The Promising Role of Amine Transaminase Cascades in the Synthesis of Non-Canonical Amino Acids
Abstract
:1. Introduction
2. Non-Canonical Amino Acids: The Building Blocks of the Pharmaceutical Industry [40]
2.1. d-α-Amino Acids
2.2. β-Amino Acids
3. Properties and Classification of Amine Transaminases (ATA)
4. Synthesis Strategies with ATA
5. Screening of New Microorganisms with ATA Activity
5.1. Discovering Novel ATA
5.2. High-Throughput Assays for the Determination of ATA Activity
6. Cascade Reaction
6.1. β-s Keto Esters as Promising Substrates to Synthesis β-AAs
6.2. Recycling Enzymatic Cascade System
6.3. Immobilized Multi-Enzymatic Systems
6.4. Multi-Enzymatic Synthesis of Non-α- AAs
7. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leuchtenberger, W.; Huthmacher, K.; Drauz, K. Biotechnological production of amino acids and derivatives: Current status and prospects. Appl. Microbiol. Biotechnol. 2005, 69, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Group, I. IMARC Group. 2023. Available online: https://www.imarcgroup.com/amino-acid-technical-material-market-report (accessed on 7 July 2024).
- Martínez-Rodríguez, S.; Torres, J.M.; Sánchez, P.; Ortega, E. Overview on multienzymatic cascades for the production of non-canonical α-amino acids. Front. Bioeng. Biotechnol. 2020, 8, 887. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.L.; Sindhikara, D.; Zultanski, S.L.; Schultz, D.M. Beyond 20 in the 21st century: Prospects and challenges of non-canonical amino acids in peptide drug discovery. ACS Med. Chem. Lett. 2023, 14, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Goettig, P.; Koch, N.G.; Budisa, N. Non-canonical amino acids in analyses of protease structure and function. Int. J. Mol. Sci. 2023, 24, 14035. [Google Scholar] [CrossRef]
- Castro, T.G.; Melle-Franco, M.; Sousa, C.E.; Cavaco-Paulo, A.; Marcos, J.C. Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications. Biomolecules 2023, 13, 981. [Google Scholar] [CrossRef]
- Enninful, G.N.; Kuppusamy, R.; Tiburu, E.K.; Kumar, N.; Willcox, M.D. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J. Pept. Sci. 2024, 30, e3560. [Google Scholar] [CrossRef]
- Stewart, J.M. Bradykinin antagonists: Discovery and development. Peptides 2004, 25, 527–532. [Google Scholar] [CrossRef]
- Boville, C.E.; Scheele, R.A.; Koch, P.; Brinkmann-Chen, S.; Buller, A.R.; Arnold, F.H. Engineered biosynthesis of β-alkyl tryptophan analogues. Angew. Chem. 2018, 130, 14980–14984. [Google Scholar] [CrossRef]
- Markman, M.; Mekhail, T.M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 2002, 3, 755–766. [Google Scholar] [CrossRef]
- Haycock-Lewandowski, S.J.; Wilder, A.; Åhman, J. Development of a bulk enabling route to maraviroc (UK-427,857), a CCR-5 receptor antagonist. Org. Process Res. Dev. 2008, 12, 1094–1103. [Google Scholar] [CrossRef]
- Horne, W.S.; Johnson, L.M.; Ketas, T.J.; Klasse, P.J.; Lu, M.; Moore, J.P.; Gellman, S.H. Structural and biological mimicry of protein surface recognition by α/β-peptide foldamers. Proc. Natl. Acad. Sci. USA 2009, 106, 14751–14756. [Google Scholar] [CrossRef]
- Slabu, I.; Galman, J.L.; Lloyd, R.C.; Turner, N.J. Discovery, engineering, and synthetic application of transaminase biocatalysts. ACS Catal. 2017, 7, 8263–8284. [Google Scholar] [CrossRef]
- Lawrence, S.A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Nugent, T.C. Chiral Amine Synthesis: Methods, Developments and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Patel, R.N. Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 2013, 3, 741–777. [Google Scholar] [CrossRef]
- Narancic, T.; Almahboub, S.A.; O’Connor, K.E. Unnatural amino acids: Production and biotechnological potential. World J. Microbiol. Biotechnol. 2019, 35, 67. [Google Scholar] [CrossRef]
- Savile, C.K.; Janey, J.M.; Mundorff, E.C.; Moore, J.C.; Tam, S.; Jarvis, W.R.; Colbeck, J.C.; Krebber, A.; Fleitz, F.J.; Brands, J. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 2010, 329, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Verified Market Research ® (VMR). Global Sitagliptin Market Size By Type (Injection, Tablets), By Application (Diabetes, Epilepsy), By Geographic Scope And Forecast. Available online: https://www.verifiedmarketresearch.com/product/sitagliptin-market (accessed on 31 July 2024).
