Side-by-Side Economic Process Model for the Comparison and Evaluation of Magnetic Bead-Based Processes and Legacy Process for the Manufacturing of Monoclonal Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Decisional Tool
2.2. Manufacturing Scenarios
3. Results
3.1. Breakdown of Cost of Goods
3.2. Annual Output Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
6.6 g/L | 10.8 g/L | |
---|---|---|
tload [min] | 39 | 40 |
twash [min] | 64 | 102 |
telution [min] | 13 | 15 |
References
- Le Basle, Y.; Chennell, P.; Tokhadze, N.; Astier, A.; Sautou, V. Physicochemical Stability of Monoclonal Antibodies: A Review. J. Pharm. Sci. 2020, 109, 169–190. [Google Scholar] [CrossRef] [PubMed]
- Castelli, M.S.; McGonigle, P.; Hornby, P.J. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol. Res. Perspect. 2019, 7, e00535. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. 2020 FDA drug approvals. Nat. Rev. Drug Discov. 2021, 20, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 2021, 20, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Farid, S.S. Process economics of industrial monoclonal antibody manufacture. J. Chromatogr. B 2007, 848, 8–18. [Google Scholar] [CrossRef]
- Singh, N.; Arunkumar, A.; Chollangi, S.; Tan, Z.G.; Borys, M.; Li, Z.J. Clarification technologies for monoclonal antibody manufacturing processes: Current state and future perspectives. Biotechnol. Bioeng. 2016, 113, 698–716. [Google Scholar] [CrossRef]
- Aldington, S.; Bonnerjea, J. Scale-up of monoclonal antibody purification processes. J. Chromatogr. B 2007, 848, 64–78. [Google Scholar] [CrossRef]
- Chen, C.; Wong, H.E.; Goudar, C.T. Upstream process intensification and continuous manufacturing. Curr. Opin. Chem. Eng. 2018, 22, 191–198. [Google Scholar] [CrossRef]
- Handlogten, M.W.; Lee-O’Brien, A.; Roy, G.; Levitskaya, S.V.; Venkat, R.; Singh, S.; Ahuja, S. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Biotechnol. Bioeng. 2018, 115, 126–138. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Hu, W.; Rustandi, E.; Chang, K.; Yusuf-Makagiansar, H.; Ryll, T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 2010, 26, 1400–1410. [Google Scholar] [CrossRef]
- Takagi, Y.; Kikuchi, T.; Wada, R.; Omasa, T. The enhancement of antibody concentration and achievement of high cell density CHO cell cultivation by adding nucleoside. Cytotechnology 2017, 69, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Mellahi, K.; Brochu, D.; Gilbert, M.; Perrier, M.; Ansorge, S.; Durocher, Y.; Henry, O. Process intensification for the production of rituximab by an inducible CHO cell line. Bioprocess Biosyst. Eng. 2019, 42, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.D.S.; Napoli, W.N.; Brower, M. Impact of micro and macroporous TFF membranes on product sieving and chromatography loading for perfusion cell culture. Biotechnol. Bioeng. 2020, 117, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Rehmann, M.S.; Xu, M.; Zheng, S.; Hill, C.; He, Q.; Borys, M.C.; Li, Z.J. Development of an intensified fed-batch production platform with doubled titers using N-1 perfusion seed for cell culture manufacturing. Bioresour. Bioprocess. 2020, 7, 17. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.; Huang, C.; Angelo, J.; Oliveira, C.L.; Xu, M.; Xu, X.; Temel, D.; Ding, J.; Ghose, S.; et al. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: A case study. mAbs 2020, 12, 1770669. [Google Scholar] [CrossRef]
