Enhancing the Predictability of Wintertime Energy Demand in The Netherlands Using Ensemble Model Prophet-LSTM
Abstract
:1. Introduction
2. Related Work
2.1. Baseline Approach
2.2. Impact of Climate Change on Energy Demand
2.3. Impact of Energy Price and Renewable Energy on Energy Demand
2.4. Energy Demand Forecasting Models
2.4.1. More Traditional Models
2.4.2. AML Models
3. Methodology
3.1. Data Collection
3.1.1. Target Variable
3.1.2. Predictors
3.2. EDA
3.2.1. Seasonal Decomposition
3.2.2. Autocorrelation Analysis
3.3. Data Cleaning and Preparation
3.3.1. Handling Outliers
3.3.2. Shifting Data
3.3.3. Handling Missing Values
3.3.4. Predictor Selection
3.3.5. MinMaxScaling
3.4. Model Implementation: Baseline Model
3.5. Model Implementation: AML Model
3.5.1. Ensemble Model
3.5.2. Prophet
3.5.3. LSTM
3.6. Model Evaluation
3.6.1. Rolling Origin Cross-Validation
3.6.2. PCC
3.6.3. RMSE
3.6.4. MAPE
4. Results
4.1. Performance of Baseline MLR
4.2. Wintertime Performance of Prophet-LSTM
MLR vs. Wintertime Prophet-LSTM
4.3. General Performance of Prophet-LSTM
Best Model Selection
4.4. Impact of Predictors
4.4.1. Climate Change-Related Predictors
4.4.2. Energy Price Predictors
4.5. Longer Horizon Forecasts
5. Discussion
5.1. Baseline MLR vs. Prophet-LSTM
5.2. Impact of Adding Climate Change-Related and Energy Price Predictors
5.3. Lead Time Improvement
5.4. Limitations
6. Conclusions
Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- TenneT TSO B.V. Rapport Monitor Leveringszekerheid 2024; TenneT: Arnhem, The Netherlands, 2024. [Google Scholar]
- Koster, R. Netbeheerder Waarschuwt Voor Stroomtekort in 2030; NOS: Hilversum, The Netherlands, 2023. [Google Scholar]
- Telegraaf. TenneT: Stroomtekort Dreigt Na 2030 Door Afhankelijkheid Groene Energie; Telegraaf: Arnhem, The Netherlands, 2023. [Google Scholar]
- NOS. Nederland Heeft Hoogste Gasprijs van EU, FNV wil Prijsplafond en Hogere Lonen; NOS: Hilversum, The Netherlands, 2022. [Google Scholar]
- Koenraadt, B. Energieprijzen Europa Verschillen Sterk: Nederlandse Gasprijs Bij Hoogste Drie; Energievergelijk: Barendrecht, The Netherlands, 2024. [Google Scholar]
- Ministerie van Algemene Zaken. Maatregelenpakket om Gevolgen Stijgende Energieprijzen en Aanhoudende Inflatie te Verzachten; Rijksoverheid: The Hague, The Netherlands, 2022.
- RTL, Z. Laagste Gasverbruik in 50 Jaar: ‘Bezuinigen Vaak Noodzakelijk’; RTL Z: Hilversum, The Netherlands, 2023. [Google Scholar]
- Ministerie van Infrastructuur en Waterstaat. Klimaatverandering en Gevolgen; Ministerie van Infrastructuur en Waterstaat: The Hague, The Netherlands, 2023.
- Li, S.; Sriver, R.; Miller, D. Skillful prediction of UK seasonal energy consumption based on surface climate information. Environ. Res. Lett. 2023, 18, 064007. [Google Scholar] [CrossRef]
- Centraal Bureau voor de Statistiek. Renewable Energy Share Rose to 15 Percent in 2022; Centraal Bureau voor de Statistiek: The Hague, The Netherlands, 2023.
- Ministerie van Algemene Zaken. Rijksoverheid Stimuleert Duurzame Energie; Rijksoverheid: The Hague, The Netherlands, 2023.
- European Commission. Gevolgen van Klimaatverandering. Rijksoverheid. Available online: https://www.rijksoverheid.nl/onderwerpen/klimaatverandering/gevolgen-klimaatverandering (accessed on 29 June 2024).
