Parameter Identification of Solid Oxide Fuel Cell Using Elman Neural Network and Dynamic Fitness Distance Balance-Manta Ray Foraging Optimization Algorithm
Abstract
:1. Introduction
- Two SOFC models were established, which were studied for parameter identification. Two experimental datasets of SOFC were collected and organized
- Elman neural network (ENN) was applied to process two datasets, namely data prediction and data denoising, which were applied to the parameter identification of the two models
- The fitness and distance balance criteria applied to the MRFO algorithm was used to design an SOFC parameter identification model based on the dynamic fitness distance balance-manta ray foraging optimization (dFDB-MRFO) algorithm, and compared with seven other typical heuristic algorithms under four performance indicators
- The performance of dFDB-MRFO was proved via comprehensive comparison with seven heuristic algorithms; it has higher accuracy, better robustness, and faster convergence speed. In addition, it was also proven that through data prediction and noise reduction processing, identification accuracy could be effectively improved as well as the stability of the identification results.
2. SOFC Modelling
2.1. Mathematical Model
2.2. Objective Function
3. ENN for Data Process
3.1. Principle of ENN
3.2. ENN for V-I Data Preprocessing
3.2.1. ENN for V-I Data Prediction
3.2.2. ENN for V-I Data Denoising
4. dFDB-MRFO Based SOFC Parameter Identification
4.1. dFDB-MRFO Algorithm
4.1.1. Population Initialization
4.1.2. Foraging Search
dFDB Strategy
Chain Foraging
Cyclone Foraging
Somersault Foraging
4.1.3. Update Iteration
4.2. dFDB-MRFO Based SOFC Parameter Identification Design
4.2.1. Fitness Function
4.2.2. Constraints
4.2.3. Execution Process
5. Case Studies
5.1. ECM Parameter Identification
5.1.1. Results of ECM Based on Prediction Data
5.1.2. Results of ECM Based on Denoising Data
5.2. SECM Parameter Identification
5.2.1. Results of SECM Based on Prediction Data
5.2.2. Results of SECM Based on Denoising Data
5.3. Discussions
6. Conclusions
- A comprehensive modeling study was conducted on SOFC, resulting in the establishment of two cell models: SECM and ECM. In addition, cell-related experimental data were fully investigated, two V-I datasets of SOFC were collected and organized, and the two datasets were applied to two cell models for parameter identification study
- ENN was used to predict and denoise the datasets, and the effects of cell data number and quality on the final parameter identification results were compared and analyzed. The case results indicate that after data prediction and denoising, more reliable and stable identification results can be extracted. Especially, after data prediction, WOA applied to ECM performs at a 64.5413% increase of accuracy under Poland data, and dFDB-MRFO achieved a 94.7612% decrease for the RMSE of SECM after data denoising under HUST data
- The weighted values of fitness and distance were selected as the optimal individual selection criteria, and the optimization strategy of MRFO was improved. The result obtained by dFDB-MRFO was compared with other heuristic algorithms. A comprehensive comparative analysis was carried out, which proved that dFDB-MRFO has faster convergence speed, higher identification accuracy, and better robustness compared to other algorithms. In particular, the parameters identified by dFDB-MRFO have the highest fitting accuracy of 99.93% for V-I data of ECM. The highest fitting accuracy is 99.95% for V-I data of SECM.
7. Future Work Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | SOFC | solid oxide fuel cell | |
ABC | artificial bee colony | WOA | whale optimization algorithm |
AEO | artificial ecosystem-based optimization | Model parameters | |
ALO | ant lion optimizer | the output voltage of cell (V) | |
BSA | bird swarm algorithm | the number of single cell | |
dFDB-MRFO | dynamic fitness distance balance-manta ray foraging optimization | the concentration polarization voltage loss (V) | |