- Lorenz, H.; Seidel-Morgenstern, A. Processes to separate enantiomers. Angew. Chem. Int. Ed. 2014, 53, 1218–1250. [Google Scholar] [CrossRef] [PubMed]
- Ceramella, J.; Iacopetta, D.; Franchini, A.; De Luca, M.; Saturnino, C.; Andreu, I.; Sinicropi, M.S.; Catalano, A. A look at the importance of chirality in drug activity: Some significative examples. Appl. Sci. 2022, 12, 10909. [Google Scholar] [CrossRef]
- Ghislieri, D.; Turner, N.J. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top. Catal. 2014, 57, 284–300. [Google Scholar] [CrossRef]
- Kohls, H.; Steffen-Munsberg, F.; Höhne, M. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr. Opin. Chem. Biol. 2014, 19, 180–192. [Google Scholar] [CrossRef]
- Nestl, B.M.; Hammer, S.C.; Nebel, B.A.; Hauer, B. Biokatalysatoren für die organische Synthese–die neue Generation. Angew. Chem. 2014, 126, 3132–3158. [Google Scholar] [CrossRef]
- Gröger, H. Biocatalytic concepts for synthesizing amine bulk chemicals: Recent approaches towards linear and cyclic aliphatic primary amines and ω-substituted derivatives thereof. Appl. Microbiol. Biotechnol. 2019, 103, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. The E factor at 30: A passion for pollution prevention. Green Chem. 2023, 25, 1704–1728. [Google Scholar] [CrossRef]
- Gomm, A.; Lewis, W.; Green, A.P.; O’Reilly, E. A New Generation of Smart Amine Donors for Transaminase-Mediated Biotransformations. Chem.–A Eur. J. 2016, 22, 12692–12695. [Google Scholar] [CrossRef] [PubMed]
- Dold, S.M.; Syldatk, C.; Rudat, J. Transaminases and their applications. In Green Biocatalysis; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 715–746. [Google Scholar]
- Henson, C.P.; Cleland, W. Kinetic studies of glutamic oxaloacetic transaminase isozymes. Biochemistry 1964, 3, 338–345. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, B.G. Substrate inhibition mode of ω-transaminase from Vibrio fluvialis JS17 is dependent on the chirality of substrate. Biotechnol. Bioeng. 2002, 77, 832–837. [Google Scholar] [CrossRef]
- Mathew, S.; Renn, D.; Rueping, M. Advances in one-pot chiral amine synthesis enabled by amine transaminase cascades: Pushing the boundaries of complexity. ACS Catal. 2023, 13, 5584–5598. [Google Scholar] [CrossRef]
- Rudroff, F.; Mihovilovic, M.D.; Gröger, H.; Snajdrova, R.; Iding, H.; Bornscheuer, U.T. Opportunities and challenges for combining chemo-and biocatalysis. Nat. Catal. 2018, 1, 12–22. [Google Scholar] [CrossRef]
- Schmid, A.; Dordick, J.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258. [Google Scholar] [CrossRef]
- Nazor, J.; Liu, J.; Huisman, G. Enzyme evolution for industrial biocatalytic cascades. Curr. Opin. Biotechnol. 2021, 69, 182–190. [Google Scholar] [CrossRef]
- Wu, J.; Chen, S.; He, X.; Yang, L.; Xu, G. Engineering Bacterium and Method for Preparation of Tert-butyl (3R, 5S)-6-chloro-3, 5-dihydroxy-hexanoate. CN104087546A, 8 October 2014. [Google Scholar]
- De Lucchi, O.; Tartaggia, S.; Ferrari, C.; Galvagni, M.; Pontini, M.; Fogal, S.; Motterle, R.; Moreno, R.; Comely, A. Process for Preparation of Intermediates for the Synthesis of Statins. WO2014128022A1, 28 August 2014. [Google Scholar]