- voor de Statistiek, C.B. Laagste Energieverbruik in Nederland Sinds 1990; Centraal Bureau voor de Statistiek: The Hague, The Netherlands, 2023. [Google Scholar]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef]
- Thornton, H.; Scaife, A.; Hoskins, B.; Brayshaw, D.; Smith, D.; Dunstone, N.; Stringer, N.; Bett, P. Skilful seasonal prediction of winter gas demand. Environ. Res. Lett. 2019, 14, 024009. [Google Scholar] [CrossRef]
- Wang, L.; Ting, M.; Kushner, P. A robust empirical seasonal prediction of winter NAO and surface climate. Sci. Rep. 2017, 7, 279. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). Sea Ice Concentration Daily Gridded Data from 1979 to Present Derived from Satellite Observations. Available online: https://cds.climate.copernicus.eu/datasets/satellite-sea-ice-concentration?tab=overview (accessed on 29 June 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service (C3S). 2023. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels?tab=overview (accessed on 29 June 2024).
- Reynolds, R.; Rayner, N.; Smith, T.; Stokes, D.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Huy, P.; Minh, N.; Tien, N.; Anh, T. Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model. IEEE Access 2022, 10, 106296–106304. [Google Scholar] [CrossRef]
- Atems, B.; Mette, J.; Lin, G.; Madraki, G. Estimating and forecasting the impact of nonrenewable energy prices on US renewable energy consumption. Energy Policy 2023, 173, 113374. [Google Scholar] [CrossRef]
- Kumar, S.; Fujii, H. Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries. Appl. Econ. 2015, 47, 1438–1459. [Google Scholar] [CrossRef]
- Silva, S.; Soares, I.; Pinho, C. Electricity demand response to price changes: The Portuguese case taking into account income differences. Energy Econ. 2017, 65, 335–342. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Huang, A.; Vega-Westhoff, B.; Sriver, R. Analyzing El Niño—Southern Oscillation Predictability Using Long-Short-Term-Memory Models. Earth Space Sci. 2019, 6, 212–221. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, Q.; Xiao, D. Application of LSTM-LightGBM Nonlinear Combined Model to Power Load Forecasting. J. Phys. Conf. Ser. 2022, 2294, 012035. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, N.; Chen, W.; Zhang, H.; Guo, B.; Shen, J.; Tian, Z. Multi-step ahead forecasting for electric power load using an ensemble model. Expert Syst. Appl. 2022, 211, 118649. [Google Scholar] [CrossRef]
- European Network of Transmission System Operators for Electricity (ENTSO-E). Glossary; European Network of Transmission System Operators for Electricity (ENTSO-E): Brussels, Belgium, 2004. [Google Scholar]
- Koninklijk Nederlands Meteorologisch Instituut. KNMI—Daggegevens van het Weer in The Nederlands; Koninklijk Nederlands Meteorologisch Instituut: De Bilt, The Netherlands, 2024.
- Koninklijk Nederlands Meteorologisch Instituut. KNMI—Automatische Weerstations; Koninklijk Nederlands Meteorologisch Instituut: De Bilt, The Netherlands, 2024.
- North Atlantic Oscillation (NAO). Available online: https://www.ncei.noaa.gov/access/monitoring/nao/ (accessed on 29 June 2024).
- CBS Statline. Hernieuwbare Energie; Verbruik Naar Energiebron, Techniek en Toepassing; Centraal Bureau voor de Statistiek: The Hague, The Netherlands, 2024. [Google Scholar]
- CBS Statline. Eindverbruikersprijzen Aardgas en Elektriciteit; Centraal Bureau voor de Statistiek: The Hague, The Netherlands, 2024. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. 6.1 Time series components. In Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Statsmodels. Seasonal Decompose, 0.15.0. 2024. Available online: https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal_decompose.html (accessed on 29 June 2024).