ECM | electrochemical model | the active polarization voltage loss (V) | |
ENN | Elman neural network | the ohmic voltage loss (V) | |
GWO | gray wolf optimization | the open circuit voltage of the cell (V) | |
IWOA | improved whale optimization algorithm | the slope of the Tafel curve (V) | |
MAE | mean absolute error | the anode exchange current density (mA/cm2) | |
MAPE | mean absolute percentage error | the load current density (mA/cm2) | |
MGWO | modified version of gray wolf optimization | the constant in the cell model (V) | |
MRFO | manta ray foraging optimization | the ultimate current density (mA/cm2) | |
MSA | moth swarm algorithm | the equivalent resistance inside the cell () | |
RMSE | root mean square error | the cathode exchange current density (mA/cm2) | |
SECM | simple electrochemical model | the cell exchange current density (mA/cm2) |
References
- Sivalingam, P.; Gurusamy, M. Momentum search algorithm for analysis of fuel cell vehicle-to-grid system with large-scale buildings. Prot. Control. Mod. Power Syst. 2024, 9, 147–160. [Google Scholar] [CrossRef]
- Hu, Q.; Bu, S.; Su, W.; Terzija, V. A privacy-preserving energy management system based on homomorphic cryptosystem for iot-enabled active distribution network. J. Mod. Power Syst. Clean Energy 2023, 12, 167–178. [Google Scholar] [CrossRef]
- Sharma, P.; Saini, K.K.; Mathur, H.D.; Mishra, P. Improved energy management strategy for prosumer buildings with renewable energy sources and battery energy storage systems. J. Mod. Power Syst. Clean Energy 2024, 12, 381–392. [Google Scholar] [CrossRef]
- Tan, S.; Liu, J.; Du, X.; Su, J.; Fan, L. Multi-port network modeling and stability analysis of VSC-MTDC systems. J. Mod. Power Syst. Clean Energy 2024, 12, 1666–1667. [Google Scholar] [CrossRef]
- Kiruthiga, B.; Karthick, R.; Manju, I. Optimizing harmonic mitigation for smooth integration of renewable energy: A novel approach using atomic orbital search and feedback artificial tree control. Prot. Control Mod. Power Syst. 2024, 9, 160–176. [Google Scholar] [CrossRef]
- Xu, H.; Feng, B.; Huang, G.; Sun, M.; Xiong, H.; Guo, C. Convex Hull Based Economic Operating Region for Power Grids Considering Uncertainties of Renewable Energy Sources. J. Mod. Power Syst. Clean Energy 2024, 12, 1419–1430. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Li, Z.S.; Gao, H.; Yang, C. Review on collaborative scheduling optimization of electricity-gas-heat integrated energy system. Shandong Electr. Power 2024, 51, 1–11. [Google Scholar]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Zhang, M.; Shu, H.; Yu, T.; Zhang, X.; Yao, W.; Sun, L. A state-of-the-art survey of solid oxide fuel cell parameter identification: Modelling, methodology, and perspectives. Energy Convers. Manag. 2020, 213, 112856. [Google Scholar] [CrossRef]
- Alaedini, A.H.; Tourani, H.K.; Saidi, M. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development. J. Environ. Manag. 2023, 329, 117077. [Google Scholar] [CrossRef]
- Codony, A.C.; Olmos, R.G.; Martin, M.J. Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes. J. Hazard. Mater. 2015, 285, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Papurello, D.; Tomasi, L.; Silvestri, S. Proton transfer reaction mass spectrometry for the gas cleaning using commercial and waste-derived materials: Focus on the siloxane removal for SOFC applications. Int. J. Mass Spectrom. 2018, 430, 69–79. [Google Scholar] [CrossRef]
- Din, Z.U.; Zainal, Z.A. Biomass integrated gasification-SOFC systems: Technology overview. Renew. Sustain. Energy Rev. 2016, 53, 1356–1376. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Chen, Y.; Zeng, K.; Zhang, H.; Shu, H.; Chen, Y. Novel phasianidae inspired peafowl (pavo muticus/cristatus) optimization algorithm: Design, evaluation, and SOFC models parameter estimation. Sustain. Energy Technol. Assess. 2022, 50, 101825. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Guo, Z.; Wang, J.; Zeng, C.; Li, D.; Shu, H.; Shan, J.; Fu, T.; Zhang, X. Levenberg-Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells. Int. J. Energy Res. 2021, 45, 17903–17923. [Google Scholar] [CrossRef]
