Optimization of Liquid Phase Catalytic Exchange Process for Hydrogen Isotope Separation Using Orthogonal Experiment Design
Abstract
:1. Introduction
2. Experimental Section
2.1. LPCE Process
2.2. Performance Testing of the LPCE Column
2.2.1. LPCE Apparatus
2.2.2. Performance Testing and Calculation of the LPCE Column
2.3. Orthogonal Experimental Design and Analysis Method
2.3.1. Range Analysis
2.3.2. Analysis of Variance (ANOVA)
3. Results and Discussion
3.1. Analysis of Orthogonal Test Results
3.1.1. Range Analysis Results
Influence of Each Factor on HETP
Influence of Each Factor on DE
3.1.2. Results of ANOVA
3.2. Validation of Optimal Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jones, G. Tritium issues in commercial pressurized water reactors. Fusion Sci. Technol. 2008, 54, 329–332. [Google Scholar] [CrossRef]
- Bukin, A.N.; Marunich, S.; Pak, Y.; Rastunova, I.; Rozenkevich, M.; Chebotov, A.Y. Specific features and current status of processes for tritium removal from water: A critical review. Fusion Sci. Technol. 2022, 78, 595–606. [Google Scholar] [CrossRef]
- Lu, B.; Yang, X.; Liu, J.; Li, R. Progress on Tritium Toxicity and Detoxification Strategies. ACS Chem. Health Saf. 2024, 31, 144–152. [Google Scholar] [CrossRef]
- Eyrolle, F.; Ducros, L.; Le Dizès, S.; Beaugelin-Seiller, K.; Charmasson, S.; Boyer, P.; Cossonnet, C. An updated review on tritium in the environment. J. Environ. Radioact. 2018, 181, 128–137. [Google Scholar] [CrossRef]
- Park, T.K.; Kim, S.K. Tritium: Its generation and pathways to the environment at CANDU 6 generating stations. Nucl. Eng. Des. 1996, 163, 405–411. [Google Scholar] [CrossRef]
- Vasyanina, T.V.; Alekseev, I.A.; Bondarenko, S.D.; Fedorchenko, O.A.; Konoplev, K.A.; Arkhipov, E.A.; Uborsky, V.V. Heavy water purification from tritium by CECE process. Fusion Eng. Des. 2008, 83, 1451–1454. [Google Scholar] [CrossRef]
- Fedorchenko, O.A.; Alekseev, I.A.; Bondarenko, S.D.; Vasyanina, T.V. Recent progress in the experimental study of LPCE process on “eVIO” pilot plant. Fusion Sci. Technol. 2017, 71, 432–437. [Google Scholar] [CrossRef]
- Bondarenko, S.D.; Alekseev, I.A.; Fedorchenko, O.A.; Vasyanina, T.V. The current status of the heavy water detritiation facility at the NRC (Kurchatov Institute)–PNPI. Fusion Sci. Technol. 2020, 76, 690–695. [Google Scholar] [CrossRef]
- Song, K.M.; Sohn, S.H.; Kang, D.W.; Paek, S.W.; Ahn, D.H. Installation of liquid phase catalytic exchange columns for the Wolsong tritium removal facility. Fusion Eng. Des. 2007, 82, 2264–2268. [Google Scholar] [CrossRef]
- Zamfirache, M.; Bornea, A.; Balteanu, O.; Bucur, C.; Sofilca, N.; Stefanescu, I. Final status of water detritiation system (WDS) for Cernavoda Tritium removal facility (CTRF). Fusion Eng. Des. 2018, 136, 1038–1040. [Google Scholar] [CrossRef]
- Song, K.M.; Lee, S.J.; Lee, S.K.; Sohn, S.H.; Eum, H.M.; Kim, C.-S. The prediction of tritium level reduction of Wolsong NPPs by heavy water detritiation with WTRF. Fusion Sci. Technol. 2005, 48, 290–293. [Google Scholar] [CrossRef]
