Research on Crack Sealing Performance of Polymer Microsphere/Hydrogel Composite System
Abstract
:1. Introduction
2. Experimental Design
2.1. Experimental Materials and Equipment
2.2. Experimental Methods
2.2.1. Preparation of Composite System
2.2.2. Microstructure Analysis
2.2.3. Rheological Property Test
2.2.4. Sealing Performance Test
- (1)
- Experimental equipment
- (2)
- Experimental procedure
3. Results and Discussion
3.1. Analysis of Factors Affecting the Polymer Microsphere/Hydrogel Composite System
3.1.1. HPAM Concentration
3.1.2. Cross-Linking Agent Ratio
3.1.3. Polymer Microsphere Concentration
3.2. Microstructure of Polymer Microsphere/Hydrogel Composite System
3.3. Rheological Properties of Polymer Microsphere/Hydrogel Composite System
3.4. Sealing Performance of Polymer Microsphere/Hydrogel Composite System on Cracks
3.4.1. Crack Width
3.4.2. Crack Roughness
3.4.3. Subsequent Water Injection Rate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PAM | Polyacrylamide |
HPAM | Partially hydrolyzed polyacrylamide |
NPAM | Nonionic polyacrylamide |
P(AAM-co-AA)Na | Poly (acrylamide-co-acrylic acid) partial sodium salt |
SP | Polymer surfactant |
EOR | Enhanced oil recovery |
FCB | Fracture-cavity body |
PMS | Pore-scale polymer microspheres |
References
- Kang, W.; Zhou, B.; Yang, H.; Li, X.; Zhang, H.; Tang, X.; Gao, Y. Comprehensive Review of Polymer Microspheres for Oil Field Conformance Control and Flooding. Polym. Mater. Sci. Eng. 2020, 36, 173–180. [Google Scholar]
- Wang, S.; Kuai, J.; Song, S.; Ju, Y.; Li, X.; Wang, C. Research progress of core-shell polymer microspheres for profile control. Petrochem. Ind. Appl. 2021, 40, 7–10,14. [Google Scholar]
- Sheng, J. Modern Chemical Enhanced Oil Recovery: Theory and Practice; Gulf Professional Publishing: Houston, TX, USA, 2016; pp. 122–129. [Google Scholar]
- Chauveteau, G.; Omari, A.; Tabary, R.; Renard, M.; Rose, J. Controlling Gelation Time and Microgel Size for Water Shutoff. In Proceedings of the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 2–5 April 2000. SPE-59317-MS. [Google Scholar]
- Zhao, G.; Dai, C.; Chen, A.; Yan, Z.; Zhao, M. Experimental study and application of gels formed by nonionic polyacrylamide and phenolic resin for in-depth profile control. J. Pet. Sci. Eng. 2015, 135, 552–560. [Google Scholar] [CrossRef]
- Al-Shajalee, F.; Arif, M.; Machale, J.; Verrall, M.; Almobarak, M.; Iglauer, S.; Wood, C. A Multiscale Investigation of Cross-Linked Polymer Gel Injection in Sandstone Gas Reservoirs: Implications for Water Shutoff Treatment. Energy Fuels 2020, 34, 14046–14057. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, E.; Cui, X. Study on Profile Control and Water Shut-Off Performance of Interpenetrating Network Polymer Gel Composite System in Shallow Low Temperature Fracture Oil Layer. Chem. Sel. 2019, 4, 8158–8164. [Google Scholar] [CrossRef]
- Feng, Y.; Tabary, R.; Renard, M. Characteristics of microgels designed for water shutoff and profile control. In Proceedings of the International Symposium on Oilfield Chemistry, Houston, TX, USA, 5–7 February 2003. SPE-80203-MS. [Google Scholar]
- Hatzignatiou, D.G.; Giske, N.H.; Stavland, A. Polymers and polymer-based gelants for improved oil recovery and water control in naturally fractured chalk formations. Chem. Eng. Sci. 2018, 187, 302–317. [Google Scholar] [CrossRef]