- Ismael, I.; El-Fergany, A.A.; Gouda, E.A.; Kotb, M.F. Cooperation search algorithm for optimal parameters identification of SOFCs feeding electric vehicle at steady and dynamic modes. Int. J. Hydrogen Energy 2023, 50, 1395–1407. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.-P.; She, C.; Xu, P.; Bagal, H.A. Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm. Energy 2022, 240, 122800. [Google Scholar] [CrossRef]
- Guo, H.; Gu, W.; Khayatnezhad, M.; Ghadimi, N. Parameter extraction of the SOFC mathematical model based on fractional order version of dragonfly algorithm. Int. J. Hydrogen Energy 2022, 47, 24059–24068. [Google Scholar] [CrossRef]
- Yousri, D.; Hasanien, H.M.; Fathy, A. Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm. Energy Convers. Manag. 2021, 228, 113692. [Google Scholar] [CrossRef]
- Fathy, A.; Hegazy, R. Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models. Energy 2022, 238, 122031. [Google Scholar] [CrossRef]
- Chen, Y.J.; Yang, B.; Guo, Z.X.; Shu, H.C.; Cao, P.L. Parameter identification of solid oxide fuel cell based on AEO-MRFO. Power Syst. Technol. 2022, 46, 1382–1391. [Google Scholar]
- Wei, Y.; Stanford, R.J. Parameter identification of solid oxide fuel cell by chaotic binary shark smell optimization method. Energy 2019, 188, 115770. [Google Scholar] [CrossRef]
- Masadeh, M.A.; Kuruvinashetti, K.; Shahparnia, M.; Pillay, P.; Packirisamy, M. Electrochemical modeling and equivalent circuit representation of a microphotosynthetic power cell. IEEE Trans. Ind. Electron. 2016, 64, 1561–1571. [Google Scholar] [CrossRef]
- Bavarian, M.; Soroush, M.; Kevrekidis, I.G.; Benziger, J.B. Mathematical modeling, steady-state and dynamic behavior, and control of fuel cells: A review. Ind. Eng. Chem. Res. 2010, 49, 7922–7950. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, L.; Virkar, A.V. A parametric model for solid oxide fuel cells based on measurements made on cell materials and components. J. Power Sources 2015, 291, 138–155. [Google Scholar] [CrossRef]
- Ding, A.; Sun, H.; Zhang, S.; Dai, X.; Pan, Y.; Zhang, X.; Rahman, E.; Guo, J. Thermodynamic analysis and parameter optimization of a hybrid system based on SOFC and graphene-collector thermionic energy converter. Energy Convers. Manag. 2023, 291, 117327. [Google Scholar] [CrossRef]
- Li, K.; Hu, L.; Song, T.T. Health state estimation of lithium-ion batteries based on CNN-Bi-LSTM. Shandong Electr. Power 2023, 50, 66–72. [Google Scholar]
- Fetanat, M.; Stevens, M.; Jain, P.; Hayward, C.; Meijering, E.; Lovell, N.H. Fully Elman neural network: A novel deep recurrent neural network optimized by an improved Harris hawks algorithm for classification of pulmonary arterial wedge pressure. IEEE Trans. Biomed. Eng. 2022, 69, 1733–1743. [Google Scholar] [CrossRef]
- Sriram, L.M.K.; Gilanifar, M.; Zhou, Y.; Ozguven, E.E.; Arghandeh, R. Causal Markov Elman network for load forecasting in multinetwork systems. IEEE Trans. Ind. Electron. 2019, 66, 1434–1442. [Google Scholar] [CrossRef]
- Jia, H.L.; Taheri, B. Model identification of solid oxide fuel cell using hybrid Elman neural network/quantum pathfinder algorithm. Energy Rep. 2021, 7, 3328–3337. [Google Scholar] [CrossRef]
- Guo, C.; Lu, J.; Tian, Z.; Guo, W.; Darvishan, A. Optimization of critical parameters of PEM fuel cell using TLBO-DE based on Elman neural network. Energy Convers. Manag. 2019, 183, 149–158. [Google Scholar] [CrossRef]
- Ding, L.; Bai, Y.; Liu, M.-D.; Fan, M.-H.; Yang, J. Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network. Energy 2022, 244, 122630. [Google Scholar] [CrossRef]
- Tang, A.-D.; Zhou, H.; Han, T.; Xie, L. A modified manta ray foraging optimization for global optimization problems. IEEE Access 2021, 9, 128702–128721. [Google Scholar] [CrossRef]
- Jian, X.Z.; Wang, P.; Wang, R.Z. Parameter identification model of photovoltaic module based on improved manta ray optimization algorithm. Acta Metrol. Sin. 2023, 44, 109–119. [Google Scholar]