- Mhd Yusof, S.M.; Lock, S.S.M.; Abdul Talib, N.N.; Seng, L.C. A Mini Review on Liquid Phase Catalytic Exchange for Hydrogen Isotope Separation: Current Status and Future Potential. Sustainability 2024, 16, 4796. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Gou, K.; Yang, H.; Ren, X.; Peng, B. Effects of residual double bonds on the catalytic activity and stability of Pt/SDB hydrophobic catalysts. RSC Adv. 2015, 5, 45420–45425. [Google Scholar] [CrossRef]
- Hu, S.; Hou, J.; Xiong, L.; Weng, K.; Ren, X.; Luo, Y. Preparation and characterization of hydrophobic Pt–Fe catalysts with enhanced catalytic activities for interface hydrogen isotope separation. J. Hazard. Mater. 2012, 209, 478–483. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wang, H.; Xiao, C.; Li, J.; Chen, P.; Hou, J. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE. Fusion Eng. Des. 2016, 113, 269–274. [Google Scholar] [CrossRef]
- Lu, Z.; Li, J.; Fu, X.; Hou, J.; Ran, G.; Xiao, C.; Wang, X. Superhydrophobic Pt@SBA-15 catalyst for hydrogen water isotope exchange reactions. Int. J. Hydrogen Energy 2022, 47, 18080–18087. [Google Scholar] [CrossRef]
- Ruan, H.; Hu, S.; Hu, Z.; Zhang, L.; Dou, Q. Reaction Process on the Liquid Catalytic Isotopic Exchange of H2O-H2. At. Energy Sci. Technol. 2005, 39, 218–221. [Google Scholar]
- Yamanishi, T.; Okuno, K. A Computer Code Simulating Multistage Chemical Exchange Column Under Wide Range of Operating Conditions; JAERI-DATA/CODE-96-028; Japan Atomic Energy Research Institute: Tokyo, Japan, 1996. [Google Scholar]
- Ye, L.; Luo, D.; Tang, T.; Yang, W.; Yang, Y. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water. Fusion Eng. Des. 2015, 100, 576–580. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Liu, Q.; Shi, X.-C. Thermal Safety Study of Emulsion Explosive Matrix under the Coupled Effects of Environmental Pressure and Bubble Content with Internal Heat Source. Processes 2024, 12, 1677. [Google Scholar] [CrossRef]
- Ji, L.; Si, Y.; Liu, H.; Song, X.; Zhu, W.; Zhu, A. Application of orthogonal experimental design in synthesis of mesoporous bioactive glass. Microporous Mesoporous Mater. 2014, 184, 122–126. [Google Scholar] [CrossRef]
- Li, P.; Guo, L.; Xiong, R.; Luo, J.; Wen, M.; Yao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Tang, T. Separation process study of liquid phase catalytic exchange reaction based on the Pt/C/PTFE catalysts. Chin. J. Chem. Eng. 2019, 27, 1837–1845. [Google Scholar] [CrossRef]
- Li, J.; Kang, Y.; Ruan, H.; Dou, Q.; Han, Y.; Hu, S. Research on the Hydrogen-water Isotope Exchange Reaction by Pt-SDB Hydrophobi Catalyst. At. Energy Sci. Technol. 2002, 36, 125–128. [Google Scholar]
- Fedorchenko, O.A.; Alekseev, I.A.; Bondarenko, S.D.; Vasyanina, T.V. Experimental Results and Experience with the LPCE Process. Fusion Sci. Technol. 2020, 76, 341–346. [Google Scholar] [CrossRef]
Level i | Factors | |||
---|---|---|---|---|
FR (j = 1) | T (℃) (j = 2) | V (cm/s) (j = 3) | λ (j = 4) | |
1 | 1:2 | 80 | 10 | 1 |
2 | 1:3 | 70 | 15 | 1.5 |