- Xu, S.; Gavin, J.; Jiang, R.; Chen, H. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnol. Prog. 2017, 33, 867–878. [Google Scholar] [CrossRef]
- Brechmann, N.A.; Schwarz, H.; Eriksson, P.-O.; Eriksson, K.; Shokri, A.; Chotteau, V. Antibody capture process based on magnetic beads from very high cell density suspension. Biotechnol. Bioeng. 2021, 118, 3499–3510. [Google Scholar] [CrossRef]
- Singh, N.; Pizzelli, K.; Romero, J.K.; Chrostowski, J.; Evangelist, G.; Hamzik, J.; Soice, N.; Cheng, K.S. Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters. Biotechnol. Bioeng. 2013, 110, 1964–1972. [Google Scholar] [CrossRef]
- Stamatis, C.; Farid, S.S. Process economics evaluation of cell-free synthesis for the commercial manufacture of antibody drug conjugates. Biotechnol. J. 2021, 16, 2000238. [Google Scholar] [CrossRef]
- Xenopoulos, A. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies. J. Biotechnol. 2015, 213, 42–53. [Google Scholar] [CrossRef]
- Klutz, S.; Holtmann, L.; Lobedann, M.; Schembecker, G. Cost evaluation of antibody production processes in different operation modes. Chem. Eng. Sci. 2016, 141, 63–74. [Google Scholar] [CrossRef]
- Pollock, J.; Coffman, J.; Ho, S.V.; Farid, S.S. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture. Biotechnol. Prog. 2017, 33, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Hummel, J.; Pagkaliwangan, M.; Gjoka, X.; Davidovits, T.; Stock, R.; Ransohoff, T.; Gantier, R.; Schofield, M. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales. Biotechnol. J. 2019, 14, 1700665. [Google Scholar] [CrossRef]
- George, E.; Titchener-Hooker, N.J.; Farid, S.S. A multi-criteria decision-making framework for the selection of strategies for acquiring biopharmaceutical manufacturing capacity. Comput. Chem. Eng. 2007, 31, 889–901. [Google Scholar] [CrossRef]
- Farid, S.S.; Washbrook, J.; Titchener-Hooker, N.J. Decision-Support Tool for Assessing Biomanufacturing Strategies under Uncertainty: Stainless Steel versus Disposable Equipment for Clinical Trial Material Preparation. Biotechnol. Prog. 2005, 21, 486–497. [Google Scholar] [CrossRef]
- Kelley, B. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. mAbs 2009, 1, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Thömmes, J.; Etzel, M. Alternatives to Chromatographic Separations. Biotechnol. Prog. 2007, 23, 42–45. [Google Scholar] [CrossRef]
- Kelley, B. Very Large Scale Monoclonal Antibody Purification: The Case for Conventional Unit Operations. Biotechnol. Prog. 2007, 23, 995–1008. [Google Scholar] [CrossRef]
- Low, D.; O’Leary, R.; Pujar, N.S. Future of antibody purification. J. Chromatogr. B 2007, 848, 48–63. [Google Scholar] [CrossRef]
- Shukla, A.A.; Wolfe, L.S.; Mostafa, S.S.; Norman, C. Evolving trends in mAb production processes. Bioeng. Transl. Med. 2017, 2, 58–69. [Google Scholar] [CrossRef]
- Ebeler, M.; Lind, O.; Norrman, N.; Palmgren, R.; Franzreb, M. One-step integrated clarification and purification of a monoclonal antibody using Protein A Mag Sepharose beads and a cGMP-compliant high-gradient magnetic separator. New Biotechnol. 2018, 42, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M.; Kazlauskas, R.J.; Josephson, L. Magnetic separations in biotechnology. Trends Biotechnol. 1983, 1, 144–148. [Google Scholar] [CrossRef]