- Kahraman, H.T.; Bakir, H.; Duman, S.; Katı, M.; Aras, S.; Guvenc, U. Dynamic FDB selection method and its application: Modeling and optimizing of directional overcurrent relays coordination. Appl. Intell. 2022, 52, 4873–4908. [Google Scholar] [CrossRef]
- Tao, Z.; Zhang, C.; Xiong, J.; Hu, H.; Ji, J.; Peng, T.; Nazir, M.S. Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC. Appl. Energy 2023, 336, 120821. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, D.; Zhang, Y.; Wang, L.; Wang, K. Online estimation of SOH for lithium-ion cell based on SSA-Elman neural network. Prot. Control Mod. Power Syst. 2022, 7, 1–17. [Google Scholar] [CrossRef]
- Mohamed, A.E.H.; Mahmoud, M.E.; Attia, A.E.F. Three-diode model for characterization of industrial solar generating units using Manta-rays foraging optimizer: Analysis and validations. Energy Convers. Manag. 2020, 219, 113048. [Google Scholar]
- Jing, S.W. Research on Testing and Fault Diagnosis of Solid Oxide Fuel Cells. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2017. [Google Scholar] [CrossRef]
- Dhruv, K.; Kanwar, P.S.R.; Vineet, K. Parameter extraction of fuel cells using hybrid interior search algorithm. Int. J. Energy Res. 2019, 43, 2855–2880. [Google Scholar]
- Molenda, J.; Kupecki, J.; Baron, R.; Blesznowski, M.; Brus, G.; Brylewski, T.; Bucko, M.; Chmielowiec, J.; Cwieka, K.; Gazda, M.; et al. Status report on high temperature fuel cells in Poland-recent advances and achievements. Int. J. Hydrogen Energy 2017, 42, 4366–4403. [Google Scholar] [CrossRef]
- Oussama, H.; Attia, A.E.F. Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer. Energy 2022, 250, 123830. [Google Scholar]
- Wu, Z.Q.; Yu, D.Q.; Kang, X.H. Parameter identification of photovoltaic cell model based on improved ant lion optimizer. Energy Convers. Manag. 2017, 151, 107–115. [Google Scholar] [CrossRef]
- Huang, C.Z.; Sheng, X.X. Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm. Energy 2020, 205, 118009. [Google Scholar] [CrossRef]
- Bai, Q.C.; Li, H. The application of hybrid cuckoo search-grey wolf optimization algorithm in optimal parameters identification of solid oxide fuel cell. Int. J. Hydrogen Energy 2022, 47, 6200–6216. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.X.; Liu, C. Optimal reconfiguration of active distribution network based on improved differential grey wolf algorithm. Shandong Electr. Power 2023, 50, 7–13. [Google Scholar]
- Liu, W.; Guo, Z.Q.; Wang, D. Improved whale optimization algorithm and its weights and thresholds optimization in shallow neural architecture search. Control Decis. 2023, 38, 1144–1152. [Google Scholar]
- Thuan, T.N.; Thanh, L.D.; Thanh, Q.N. Network reconfiguration and distributed generation placement for multi-goal function based on improved moth swarm algorithm. Math. Probl. Eng. 2022, 2022, 5015771. [Google Scholar]
- Dey, S.; Roy, P.K.; Sarkar, K. Adaptive IIR model identification using chaotic opposition-based whale optimization algorithm. J. Electr. Syst. Inf. Technol. 2023, 10, 1–23. [Google Scholar] [CrossRef]
- Mei, J.; Meng, X.; Tang, X.; Li, H.; Hasanien, H.; Alharbi, M.; Dong, Z.; Shen, J.; Sun, C.; Fan, F.; et al. An accurate parameter estimation method of the voltage model for proton exchange membrane fuel cells. Energies 2024, 17, 2917. [Google Scholar] [CrossRef]
- Yang, B.; Guo, Z.; Yang, Y.; Chen, Y.; Zhang, R.; Su, K.; Shu, H.; Yu, T.; Zhang, X. Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells. Appl. Energy 2021, 303, 117630. [Google Scholar] [CrossRef]
ECM | Bound | Parameters | ||||||
Eo (V) | A (V) | Rohm () | B (V) | I0,a (mA/cm2) | I0,c (mA/cm2) | IL (mA/cm2) | ||
Lower | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Upper | 1.2 | 1 | 1 | 1 | 300 | 300 | 2000 | |
SECM | Bound | Parameters | ||||||
Eo (V) | A (V) | Rohm () | B (V) | I0 (mA/cm2) | IL (mA/cm2) | |||
Lower | 0 | 0 | 0 | 0 | 0 | 0 | ||
Upper | 1.2 | 1 | 1 | 1 | 300 | 2000 |
Types | Parameters | Value | |