- Hyndman, R.J.; Athanasopoulos, G. 2.8 Autocorrelation. In Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Shaikh, A.K.; Nazir, A.; Khan, I.; Shah, A.S. Short term energy consumption forecasting using neural basis expansion analysis for interpretable time series. Sci. Rep. 2022, 12, 22562. [Google Scholar] [CrossRef]
- Al-Saudi, K.; Degeler, V.; Medema, M. Energy Consumption Patterns and Load Forecasting with Profiled CNN-LSTM Networks. Processes 2021, 9, 1870. [Google Scholar] [CrossRef]
- Ruggles, T.H.; Farnham, D.J.; Tong, D.; Caldeira, K. Developing reliable hourly electricity demand data through screening and imputation. Sci. Data 2020, 7, 155. [Google Scholar] [CrossRef]
- Aidoni, A.; Kofidis, K.; Cocianu, C.L.; Avram, L. Deep learning models for natural gas demand forecasting: A comparative study of MLP, CNN and LSTM. Rom. J. Pet. Gas Technol. 2023, 4, 133–148. [Google Scholar] [CrossRef]
- Genov, E.; Petridis, S.; Iliadis, P.; Nikopoulos, N.; Coosemans, T.; Messagie, M.; Camargo, L.R. Short-Term Load Forecasting in a microgrid environment: Investigating the series-specific and cross-learning forecasting methods. J. Phys. Conf. Ser. 2021, 2042, 012035. [Google Scholar] [CrossRef]
- Tan, M.; Yuan, S.; Li, S.; Su, Y.; Li, H.; He, F. Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning. IEEE Trans. Power Syst. 2019, 35, 2937–2948. [Google Scholar] [CrossRef]
- Taylor, S.; Letham, B. Forecasting at Scale; PeerJ, Inc.: London, UK, 2017. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. 12.2 Prophet model. In Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Nazir, S.; Aziz, A.A.; Hosen, J.; Aziz, N.A.; Murthy, G.R. Forecast Energy Consumption Time-Series Dataset using Multistep LSTM Models. J. Phys. Conf. Ser. 2021, 1933, 012054. [Google Scholar] [CrossRef]
- Svetunkov, I. 2.4 Rolling Origin. In Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM); CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Obilor, E.I.; Amadi, E.C. Test for Significance of Pearson’s Correlation Coefficient. Int. J. Innov. Math. Stat. Energy Policies 2018, 6, 11–23. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. 3.4 Evaluating forecast accuracy. In Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Yoo, W.; Mayberry, R.; Bae, S.; Singh, K.; He, Q.; Lillard, J. A Study of Effects of MultiCollinearity in the Multivariable Analysis. Int. J. Appl. Sci. Technol. 2014, 4, 9–19. [Google Scholar] [PubMed]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Suganthi, L.; Samuel, A.A. Energy models for demand forecasting—A review. Renew. Sustain. Energy Rev. 2012, 16, 1223–1240. [Google Scholar] [CrossRef]
Pred. | Fold | RMSE | MAPE | PCC |
---|---|---|---|---|
excl. | 1 | 1910.53 | 11.45 | 0.71 |
2 | 2207.39 | 11.85 | 0.72 | |
3 | 1856.90 | 10.55 | 0.72 | |
4 | 1887.11 | 9.47 | 0.71 | |
5 | 1743.45 | 9.29 | 0.70 | |
6 | 1826.48 | 9.51 | 0.69 | |
7 | 1959.85 | 9.97 | 0.63 | |
8 | 1878.80 | 9.29 | 0.62 | |
Avg. | 1908.81 | 10.17 | 0.69 | |