- Dunnill, P.; Lilly, M.D. Purification of enzymes using magnetic bio-affinity materials. Biotechnol. Bioeng. 1974, 16, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Ugelstad, J.; Kaggerud, K.H.; Hansen, F.K.; Berge, A. Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Makromol. Chem. 1979, 180, 737–744. [Google Scholar] [CrossRef]
- Ebeler, M.; Pilgram, F.; Wolz, K.; Grim, G.; Franzreb, M. Magnetic Separation on a New Level: Characterization and Performance Prediction of a cGMP Compliant “Rotor-Stator” High-Gradient Magnetic Separator. Biotechnol. J. 2018, 13, 1700448. [Google Scholar] [CrossRef]
- Holschuh, K.; Schwämmle, A. Preparative purification of antibodies with protein A—An alternative to conventional chromatography. J. Magn. Magn. Mater. 2005, 293, 345–348. [Google Scholar] [CrossRef]
- Fraga García, P.; Brammen, M.; Wolf, M.; Reinlein, S.; Freiherr von Roman, M.; Berensmeier, S. High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Sep. Purif. Technol. 2015, 150, 29–36. [Google Scholar] [CrossRef]
- Hubbuch, J.J.; Thomas, O.R.T. High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnol. Bioeng. 2002, 79, 301–313. [Google Scholar] [CrossRef]
- Brechmann, N.A.; Eriksson, P.-O.; Eriksson, K.; Oscarsson, S.; Buijs, J.; Shokri, A.; Hjälm, G.; Chotteau, V. Pilot-scale process for magnetic bead purification of antibodies directly from non-clarified CHO cell culture. Biotechnol. Prog. 2019, 35, e2775. [Google Scholar] [CrossRef]
- Safarik, I.; Safarikova, M. Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol. 2004, 2, 7. [Google Scholar] [CrossRef]
- Ebeler, M.; Pilgram, F.; Wellhöfer, T.; Frankenfeld, K.; Franzreb, M. First comprehensive view on a magnetic separation based protein purification processes: From process development to cleaning validation of a GMP-ready magnetic separator. Eng. Life Sci. 2019, 19, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Mahal, H.; Branton, H.; Farid, S.S. End-to-end continuous bioprocessing: Impact on facility design, cost of goods, and cost of development for monoclonal antibodies. Biotechnol. Bioeng. 2021, 118, 3468–3485. [Google Scholar] [CrossRef] [PubMed]
- Farid, S.S.; Washbrook, J.; Titchener-Hooker, N.J. Modelling biopharmaceutical manufacture: Design and implementation of SimBiopharma. Comput. Chem. Eng. 2007, 31, 1141–1158. [Google Scholar] [CrossRef]
- Lang, H.J. Simplified approach to preliminary cost estimates. Chem. Eng. 1948, 55, 112–113. [Google Scholar]
- Novais, J.L.; Titchener-Hooker, N.J.; Hoare, M. Economic comparison between conventional and disposables-based technology for the production of biopharmaceuticals. Biotechnol. Bioeng. 2001, 75, 143–153. [Google Scholar] [CrossRef]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Design and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 2003; Volume 4. [Google Scholar]
- Gupta, A.; Amara, J.P.; Gousseinov, E.; Cacace, B. Chapter 6—Recent advances in harvest clarification for antibodies and related products. In Approaches to the Purification, Analysis and Characterization of Antibody-Based Therapeutics; Matte, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–136. [Google Scholar]
- Hundley, R.; Königsson, S. Development of a single-use, hermetic centrifuge system. BioProcess Int. 2020, 18, 26–34. [Google Scholar]
- Popova, D.; Stonier, A.; Pain, D.; Titchener-Hooker, N.J.; Farid, S.S. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures. Biotechnol. J. 2016, 11, 899–909. [Google Scholar] [CrossRef]