---|---|---|---|
ENN | Number of neurons | 6 | |
Training function | Trainscg | ||
Training times | 6000 | ||
Eight heuristic algorithms | ABC | Search range expansion factor | 1 |
Maximum iterations | 1000 | ||
Population size | 50 | ||
BSA | Perception coefficient | 1.5 | |
Maximum iterations | 1000 | ||
Population size | 50 | ||
Social acceleration coefficient | 1.5 | ||
Flight interval | 5 | ||
ALO dFDB-MRFO GWO IWOA MSA WOA | Maximum iterations | 1000 | |
Population size | 50 | ||
Dataset | HUST | Number of series cells | 26 |
Pairs of V-I data | 18 | ||
Pairs of predicted V-I data | 180 | ||
Poland | Number of series cells | 1 | |
Pairs of V-I data | 20 | ||
Pairs of predicted V-I data | 190 |
Dataset | Algorithm | Data | Identified Parameters | RMSE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Eo | A | Rohm | B | I0,a | I0,c | IL | ||||
(HUST) | ABC | O | 1.0084 | 0.0476 | 1.8374 × 10−5 | 0.3334 | 217.1714 | 20.7065 | 1980.7297 | 6.0511 × 10−3 |
P | 0.9886 | 0.0506 | 9.3017 × 10−5 | 0.1906 | 152.9825 | 50.9524 | 1981.6448 | 4.8217 × 10−3 | ||
ALO | O | 1.0121 | 0.0310 | 3.2092 × 10−5 | 0.3981 | 46.1898 | 20.7702 | 2000.0000 | 6.8041 × 10−3 | |
P | 0.9841 | 0.1057 | 6.4114 × 10−5 | 0.0006 | 247.6706 | 122.8542 | 1754.8986 | 3.1884 × 10−3 | ||
BSA | O | 1.0066 | 0.0676 | 7.0196 × 10−5 | 0.1317 | 227.2606 | 42.4770 | 1994.5771 | 7.8553 × 10−3 | |
P | 0.9808 | 0.1342 | 0.0000 | 0.0000 | 261.1027 | 256.4412 | 1549.1421 | 7.9009 × 10−3 | ||
dFDB- MRFO | O | 1.0299 | 0.0301 | 2.6629 × 10−4 | 0.0280 | 130.1199 | 5.5840 | 1356.1667 | 1.7875 × 10−3 | |
P | 1.0280 | 0.0341 | 2.9020 × 10−4 | 0.0036 | 249.3177 | 7.4399 | 1172.6976 | 1.4748 × 10−3 | ||
GWO | O | 1.0254 | 0.0302 | 0.0000 | 0.4172 | 39.2815 | 9.9196 | 1999.9289 | 3.2237 × 10−3 | |
P | 1.0192 | 0.0429 | 0.0000 | 0.3557 | 146.2351 | 14.9770 | 1967.2670 | 2.3444 × 10−3 | ||
IWOA | O | 0.9873 | 0.1355 | 0.0000 | 0.0000 | 259.2276 | 246.1912 | 864.0600 | 1.2561 × 10−2 | |
P | 0.9804 | 0.0490 | 0.0000 | 0.3948 | 284.5482 | 47.1109 | 2000.0000 | 7.9059 × 10−3 | ||
MSA | O | 1.0043 | 0.0329 | 0.0000 | 0.3851 | 41.8693 | 33.9236 | 1937.6914 | 6.2021 × 10−3 | |
P | 0.9854 | 0.0949 | 0.0000 | 0.1068 | 153.7583 | 133.1701 | 1997.2129 | 7.9444 × 10−3 | ||
WOA | O | 0.9642 | 0.0195 | 3.9581 × 10−4 | 0.0304 | 250.5678 | 159.2426 | 1546.5298 | 9.9934 × 10−3 | |
P | 0.9641 | 0.0365 | 0.0000 | 0.4497 | 162.8437 | 159.9484 | 2000.0000 | 4.1312 × 10−3 | ||
(Poland) | ABC | O | 1.0109 | 0.0153 | 2.2785 × 10−4 | 0.1363 | 253.5995 | 156.2469 | 715.2902 | 6.0578 × 10−3 |
P | 1.0115 | 0.0190 | 1.8986 × 10−4 | 0.1577 | 259.2224 | 185.6259 | 710.6529 | 4.6889 × 10−3 | ||
ALO | O | 1.0095 | 0.0000 | 4.4685 × 10−5 | 0.3629 | 300.0000 | 24.4399 | 925.8585 | 4.8371 × 10−3 | |
P | 1.0061 | 0.0023 | 1.9289 × 10−4 | 0.1852 | 104.3663 | 101.2819 | 787.5287 | 3.7879 × 10−3 | ||
BSA | O | 1.0208 | 0.0012 | 0.0000 | 0.3169 | 299.9991 | 0.0000 | 845.6171 | 6.8994 × 10−3 | |
P | 1.0042 | 0.0000 | 2.9484 × 10−5 | 0.3710 | 202.0059 | 116.3580 | 933.7275 | 6.8444 × 10−3 | ||
dFDB- MRFO | O | 1.0219 | 0.0209 | 4.5817 × 10−5 | 0.1327 | 48.7848 | 44.4692 | 665.4088 | 1.5902 × 10−3 | |
P | 1.0233 | 0.0259 | 2.5100 × 10−5 | 0.1256 | 76.6912 | 41.0389 | 656.2669 | 9.5081 × 10−4 | ||
GWO | O | 1.0048 | 0.0033 | 0.0000 | 0.3469 | 266.6240 | 169.0980 | 887.0722 | 8.2074 × 10−3 | |
P | 1.0069 | 0.0074 | 0.0000 | 0.3056 | 191.8814 | 49.7938 | 856.1800 | 7.1003 × 10−3 | ||
IWOA | O | 1.0086 | 0.0925 | 0.0000 | 0.0987 | 289.9562 | 259.9562 | 668.2762 | 8.5109 × 10−3 | |
P | 1.0196 | 0.0218 | 0.0000 | 0.1678 | 131.7244 | 29.4241 | 703.2403 | 7.8439 × 10−3 | ||
MSA | O | 1.0214 | 0.0898 | 0.0000 | 0.0643 | 299.9952 | 132.7677 | 617.7042 | 9.7095 × 10−3 | |
P | 1.0257 | 0.1653 | 0.0000 | 0.0294 | 300.0000 | 106.7103 | 593.0896 | 7.0223 × 10−3 | ||
WOA | O | 1.0268 | 0.0201 | 0.0000 | 0.1655 | 151.1938 | 14.6126 | 691.9322 | 2.1817 × 10−2 | |
P | 1.0089 | 0.0000 | 0.0000 | 0.4771 | 233.5462 | 47.9121 | 1079.1425 | 7.7361 × 10−3 |