incl. | 1 | 2199.54 | 12.80 | 0.71 |
2 | 1958.13 | 12.62 | 0.66 | |
3 | 1896.96 | 12.64 | 0.73 | |
4 | 1967.44 | 10.42 | 0.73 | |
5 | 1753.80 | 10.04 | 0.70 | |
6 | 1693.44 | 10.26 | 0.70 | |
7 | 1757.51 | 9.43 | 0.65 | |
8 | 1777.61 | 9.11 | 0.65 | |
Avg. | 1874.75 | 11.11 | 0.70 |
Pred. | Fold | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|---|
RMSE | MAPE | PCC | RMSE | MAPE | PCC | ||
excl. | 1 | 824.56 | 4.91 | 0.95 | 1158.00 | 7.70 | 0.92 |
2 | 1291.12 | 7.47 | 0.92 | 1340.38 | 8.05 | 0.89 | |
3 | 847.10 | 4.50 | 0.95 | 920.69 | 4.99 | 0.93 | |
4 | 853.98 | 4.64 | 0.95 | 989.01 | 5.68 | 0.91 | |
5 | 956.52 | 5.50 | 0.92 | 1045.81 | 6.05 | 0.89 | |
6 | 838.51 | 4.97 | 0.94 | 930.09 | 4.99 | 0.92 | |
7 | 938.36 | 4.96 | 0.91 | 1113.21 | 5.89 | 0.90 | |
8 | 922.93 | 4.94 | 0.91 | 990.38 | 5.24 | 0.90 | |
Avg. | 934.13 | 5.23 | 0.93 | 1060.95 | 6.07 | 0.91 | |
incl. | 1 | 1054.20 | 7.13 | 0.95 | 1217.58 | 7.45 | 0.92 |
2 | 2211.39 | 13.59 | 0.90 | 2026.11 | 11.99 | 0.85 | |
3 | 1269.56 | 7.23 | 0.94 | 935.21 | 4.90 | 0.94 | |
4 | 1501.63 | 9.28 | 0.93 | 1550.03 | 9.20 | 0.88 | |
5 | 1109.64 | 5.89 | 0.90 | 1525.65 | 8.16 | 0.87 | |
6 | 948.57 | 5.08 | 0.92 | 1138.56 | 5.89 | 0.91 | |
7 | 971.95 | 5.30 | 0.90 | 1413.26 | 7.59 | 0.90 | |
8 | 922.14 | 5.05 | 0.91 | 1125.58 | 5.87 | 0.90 | |
Avg. | 1248.63 | 7.32 | 0.92 | 1366.50 | 7.63 | 0.90 |
Pred. | Fold | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|---|
RMSE | MAPE | PCC | RMSE | MAPE | PCC | ||
excl. | 1 | 701.18 | 4.41 | 0.96 | 1604.70 | 12.01 | 0.87 |
2 | 1077.49 | 6.83 | 0.95 | 1452.22 | 9.94 | 0.86 | |
3 | 674.92 | 3.97 | 0.96 | 1094.25 | 7.12 | 0.93 | |
4 | 704.01 | 4.31 | 0.96 | 1450.01 | 9.64 | 0.86 | |
5 | 1215.83 | 7.78 | 0.86 | 1584.58 | 10.39 | 0.76 | |
6 | 962.01 | 5.81 | 0.89 | 1105.99 | 6.84 | 0.85 | |
7 | 957.63 | 5.54 | 0.88 | 1063.14 | 6.25 | 0.84 | |
8 | 988.72 | 5.75 | 0.91 | 1021.10 | 5.81 | 0.88 | |
Avg. | 910.22 | 5.55 | 0.92 | 1297.00 | 8.50 | 0.86 | |
incl. | 1 | 1478.74 | 10.98 | 0.93 | 1168.60 | 8.15 | 0.89 |
2 | 1878.18 | 12.37 | 0.93 | 1596.42 | 9.91 | 0.90 | |
3 | 1258.06 | 7.82 | 0.95 | 770.80 | 4.55 | 0.95 | |
4 | 2044.24 | 13.94 | 0.90 | 2041.10 | 14.02 | 0.88 | |
5 | 1266.63 | 7.97 | 0.82 | 1722.65 | 11.26 | 0.71 | |
6 | 1045.57 | 6.32 | 0.86 | 1126.89 | 6.32 | 0.85 | |
7 | 1192.92 | 7.59 | 0.84 | 1342.90 | 7.52 | 0.85 | |
8 | 1172.86 | 7.21 | 0.86 | 1262.91 | 6.88 | 0.87 | |
Avg. | 1417.15 | 9.27 | 0.89 | 1379.03 | 8.58 | 0.86 |
Fold | General | Wintertime | ||||
---|---|---|---|---|---|---|
RMSE | MAPE | PCC | RMSE | MAPE | PCC | |
1 | 1819.07 | 10.91 | 0.92 | 2560.01 | 15.66 | 0.94 |
2 | 1569.33 | 9.57 | 0.93 | 1448.72 | 8.11 | 0.91 |
3 | 851.30 | 4.93 | 0.93 | 1069.90 | 5.90 | 0.95 |
4 | 919.16 | 5.35 | 0.91 | 1181.79 | 6.23 | 0.93 |
5 | 1029.53 | 5.85 | 0.87 | 958.65 | 5.23 | 0.91 |
6 | 1165.02 | 7.35 | 0.87 | 858.01 | 4.84 | 0.93 |
7 | 1077.90 | 5.98 | 0.86 | 1265.33 | 6.65 | 0.89 |
8 | 1032.16 | 5.94 | 0.90 | 1096.53 | 5.97 | 0.89 |