- Pohlscheidt, M.; Lieser, G.; Bertermann, B.-E.; Eberhardt, H.; Herter, S.; Tebbe, H. At Scale Analysis and Optimization of a Cell Culture Harvest Process—Mitigating Risk and Optimizing Performance. Am. Pharm. Rev. 2013, 16. [Google Scholar]
Key Assumptions | CHROM | MAG-2 | MAG-1 | |||
---|---|---|---|---|---|---|
Harvest concentration (g/L) | 6.6 | 10.8 | 6.6 | 10.8 | 6.6 | 10.8 |
Bioreactor scale (L) | 500 | 500 | 500 | 500 | 500 | 500 |
USP:DSP ratio | 4:1 | 4:1 | 4:1 | 4:1 | 4:1 | 4:1 |
No. of reactors | 4 | 4 | 4 | 4 | 4 | 4 |
No. of batches per reactor | 15 | 15 | 15 | 15 | 15 | 15 |
Total batch time (d) | 31 | 31 | 31 | 31 | 31 | 31 |
Time seed train (d) | 15 | 15 | 15 | 15 | 15 | 15 |
Time production culture (d) | 14 | 14 | 14 | 14 | 14 | 14 |
DSP time (d) | 2 | 2 | 2 | 2 | 2 | 2 |
No. of total batches | 60 | 60 | 60 | 60 | 60 | 60 |
Resin lifespan (#cycles) | 100 | 100 | 100 | 100 | 100 | 100 |
Load challenge (g/L) | identical | |||||
Step yield (%) | identical | |||||
Protein A LRV | identical | |||||
Biomass content | 10% | 18% | 10% | 18% | 10% | 18% |
Solid carry-over | 5% | 5% | ||||
Centrifugation yield | 92% | 82% | ||||
Depth F. capacity (L/sqm) | 250 | 150 | ||||
Depth F. flux (LMH) | 200 | 150 | ||||
Depth F. yield | 95% | 90% | ||||
Overall process yield | 62% | 54% | 72% | 72% | 75% | 75% |
6.6 g/L | 10.8 g/L | |||||
---|---|---|---|---|---|---|
CHROM | MAG-2 | MAG-1 | CHROM | MAG-2 | MAG-1 | |
Output (kg/60 batches) | 123 | 142 | 148 | 174 | 233 | 243 |
Output change 1 | 0% | 15% | 20% | 0% | 34% | 40% |
FCI change 1 | 0% | −5% | −17% | 0% | −5% | −17% |
Total COG/g change 1 | 0% | −18% | −29% | 0% | −27% | −38% |
Harvest Concentration (g/L) | USP Output (kg/y) | Process Output (kg/y) | Process Yield (%) | |
---|---|---|---|---|
CHROM | 3 | 90 | 59 | 65 |
6 | 180 | 112 | 62 | |
9 | 270 | 154 | 57 | |
12 | 360 | 188 | 52 | |
15 | 450 | 227 | 50 | |
MAG-2 | 3 | 90 | 65 | 72 |
6 | 180 | 129 | 72 | |
9 | 270 | 194 | 72 | |
12 | 360 | 259 | 72 | |
15 | 450 | 323 | 72 | |
MAG-1 | 3 | 90 | 67 | 75 |
6 | 180 | 135 | 75 | |
9 | 270 | 202 | 75 | |
12 | 360 | 269 | 75 | |
15 | 450 | 337 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brechmann, N.A.; Stamatis, C.; Farid, S.S.; Chotteau, V.; Eriksson, K. Side-by-Side Economic Process Model for the Comparison and Evaluation of Magnetic Bead-Based Processes and Legacy Process for the Manufacturing of Monoclonal Antibodies. Processes 2024, 12, 2563. https://doi.org/10.3390/pr12112563
Brechmann NA, Stamatis C, Farid SS, Chotteau V, Eriksson K. Side-by-Side Economic Process Model for the Comparison and Evaluation of Magnetic Bead-Based Processes and Legacy Process for the Manufacturing of Monoclonal Antibodies. Processes. 2024; 12(11):2563. https://doi.org/10.3390/pr12112563
Chicago/Turabian StyleBrechmann, Nils A., Christos Stamatis, Suzanne S. Farid, Veronique Chotteau, and Kristofer Eriksson. 2024. "Side-by-Side Economic Process Model for the Comparison and Evaluation of Magnetic Bead-Based Processes and Legacy Process for the Manufacturing of Monoclonal Antibodies" Processes 12, no. 11: 2563. https://doi.org/10.3390/pr12112563
APA StyleBrechmann, N. A., Stamatis, C., Farid, S. S., Chotteau, V., & Eriksson, K. (2024). Side-by-Side Economic Process Model for the Comparison and Evaluation of Magnetic Bead-Based Processes and Legacy Process for the Manufacturing of Monoclonal Antibodies. Processes, 12(11), 2563. https://doi.org/10.3390/pr12112563