- Yang, H.; Kang, W.; Yu, Y.; Yin, X.; Wang, P.; Zhang, X. A new approach to evaluate the particle growth and sedimentation of dispersed polymer microsphere profile control system based on multiple light scattering. Powder Technol. 2017, 315, 477–485. [Google Scholar] [CrossRef]
- Qian, Z.; Yao, W.; Deng, X.; Cui, Y. Research on Profile Control with Polymer Microspheres in Well G6-38. Adv. Fine Petrochem. 2015, 16, 17–19. [Google Scholar]
- Li, W.; Zhou, J.; Liu, Q.; Leng, F.; Cheng, Y. Study on Flooding Modification Technology with Polymeric Microsphere in Block B of Baibao Ultra-Low Permeability Oilfield. China Pet. Mach. 2019, 47, 75–81. [Google Scholar]
- Li, Z.; Wang, M. Research and Application Evaluation of Deep profile Control and Drive Technology of Nano Microspheres in Low Permeability Oilfield. Xinjiang Oil Gas 2020, 16, 4–5,61–64. [Google Scholar]
- Yang, L.; Luo, L.; Li, B.; Fu, H.; Wang, D. Evaluation of polymer microsphere flooding effect in block X of Jiyuan oilfield. Petrochem. Ind. Appl. 2022, 41, 53–57. [Google Scholar]
- Zhang, Y.; Zhou, H.; Miao, F.; Liang, P.; Xu, Y.; Zhang, J. Study of Applicability of Polymer Microspheres in Offshore Heavy Oil Reservoirs. J. Beijing Inst. Petrochem. Technol. 2022, 30, 37–42. [Google Scholar]
- Zhao, S.; Pu, W. Investigation into the effect of polymer microspheres (PMs) on oil-water relative permeability and oil-in-water emulsion stability for enhanced oil recovery. J. Dispers. Sci. Technol. 2021, 42, 1695–1702. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, M.; Jin, S.; Yang, Z.; Dong, Z.; Zhang, J. Combined flooding systems with polymer microspheres and nonionic surfactant for enhanced water sweep and oil displacement efficiency in heterogeneous reservoirs. J. Dispers. Sci. Technol. 2019, 41, 267–276. [Google Scholar] [CrossRef]
- Zheng, S.; Min, Y.; Kang, Z.; Liu, Z.; Long, X.; Liu, K.; Li, X.; Zhang, S. Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe Oilfield. Pet. Explor. Dev. 2019, 46, 786–795. [Google Scholar] [CrossRef]
- Li, G.; Fu, M.; Li, X.; Hu, J. A study of the thin film-coated swelling retarding particles in fractured carbonate reservoirs for water plugging and profile control. Energies 2022, 15, 1085. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, P.; Zhang, Q.; Zhang, T.; Zhu, K.; Zhou, C. A polymer plugging gel for the fractured strata and its application. Materials 2018, 11, 856. [Google Scholar] [CrossRef]
- Yin, D.; Zhou, W. Mechanism of Enhanced Oil Recovery for In-Depth Profile Control and Cyclic Waterflooding in Fractured Low-Permeability Reservoirs. Geofluids 2021, 2021, 6615495. [Google Scholar] [CrossRef]
- Babadagli, T. Selection of proper EOR method for efficient matrix recovery in naturally fractured reservoirs. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 25–28 March 2001. SPE-69564-MS. [Google Scholar]
- Canbolat, S.; Parlaktuna, M. Polymer gel conformance on oil recovery in fractured medium: Visualization and verification. J. Pet. Sci. Eng. 2019, 182, 106289. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.; Liu, W.; Zhang, T.; He, M.; Nasrabadi, H. Molecular Dynamics of Methane Flow Behavior through Realistic Organic Nanopores under Geologic Shale Condition: Pore size and Kerogen Types. Chem. Eng. J. 2020, 398, 124341. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, J.; Wu, K.; Zhang, T.; Feng, D.; Li, X. Effect of pressure-propagation behavior on production performance: Implication for advancing low-permeability coalbed-methane recovery. SPE J. 2019, 24, 681–697. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Yang, S.L.; Xu, Z.; Cheng, S. Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil–water two-phase flow. Pet. Sci. 2024, 21, 343–351. [Google Scholar] [CrossRef]
