 617–623. [Google Scholar] [CrossRef]
- Krajewska, A.; Dziki, D. Enrichment of cookies with fruits and their by-products: Chemical composition, antioxidant properties, and sensory changes. Molecules 2023, 28, 4005. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Zhang, W.; Zhang, H.; Guo, L.; Zheng, S.; Du, C. Effect of black soybean flour on the nutritional, texture and physicochemical characteristics of cookies. LWT-Food Sci. Technol. 2022, 164, 113649. [Google Scholar] [CrossRef]
- Korese, J.K.; Chikpah, S.K.; Hensel, O.; Pawelzik, E.; Sturm, B. Effect of orange-fleshed sweet potato flour particle size and degree of wheat flour substitution on physical, nutritional, textural and sensory properties of cookies. Eur. Food Res. Technol. 2021, 247, 889–905. [Google Scholar] [CrossRef]
- Dayakar Rao, B.; Anis, M.; Kalpana, K.; Sunooj, K.V.; Patil, J.V.; Ganesh, T. Influence of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT-Food Sci. Technol. 2016, 67, 8–13. [Google Scholar] [CrossRef]
Kind of Flour | Median Particles or Range of Class [µm] | Kind of Mill | Effect on Product Quality | Ref. |
---|---|---|---|---|
Bread | ||||
WG | 195, 608, 830 | Laboratory impact mill with cooling chamber | Bread with the greatest volume and the lowest crumb hardness was produced from flour with medium-sized particles (608 µm). Flour with the coarsest grinding resulted in the poorest baking quality. | [54] |
WG | 199, 450, 1315 | Pulverizing machine | The highest quality bread was made from flour with the finest degree of grinding, resulting in the greatest volume and the softest crumb. | [77] |
WF with BR | BR: 162–257, 162–360, 162–485, 162–257 | Roller grinding (industrial mill) | The bread with the best texture and highest rise was made from flour with the finest PS, resulting in the greatest volume and softest crumb. However, the inclusion of finely ground bran led to a reduction in volume and an increase in the bread’s hardness. | [79] |
WF with BR | BR: 11.3, 60.4, 362.3 | Superfine grinding pulverizer | The bread with the best sensory evaluation and highest antioxidant activity was obtained from the finest bran fraction. However, a reduction in loaf volume and an increase in bread hardness were observed. | [40] |
WF | 52, 66, 78, 88, 109 | Roller mill | The quality of steamed bread deteriorated as PS decreased, leading to lower volume, increased hardness, and reduced sensory acceptability. | [80] |
Pasta and noodles | ||||
WF | 17–385 | Hammer mill | Decreased PS resulted in increased hardness, gumminess, and cooking losses of the noodles. | [81] |
WF | 52–109 | Roller mill | Reducing the PS resulted in higher levels of hardness, gumminess, and cooking losses in the noodles. | [82] |
WF | 85–110, 110–132, 132–193 | Roller mill | The highest cooking losses, cutting stress, resistance to compression, and firmness were observed in noodles produced from the finest particle fractions. | [83] |
WS with BR | BR (<180–1497) | Roller mill and disc mill | Pasta with higher firmness, less stickiness, and lower cooking losses was produced when fine bran particles were added. | [84] |
WS with BR | 160–431, 420–1.000, 500–2.000 | Not included; bran was fractionated by sieving | Noodles with coarse bran exhibited the lowest hardness, while the highest sensory scores were obtained for noodles made with the finest bran fraction. | [85] |
WF | 62, 68, 80, 91, 115, 224 | Roller mill | Noodles with higher firmness and springiness and lower cooking losses were produced from flour with fine PS. | [86] |
WF | d90: 55.8, 66.8, 103.0 | Roller mill and hammer mill | Noodles produced with the finest flour exhibited lower cooking losses and greater firmness and springiness. | [87] |
Cookies | ||||
WF | >150; 100–150; <100 | Laboratory roller mill Chopin | There was a negative effect, particularly from the smallest particles (<100 µm), on the quality of cookies, including hardness, diameter, and spread ratio. | [88] |
WF | 83, 643, 999, 1036 | Roller mill | Higher quality and lower susceptibility of starch to in vitro digestion were observed in cookies made with coarser particle fractions. | [89] |
WF and WM | WF: 67 WG: 17, 29, 53, 84 | Jet mill | The best quality cookies were obtained from WF. Replacement of WF with WG caused harder and darker cookies. | [90] |
WF | >180, 150–180, <150 | Not included; wheat flour was fractionated by sieving | A decrease in hardness and an increase in brittleness of the cookies were noted as PS decreased. | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziki, D.; Krajewska, A.; Findura, P. Particle Size as an Indicator of Wheat Flour Quality: A Review. Processes 2024, 12, 2480. https://doi.org/10.3390/pr12112480
Dziki D, Krajewska A, Findura P. Particle Size as an Indicator of Wheat Flour Quality: A Review. Processes. 2024; 12(11):2480. https://doi.org/10.3390/pr12112480
Chicago/Turabian StyleDziki, Dariusz, Anna Krajewska, and Pavol Findura. 2024. "Particle Size as an Indicator of Wheat Flour Quality: A Review" Processes 12, no. 11: 2480. https://doi.org/10.3390/pr12112480
APA StyleDziki, D., Krajewska, A., & Findura, P. (2024). Particle Size as an Indicator of Wheat Flour Quality: A Review. Processes, 12(11), 2480. https://doi.org/10.3390/pr12112480