Dataset | Algorithm | Data | MAE | MAPE | Tcost (s) |
---|---|---|---|---|---|
(HUST) | ABC | P | 2.2783 × 10−3 | 0.2418 | 37.3324 |
ALO | P | 2.4007 × 10−3 | 0.2889 | 23.8300 | |
BSA | P | 1.9064 × 10−3 | 0.3349 | 20.6537 | |
dFDB-MRFO | P | 1.2302 × 10−3 | 0.1460 | 34.1251 | |
GWO | P | 1.8876 × 10−3 | 2.0263 | 18.8555 | |
IWOA | P | 2.2625 × 10−3 | 0.3925 | 53.6705 | |
MSA | P | 2.2570 × 10−3 | 0.2330 | 19.4584 | |
WOA | P | 4.2883 × 10−3 | 0.5380 | 17.8711 | |
(Poland) | ABC | P | 2.2092 × 10−3 | 0.3374 | 40.3677 |
ALO | P | 3.4368 × 10−3 | 0.4518 | 26.5260 | |
BSA | P | 5.7945 × 10−3 | 0.2202 | 19.8924 | |
dFDB-MRFO | P | 6.8940 × 10−4 | 0.0894 | 37.3125 | |
GWO | P | 1.2923 × 10−3 | 0.1528 | 19.9486 | |
IWOA | P | 4.0978 × 10−3 | 0.3130 | 55.8479 | |
MSA | P | 1.1075 × 10−3 | 0.2375 | 20.3565 | |
WOA | P | 3.2596 × 10−3 | 0.3648 | 19.3635 |
Dataset | Algorithm | Data | Identified Parameters | RMSE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Eo | A | Rohm | B | I0,a | I0,c | IL | ||||
(HUST) | ABC | N | 1.0408 | 0.0480 | 1.7318 × 10−4 | 0.0473 | 243.0569 | 8.8039 | 1932.7709 | 2.5196 × 10−2 |
DN | 1.0173 | 0.0372 | 1.0597 × 10−4 | 0.2728 | 188.9808 | 49.8484 | 2000.0000 | 6.3903 × 10−3 | ||
ALO | N | 1.0531 | 0.0480 | 8.2077 × 10−5 | 0.0311 | 242.9147 | 15.0355 | 2000.0000 | 2.6823 × 10−2 | |
DN | 1.0221 | 0.0375 | 7.4828 × 10−5 | 0.2839 | 126.1736 | 12.3680 | 2000.0000 | 6.5182 × 10−3 | ||
BSA | N | 0.9407 | 0.0000 | 0.0000 | 0.7348 | 221.2304 | 220.4400 | 2000.0000 | 2.6894 × 10−2 | |
DN | 1.0062 | 0.0630 | 0.0000 | 0.2332 | 261.6800 | 35.2368 | 1744.5576 | 1.0173 × 10−2 | ||
dFDB-MRFO | N | 1.0556 | 0.0376 | 2.2173 × 10−4 | 0.0032 | 104.5354 | 78.4485 | 1712.0942 | 2.4767 × 10−2 | |
DN | 1.0290 | 0.0329 | 2.3280 × 10−4 | 0.0918 | 176.7367 | 171.1254 | 1976.2655 | 1.4120 × 10−3 | ||
GWO | N | 1.0577 | 0.0410 | 0.0000 | 0.2977 | 95.2575 | 65.3310 | 1999.6485 | 2.6910 × 10−2 | |
DN | 1.0145 | 0.0446 | 0.0000 | 0.1703 | 124.2762 | 68.1133 | 1318.8597 | 7.7041 × 10−3 | ||
IWOA | N | 1.0378 | 0.0545 | 1.1626 × 10−5 | 0.0999 | 57.9673 | 20.3646 | 1375.4261 | 4.6882 × 10−2 | |
DN | 0.9793 | 0.0659 | 0.0000 | 0.3245 | 154.7226 | 126.7479 | 2000.0000 | 2.9647 × 10−2 | ||
MSA | N | 1.0105 | 0.0919 | 5.3483 × 10−5 | 0.0033 | 248.0689 | 95.9777 | 923.7004 | 2.6578 × 10−2 | |
DN | 1.0107 | 0.0518 | 0.0000 | 0.2929 | 180.8079 | 25.2453 | 1880.1309 | 4.9883 × 10−3 | ||
WOA | N | 1.0204 | 0.0826 | 0.0000 | 0.0758 | 281.3075 | 33.4079 | 1399.6655 | 4.6882 × 10−2 | |
DN | 0.9469 | 0.0000 | 0.0000 | 0.7489 | 171.1936 | 142.3863 | 2000.0000 | 2.9645 × 10−2 | ||
(Poland) | ABC | N | 1.0293 | 0.0829 | 1.5714 × 10−4 | 0.0463 | 260.5604 | 206.0742 | 623.6771 | 2.2675 × 10−2 |
DN | 1.0077 | 0.0104 | 3.1564 × 10−4 | 0.0825 | 296.8653 | 151.6166 | 651.2173 | 5.1109 × 10−3 | ||
ALO | N | 1.0194 | 0.0239 | 0.0000 | 0.1540 | 92.4391 | 52.9801 | 683.0828 | 2.3778 × 10−2 | |
DN | 1.0248 | 0.1088 | 3.6119 × 10−5 | 0.0560 | 275.6218 | 191.8501 | 647.4461 | 1.0263 × 10−2 | ||
BSA | N | 1.0382 | 0.0120 | 3.8280 × 10−4 | 0.0254 | 299.9480 | 54.5671 | 594.9236 | 2.1734 × 10−2 | |
DN | 1.0142 | 0.1055 | 4.6119 × 10−5 | 0.0665 | 289.5618 | 272.4108 | 623.9358 | 4.1625 × 10−3 | ||
dFDB- MRFO | N | 1.0228 | 0.0311 | 3.5181 × 10−4 | 0.0179 | 261.3744 | 88.7520 | 593.3863 | 2.1010 × 10−2 | |
DN | 1.0215 | 0.0196 | 8.9138 × 10−5 | 0.1187 | 49.1925 | 46.8012 | 657.3215 | 1.2957 × 10−3 | ||
GWO | N | 1.0124 | 0.0045 | 0.0000 | 0.5224 | 280.8711 | 261.7358 | 1196.1545 | 2.4765 × 10−2 | |
DN | 1.0171 | 0.0259 | 1.1441 × 10−5 | 0.1481 | 93.9606 | 75.6367 | 683.7487 | 2.4633 × 10−3 | ||
IWOA | N | 1.0198 | 0.0679 | 0.0000 | 0.2447 | 249.5798 | 225.9068 | 975.1523 | 2.4780 × 10−2 | |
DN | 1.0133 | 0.0041 | 0.0000 | 0.5743 | 256.7416 | 229.6859 | 1251.0259 | 8.7935 × 10−3 | ||
MSA | N | 1.0210 | 0.0150 | 0.0000 | 0.2187 | 49.1191 | 32.6179 | 779.7619 | 2.4618 × 10−2 | |
DN | 1.0180 | 0.0784 | 0.0000 | 0.0726 | 148.1870 | 117.0644 | 623.1194 | 3.2388 × 10−3 | ||
WOA | N | 1.0190 | 0.0065 | 0.0000 | 0.3209 | 164.8314 | 121.9037 | 900.9027 | 2.4201 × 10−2 | |