Avg. | 1182.93 | 6.98 | 0.90 | 1304.87 | 7.32 | 0.92 |
Predictor | Test Set | RMSE | MAPE | PCC |
---|---|---|---|---|
dailyPrecipitation | Entire | 1020.0 | 5.92 | 0.86 |
Winter | 947.45 | 5.09 | 0.90 | |
dailyMeanTemperature | Entire | 1035.79 | 5.74 | 0.87 |
Winter | 991.35 | 5.12 | 0.90 | |
dailyMeanWindspeed | Entire | 988.06 | 5.84 | 0.87 |
Winter | 938.96 | 5.13 | 0.91 | |
NAO | Entire | 1079.08 | 6.01 | 0.86 |
Winter | 993.43 | 5.38 | 0.89 | |
SIC | Entire | 1053.74 | 6.69 | 0.88 |
Winter | 1009.51 | 5.89 | 0.91 | |
SST | Entire | 999.13 | 5.75 | 0.87 |
Winter | 902.04 | 4.82 | 0.91 | |
geopotential | Entire | 1113.94 | 7.02 | 0.87 |
Winter | 1042.45 | 5.94 | 0.91 | |
renewableEnergyRatio | Entire | 1215.77 | 7.96 | 0.86 |
Winter | 1069.89 | 6.30 | 0.90 |
Fold | General | Wintertime | ||||
---|---|---|---|---|---|---|
RMSE | MAPE | PCC | RMSE | MAPE | PCC | |
1 | 704.70 | 4.56 | 0.96 | 812.67 | 4.53 | 0.95 |
2 | 1114.92 | 7.13 | 0.95 | 1248.88 | 7.28 | 0.92 |
3 | 697.76 | 3.97 | 0.96 | 777.21 | 3.81 | 0.95 |
4 | 710.90 | 4.11 | 0.95 | 873.96 | 4.79 | 0.95 |
5 | 1065.19 | 6.23 | 0.86 | 987.40 | 5.79 | 0.91 |
6 | 976.60 | 6.06 | 0.89 | 873.03 | 5.31 | 0.94 |
7 | 947.21 | 5.60 | 0.88 | 927.27 | 5.00 | 0.91 |
8 | 948.67 | 5.54 | 0.90 | 960.23 | 5.17 | 0.91 |
Avg. | 895.74 | 5.40 | 0.92 | 932.58 | 5.21 | 0.93 |
Days Ahead | General | Wintertime | ||||
---|---|---|---|---|---|---|
RMSE | MAPE | PCC | RMSE | MAPE | PCC | |
60 | 986.69 | 5.72 | 0.87 | 926.11 | 5.06 | 0.91 |
75 | 980.67 | 5.76 | 0.88 | 895.73 | 4.90 | 0.91 |
90 | 898.11 | 5.18 | 0.90 | 696.31 | 3.73 | 0.95 |
105 | 939.55 | 5.52 | 0.89 | 771.91 | 4.18 | 0.94 |
120 | 1529.96 | 8.76 | 0.82 | 1260.11 | 6.54 | 0.86 |
135 | 1301.76 | 7.29 | 0.84 | 1182.48 | 6.27 | 0.86 |
150 | 1112.05 | 6.25 | 0.85 | 1078.16 | 5.91 | 0.87 |
165 | 1053.46 | 6.06 | 0.85 | 1043.45 | 5.74 | 0.88 |
180 | 1033.69 | 5.98 | 0.86 | 949.45 | 5.10 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van de Sande, S.N.P.; Alsahag, A.M.M.; Mohammadi Ziabari, S.S. Enhancing the Predictability of Wintertime Energy Demand in The Netherlands Using Ensemble Model Prophet-LSTM. Processes 2024, 12, 2519. https://doi.org/10.3390/pr12112519
van de Sande SNP, Alsahag AMM, Mohammadi Ziabari SS. Enhancing the Predictability of Wintertime Energy Demand in The Netherlands Using Ensemble Model Prophet-LSTM. Processes. 2024; 12(11):2519. https://doi.org/10.3390/pr12112519
Chicago/Turabian Stylevan de Sande, Susan N. P., Ali M. M. Alsahag, and Seyed Sahand Mohammadi Ziabari. 2024. "Enhancing the Predictability of Wintertime Energy Demand in The Netherlands Using Ensemble Model Prophet-LSTM" Processes 12, no. 11: 2519. https://doi.org/10.3390/pr12112519
APA Stylevan de Sande, S. N. P., Alsahag, A. M. M., & Mohammadi Ziabari, S. S. (2024). Enhancing the Predictability of Wintertime Energy Demand in The Netherlands Using Ensemble Model Prophet-LSTM. Processes, 12(11), 2519. https://doi.org/10.3390/pr12112519