3 | 1:4 | 60 | 20 | 2 |
4 | 1:5 | 50 | 25 | 2.5 |
Exp. Number | Factors | |||
---|---|---|---|---|
FR (j = 1) | T (℃) (j = 2) | V (cm/s) (j = 3) | λ (j = 4) | |
1 | 1:2 | 80 | 10 | 1 |
2 | 1:2 | 70 | 15 | 1.5 |
3 | 1:2 | 60 | 20 | 2 |
4 | 1:2 | 50 | 25 | 2.5 |
5 | 1:3 | 80 | 15 | 2 |
6 | 1:3 | 70 | 10 | 2.5 |
7 | 1:3 | 60 | 25 | 1 |
8 | 1:3 | 50 | 20 | 1.5 |
9 | 1:4 | 50 | 20 | 2.5 |
10 | 1:4 | 70 | 10 | 2 |
11 | 1:4 | 60 | 25 | 1.5 |
12 | 1:4 | 80 | 15 | 1 |
13 | 1:5 | 50 | 10 | 1.5 |
14 | 1:5 | 70 | 20 | 1 |
15 | 1:5 | 60 | 15 | 2.5 |
16 | 1:5 | 80 | 25 | 2 |
Exp. Number | HETP | DE |
---|---|---|
1 | 11.51 | 0.34 |
2 | 10.64 | 0.45 |
3 | 12.28 | 0.57 |
4 | 15.54 | 0.58 |
5 | 17.41 | 0.53 |
6 | 10.30 | 0.67 |
7 | 22.09 | 0.29 |
8 | 18.79 | 0.39 |
9 | 18.78 | 0.55 |
10 | 10.51 | 0.57 |
11 | 21.27 | 0.40 |
12 | 20.40 | 0.31 |
13 | 13.05 | 0.42 |
14 | 21.26 | 0.28 |
15 | 13.76 | 0.64 |
16 | 21.96 | 0.49 |
HETP (cm) | DE | |||||||
---|---|---|---|---|---|---|---|---|
FR (j = 1) | T (j = 2) | V (j = 3) | λ (j = 4) | FR (j = 1) | T (j = 2) | V (j = 3) | λ (j = 4) | |
k1j | 12.49 | 16.54 | 11.34 | 18.81 | 0.487 | 0.484 | 0.500 | 0.304 |
k2j | 17.15 | 13.18 | 15.55 | 15.94 | 0.470 | 0.494 | 0.483 | 0.414 |
k3j | 17.74 | 17.35 | 17.78 | 15.54 | 0.456 | 0.475 | 0.447 | 0.543 |
k4j | 17.51 | 17.82 | 20.21 | 14.60 | 0.458 | 0.418 | 0.441 | 0.610 |
Rj | 5.25 | 4.64 | 8.87 | 4.22 | 0.031 | 0.076 | 0.060 | 0.306 |
Factor | SS | df | MS | F | p |
---|---|---|---|---|---|
FR | 74.89 | 3 | 24.96 | 45.57 | 0.0053 |
T | 16.73 | 3 | 5.58 | 10.18 | 0.0442 |
V | 136.11 | 3 | 45.37 | 82.81 | 0.0022 |
λ | 26.26 | 3 | 8.75 | 15.98 | 0.0238 |
Residual | 1.64 | 3 | 0.548 | / | / |
Factor | SS | df | MS | F | p |
---|---|---|---|---|---|
FR | 0.00205 | 3 | 0.000683 | 2.14 | 0.2742 |
T | 0.00484 | 3 | 0.001614 | 5.05 | 0.1082 |
V | 0.00773 | 3 | 0.002576 | 8.07 | 0.0601 |
λ | 0.19983 | 3 | 0.066611 | 208.52 | 0.0006 |
Residual | 0.00096 | 3 | 0.000319 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Li, J.; Xiao, C.; Wang, H.; Huang, H.; Peng, S. Optimization of Liquid Phase Catalytic Exchange Process for Hydrogen Isotope Separation Using Orthogonal Experiment Design. Processes 2024, 12, 2549. https://doi.org/10.3390/pr12112549
Hou J, Li J, Xiao C, Wang H, Huang H, Peng S. Optimization of Liquid Phase Catalytic Exchange Process for Hydrogen Isotope Separation Using Orthogonal Experiment Design. Processes. 2024; 12(11):2549. https://doi.org/10.3390/pr12112549
Chicago/Turabian StyleHou, Jingwei, Jiamao Li, Chengjian Xiao, Heyi Wang, Hongwen Huang, and Shuming Peng. 2024. "Optimization of Liquid Phase Catalytic Exchange Process for Hydrogen Isotope Separation Using Orthogonal Experiment Design" Processes 12, no. 11: 2549. https://doi.org/10.3390/pr12112549
APA StyleHou, J., Li, J., Xiao, C., Wang, H., Huang, H., & Peng, S. (2024). Optimization of Liquid Phase Catalytic Exchange Process for Hydrogen Isotope Separation Using Orthogonal Experiment Design. Processes, 12(11), 2549. https://doi.org/10.3390/pr12112549