DN | 1.0277 | 0.1151 | 0.0000 | 0.0382 | 300.0000 | 149.1398 | 601.0619 | 1.1927 × 10−2 |
Dataset | Algorithm | Data | Identified Parameters | RMSE | |||||
---|---|---|---|---|---|---|---|---|---|
Eo | A | Rohm | B | I0 | IL | ||||
(HUST) | ABC | O | 0.9959 | 0.0644 | 1.8789 × 10−4 | 0.0853 | 37.9933 | 1572.5825 | 8.6550 × 10−3 |
P | 0.9875 | 0.1246 | 3.1201 × 10−5 | 0.1663 | 95.7661 | 1688.1018 | 5.7883 × 10−3 | ||
ALO | O | 0.9824 | 0.1749 | 2.2731 × 10−5 | 0.0701 | 130.4238 | 1549.5708 | 1.2283 × 10−2 | |
P | 1.0214 | 0.0295 | 2.9226 × 10−4 | 0.2421 | 64.9809 | 1985.9896 | 6.2325 × 10−3 | ||
BSA | O | 0.9940 | 0.2286 | 0.0000 | 0.0002 | 146.9997 | 864.0600 | 8.0427 × 10−3 | |
P | 0.9892 | 0.1053 | 0.0000 | 0.1857 | 74.4544 | 1446.7452 | 4.9445 × 10−3 | ||
dFDB-MRFO | O | 1.0299 | 0.0359 | 3.3483 × 10−4 | 0.0092 | 27.3804 | 1963.3014 | 2.8946 × 10−3 | |
P | 1.0165 | 0.0428 | 2.8037 × 10−4 | 0.0605 | 14.9765 | 1914.9696 | 2.1036 × 10−3 | ||
GWO | O | 0.9971 | 0.1864 | 0.0000 | 0.0118 | 112.5108 | 874.7816 | 1.0391 × 10−2 | |
P | 0.9993 | 0.0953 | 0.0000 | 0.2028 | 56.6599 | 1483.3104 | 4.2223 × 10−3 | ||
IWOA | O | 0.9872 | 0.2084 | 0.0000 | 0.0094 | 144.8862 | 875.5106 | 1.1768 × 10−2 | |
P | 0.9760 | 0.1839 | 0.0000 | 0.1063 | 155.5571 | 1562.4918 | 7.1351 × 10−3 | ||
MSA | O | 0.9907 | 0.2229 | 1.3483 × 10−5 | 0.0038 | 151.9466 | 864.6546 | 1.1419 × 10−2 | |
P | 0.9820 | 0.1691 | 0.0000 | 0.0768 | 130.5388 | 1236.5841 | 6.2959 × 10−3 | ||
WOA | O | 0.9759 | 0.2689 | 0.0000 | 0.0945 | 243.3425 | 1999.6929 | 1.4692 × 10−2 | |
P | 0.9851 | 0.1288 | 0.0000 | 0.1839 | 99.6173 | 1631.8595 | 5.6719 × 10−3 | ||
(Poland) | ABC | O | 1.0087 | 0.0820 | 2.0200 × 10−4 | 0.0939 | 283.1375 | 672.0733 | 6.0210 × 10−3 |
P | 1.0143 | 0.0549 | 2.1321 × 10−4 | 0.0858 | 181.8114 | 642.7615 | 4.4861 × 10−3 | ||
ALO | O | 1.0387 | 0.2627 | 1.1876 × 10−4 | 0.0088 | 243.3413 | 592.8920 | 6.2782 × 10−3 | |
P | 1.0343 | 0.3179 | 8.3912 × 10−5 | 0.0175 | 300.0000 | 589.8790 | 6.6270 × 10−3 | ||
BSA | O | 1.0389 | 0.4277 | 0.0000 | 0.0000 | 300.0000 | 611.0538 | 8.3311 × 10−3 | |
P | 1.0282 | 0.0231 | 0.0000 | 0.1968 | 16.0398 | 722.5594 | 1.5154 × 10−2 | ||
dFDB-MRFO | O | 1.0219 | 0.0499 | 6.6134 × 10−6 | 0.1350 | 54.4361 | 665.8446 | 1.4992 × 10−3 | |
P | 1.0221 | 0.0432 | 9.6881 × 10−5 | 0.1067 | 51.9844 | 643.9199 | 1.0670 × 10−3 | ||
GWO | O | 1.0054 | 0.0142 | 0.0000 | 0.3221 | 162.6233 | 866.1572 | 3.6775 × 10−3 | |
P | 1.0047 | 0.0034 | 0.0000 | 0.3648 | 75.2659 | 920.9167 | 2.4511 × 10−3 | ||
IWOA | O | 1.0369 | 0.4125 | 0.0000 | 0.0032 | 299.5569 | 592.8920 | 1.7263 × 10−2 | |
P | 1.0158 | 0.1303 | 0.0000 | 0.2504 | 299.4474 | 895.9101 | 7.8751 × 10−3 | ||
MSA | O | 1.0186 | 0.0128 | 0.0000 | 0.2486 | 10.7416 | 780.4319 | 4.9739 × 10−3 | |
P | 1.0098 | 0.0155 | 0.0000 | 0.2661 | 43.1013 | 806.2505 | 4.2821 × 10−3 | ||
WOA | O | 1.0138 | 0.0911 | 0.0000 | 0.1212 | 134.2589 | 662.8850 | 3.2853 × 10−3 | |
P | 1.0122 | 0.0182 | 3.3970 × 10−5 | 0.2303 | 41.8487 | 773.8104 | 1.8440 × 10−3 |
Dataset | Algorithm | Data | MAE | MAPE | Tcost (s) |
---|---|---|---|---|---|
(HUST) | ABC | P | 2.1547 × 10−3 | 0.2634 | 42.3649 |
ALO | P | 3.1916 × 10−3 | 0.3798 | 24.9545 | |
BSA | P | 2.0090 × 10−3 | 0.2902 | 19.8749 | |
dFDB-MRFO | P | 1.4111 × 10−3 | 0.1825 | 38.7129 | |
GWO | P | 2.0460 × 10−3 | 0.2288 | 19.1030 | |
IWOA | P | 2.1170 × 10−3 | 0.3501 | 54.0887 | |
MSA | P | 2.0387 × 10−3 | 0.2538 | 19.0055 | |
WOA | P | 2.3336 × 10−3 | 0.3328 | 18.9393 | |
(Poland) | ABC | P | 3.5170 × 10−3 | 0.3277 | 38.7902 |
ALO | P | 4.4878 × 10−3 | 0.3709 | 23.6014 | |
BSA | P | 6.1218 × 10−3 | 0.7347 | 18.1037 | |
dFDB-MRFO | P | 6.6031 × 10−4 | 0.0823 | 34.0141 | |
GWO | P | 1.9230 × 10−3 | 0.1560 | 18.1561 | |
IWOA | P | 3.7055 × 10−3 | 0.4304 | 52.9035 | |
MSA | P | 1.4135 × 10−3 | 0.1892 | 18.4856 | |
WOA | P | 3.7348 × 10−3 | 0.1491 | 17.7537 |
Dataset | Algorithm | Data | Identified Parameters | RMSE | |||||
---|---|---|---|---|---|---|---|---|---|