- Boindala, A.; Vij, R.K.; Avadhani, V.L.N.; Pandian, S. Understanding the complexity of thin laminated sequences through reservoir characterization to identify the true potential in Krishna–Godavari offshore area (India): A case study. Pet. Sci. Technol. 2024, 42, 1566–1583. [Google Scholar] [CrossRef]
- Pandian, S.; Dahyalal, P.C.; Krishna, S.; Hari, S.; Subramanian, D. A study on cashew nut shell liquid as a bio-based flow improver for heavy crude oil. J. Pet. Explor. Prod. Technol. 2021, 11, 2287–2297. [Google Scholar] [CrossRef]
- Pandian, S.; Hazarika, G.; Deota, U.; Shah, D.; Vij, R.K. Cement-casing shear bond strength: A review of the affecting variables and various enhancement techniques. Pet. Sci. Technol. 2023, 41, 1971–1984. [Google Scholar] [CrossRef]
- Hazarika, G.; Das, M.; Pandian, S. Hybrid analysis for excessive water production problem. Pet. Sci. Technol. 2022, 40, 1407–1422. [Google Scholar] [CrossRef]
HPAM /mg/L | Polymer Microspheres /mg/L | Resorcinol /mg/L | Urotropine /mg/L | Oxalic Acid /mg/L | Thiourea /mg/L | Viscosity /mPa·s | Gel Time /h |
---|---|---|---|---|---|---|---|
500 | 10,000 | 175 | 175 | 200 | 30 | 0.4 × 104 | 36 |
1000 | 10,000 | 175 | 175 | 200 | 30 | 3.2 × 104 | 33 |
1500 | 10,000 | 175 | 175 | 200 | 30 | 7.6 × 104 | 31 |
2000 | 10,000 | 175 | 175 | 200 | 30 | 9.8 × 104 | 28 |
HPAM /mg/L | Polymer Microspheres /mg/L | Resorcinol /mg/L | Urotropine /mg/L | Oxalic Acid /mg/L | Thiourea /mg/L | Viscosity /mPa·s | Gel Time /h |
---|---|---|---|---|---|---|---|
1500 | 10,000 | 100 | 80 | 100 | 30 | 3.8 × 104 | 35 |
1500 | 10,000 | 175 | 175 | 200 | 30 | 7.6 × 104 | 31 |
1500 | 10,000 | 400 | 350 | 400 | 30 | 9.6 × 104 | 22 |
1500 | 10,000 | 600 | 500 | 600 | 30 | 12.8 × 104 | 13 |
HPAM /mg/L | Polymer Microspheres /mg/L | Resorcinol /mg/L | Urotropine /mg/L | Oxalic Acid /mg/L | Thiourea /mg/L | Viscosity /mPa·s | Gel Time /h |
---|---|---|---|---|---|---|---|
1500 | 500 | 175 | 175 | 200 | 30 | 7.2 × 104 | 17 |
1500 | 10,000 | 175 | 175 | 200 | 30 | 7.6 × 104 | 31 |
1500 | 20,000 | 175 | 175 | 200 | 30 | 9.4 × 104 | 33 |
1500 | 40,000 | 175 | 175 | 200 | 30 | 7.2 × 104 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Li, J.; Luo, T.; Long, X. Research on Crack Sealing Performance of Polymer Microsphere/Hydrogel Composite System. Processes 2024, 12, 2483. https://doi.org/10.3390/pr12112483
Liu W, Li J, Luo T, Long X. Research on Crack Sealing Performance of Polymer Microsphere/Hydrogel Composite System. Processes. 2024; 12(11):2483. https://doi.org/10.3390/pr12112483
Chicago/Turabian StyleLiu, Wenjin, Jun Li, Taotao Luo, and Xueyuan Long. 2024. "Research on Crack Sealing Performance of Polymer Microsphere/Hydrogel Composite System" Processes 12, no. 11: 2483. https://doi.org/10.3390/pr12112483
APA StyleLiu, W., Li, J., Luo, T., & Long, X. (2024). Research on Crack Sealing Performance of Polymer Microsphere/Hydrogel Composite System. Processes, 12(11), 2483. https://doi.org/10.3390/pr12112483