Eo | A | Rohm | B | I0 | IL | ||||
(HUST) | ABC | N | 1.0239 | 0.0902 | 8.0400 × 10−5 | 0.1574 | 33.6532 | 2000.0000 | 2.5354 × 10−2 |
DN | 0.9950 | 0.1191 | 2.3572 × 10−5 | 0.1073 | 79.3750 | 1214.9105 | 9.1871 × 10−3 | ||
ALO | N | 1.0285 | 0.0856 | 8.6930 × 10−5 | 0.1039 | 30.8879 | 1444.4458 | 2.6887 × 10−2 | |
DN | 1.0084 | 0.1618 | 3.1818 × 10−5 | 0.0187 | 89.0017 | 902.6166 | 1.1141 × 10−2 | ||
BSA | N | 1.0490 | 0.0691 | 0.0000 | 0.3324 | 13.2586 | 2000.0000 | 1.4015 × 10−1 | |
DN | 0.9944 | 0.2134 | 0.0000 | 0.0025 | 134.9176 | 864.0600 | 2.9648 × 10−2 | ||
dFDB-MRFO | N | 1.0533 | 0.0548 | 2.6043 × 10−4 | 0.0000 | 8.6001 | 1651.7166 | 2.4958 × 10−2 | |
DN | 1.0290 | 0.0371 | 3.3480 × 10−4 | 0.0032 | 8.2064 | 1883.1519 | 1.5600 × 10−3 | ||
GWO | N | 1.0488 | 0.0690 | 5.0449 × 10−5 | 0.2628 | 13.5532 | 2000.0000 | 2.6694 × 10−2 | |
DN | 1.0203 | 0.0674 | 5.3987 × 10−5 | 0.1741 | 23.9954 | 1373.0948 | 4.6941 × 10−3 | ||
IWOA | N | 1.0214 | 0.0932 | 0.0000 | 0.2639 | 35.9610 | 2000.0000 | 2.6214 × 10−2 | |
DN | 0.9725 | 0.0270 | 3.9130 × 10−4 | 0.0256 | 65.2928 | 2000.0000 | 1.2417 × 10−2 | ||
MSA | N | 1.0137 | 0.1386 | 1.0114 × 10−5 | 0.0432 | 61.8185 | 1134.2961 | 2.7332 × 10−2 | |
DN | 1.0023 | 0.0937 | 0.0000 | 0.2338 | 53.3175 | 1628.9630 | 7.2302 × 10−3 | ||
WOA | N | 1.0330 | 0.0848 | 0.0000 | 0.2694 | 24.9538 | 1958.2301 | 2.8336 × 10−2 | |
DN | 0.9831 | 0.0255 | 3.5701 × 10−4 | 0.0760 | 28.9481 | 2000.0000 | 1.4312 × 10−2 | ||
(Poland) | ABC | N | 1.0183 | 0.0361 | 3.8249 × 10−4 | 0.0332 | 188.5794 | 603.8424 | 2.2084 × 10−2 |
DN | 1.0152 | 0.1057 | 1.5161 × 10−4 | 0.1030 | 209.2736 | 668.6288 | 5.9881 × 10−3 | ||
ALO | N | 1.0299 | 0.2928 | 1.2785 × 10−4 | 0.0113 | 300.0000 | 592.8920 | 2.1858 × 10−2 | |
DN | 1.0099 | 0.0184 | 2.0317 × 10−4 | 0.1557 | 183.2716 | 741.5057 | 6.9660 × 10−3 | ||
BSA | N | 1.0444 | 0.0429 | 3.5072 × 10−5 | 0.1004 | 18.4335 | 635.7112 | 2.4820 × 10−2 | |
DN | 1.0198 | 0.0000 | 0.0000 | 0.8499 | 254.9711 | 1632.9096 | 1.1887 × 10−2 | ||
dFDB-MRFO | N | 1.0213 | 0.2069 | 1.2547 × 10−4 | 0.0198 | 238.8162 | 593.5600 | 2.1003 × 10−2 | |
DN | 1.0217 | 0.0526 | 0.0000 | 0.1339 | 57.2269 | 664.4808 | 1.1003 × 10−3 | ||
GWO | N | 1.0242 | 0.3572 | 0.0000 | 0.0106 | 300.0000 | 592.8920 | 2.4745 × 10−2 | |
DN | 1.0055 | 0.0015 | 0.0000 | 0.3552 | 35.1242 | 893.9047 | 8.0012 × 10−3 | ||
IWOA | N | 1.0183 | 0.1337 | 0.0000 | 0.0910 | 165.2074 | 648.4477 | 2.2751 × 10−2 | |
DN | 1.0071 | 0.0320 | 0.0000 | 0.2930 | 196.4814 | 848.1346 | 7.6441 × 10−3 | ||
MSA | N | 1.0249 | 0.1512 | 1.5676 × 10−5 | 0.0412 | 132.3149 | 599.2817 | 2.1464 × 10−2 | |
DN | 1.0163 | 0.0024 | 4.1476 × 10−5 | 0.2973 | 14.1800 | 842.3375 | 4.5383 × 10−3 | ||
WOA | N | 1.0165 | 0.0464 | 0.0000 | 0.3960 | 159.9633 | 1093.5445 | 2.8834 × 10−2 | |
DN | 1.0087 | 0.0002 | 3.3680 × 10−4 | 0.0902 | 70.9730 | 656.2933 | 4.5140 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Gao, D.; Shi, L.; Zheng, F.; Yang, B. Parameter Identification of Solid Oxide Fuel Cell Using Elman Neural Network and Dynamic Fitness Distance Balance-Manta Ray Foraging Optimization Algorithm. Processes 2024, 12, 2504. https://doi.org/10.3390/pr12112504
Li H, Gao D, Shi L, Zheng F, Yang B. Parameter Identification of Solid Oxide Fuel Cell Using Elman Neural Network and Dynamic Fitness Distance Balance-Manta Ray Foraging Optimization Algorithm. Processes. 2024; 12(11):2504. https://doi.org/10.3390/pr12112504
Chicago/Turabian StyleLi, Hongbiao, Dengke Gao, Linlong Shi, Fei Zheng, and Bo Yang. 2024. "Parameter Identification of Solid Oxide Fuel Cell Using Elman Neural Network and Dynamic Fitness Distance Balance-Manta Ray Foraging Optimization Algorithm" Processes 12, no. 11: 2504. https://doi.org/10.3390/pr12112504
APA StyleLi, H., Gao, D., Shi, L., Zheng, F., & Yang, B. (2024). Parameter Identification of Solid Oxide Fuel Cell Using Elman Neural Network and Dynamic Fitness Distance Balance-Manta Ray Foraging Optimization Algorithm. Processes, 12(11), 2504. https://doi.org/10.3390/pr12112504