- Liu, S.; Li, Y.; Zhu, J. Enzymatic production of l-theanine by γ-glutamylmethylamide synthetase coupling with an ATP regeneration system based on polyphosphate kinase. Process Biochem. 2016, 51, 1458–1463. [Google Scholar] [CrossRef]
- Simon, R.C.; Richter, N.; Busto, E.; Kroutil, W. Recent developments of cascade reactions involving ω-transaminases. ACS Catal. 2014, 4, 129–143. [Google Scholar] [CrossRef]
- Rother, D.; Pohl, M.; Sehl, T.; Baraibar, A.G. Method for producing cathine. US Patent US20160138062A1, 13 February 2018. [Google Scholar]
- Rudat, J.; Brucher, B.R.; Syldatk, C. Transaminases for the synthesis of enantiopure beta-amino acids. AMB Express 2012, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Vranova, V.; Zahradnickova, H.; Janous, D.; Skene, K.R.; Matharu, A.S.; Rejsek, K.; Formanek, P. The significance of d-amino acids in soil, fate and utilization by microbes and plants: Review and identification of knowledge gaps. Plant Soil 2012, 354, 21–39. [Google Scholar] [CrossRef]
- Kato, S.; Ishihara, T.; Hemmi, H.; Kobayashi, H.; Yoshimura, T. Alterations in d-amino acid concentrations and microbial community structures during the fermentation of red and white wines. J. Biosci. Bioeng. 2011, 111, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Brückner, H.; Schieber, A. Ascertainment of d-amino acids in germ-free, gnotobiotic and normal laboratory rats. Biomed. Chromatogr. 2001, 15, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, S.; Martínez-Gómez, A.I.; Rodríguez-Vico, F.; Clemente-Jiménez, J.M.; Las Heras-Vázquez, F.J. Natural occurrence and industrial applications of d-amino acids: An overview. Chem. Biodivers. 2010, 7, 1531–1548. [Google Scholar] [CrossRef]
- Grishin, D.; Zhdanov, D.; Pokrovskaya, M.; Sokolov, N. d-amino acids in nature, agriculture and biomedicine. All Life 2020, 13, 11–22. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Y. d-Amino acid mitigated membrane biofouling and promoted biofilm detachment. J. Membr. Sci. 2011, 376, 266–274. [Google Scholar] [CrossRef]
- Vahdati, S.N.; Behboudi, H.; Navasatli, S.A.; Tavakoli, S.; Safavi, M. New insights into the inhibitory roles and mechanisms of d-amino acids in bacterial biofilms in medicine, industry, and agriculture. Microbiol. Res. 2022, 263, 127107. [Google Scholar] [CrossRef]
- Radkov, A.D.; Moe, L.A. Bacterial synthesis of d-amino acids. Appl. Microbiol. Biotechnol. 2014, 98, 5363–5374. [Google Scholar] [CrossRef]
- Kawai, Y.; Ishii, Y.; Arakawa, K.; Uemura, K.; Saitoh, B.; Nishimura, J.; Kitazawa, H.; Yamazaki, Y.; Tateno, Y.; Itoh, T. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl. Environ. Microbiol. 2004, 70, 2906–2911. [Google Scholar] [CrossRef] [PubMed]
- Güell, I.; Cabrefiga, J.; Badosa, E.; Ferre, R.; Talleda, M.; Bardají, E.; Planas, M.; Feliu, L.; Montesinos, E. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of d-amino acids. Appl. Environ. Microbiol. 2011, 77, 2667–2675. [Google Scholar] [CrossRef] [PubMed]
- Tata, B.; Mimouni, N.E.H.; Barbotin, A.-L.; Malone, S.A.; Loyens, A.; Pigny, P.; Dewailly, D.; Catteau-Jonard, S.; Sundström-Poromaa, I.; Piltonen, T.T. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat. Med. 2018, 24, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Neidhardt, F.C. Chemical composition of Escherichia coli. In Escherichia coli and Salmonella: Cellular and Molecular Biology; American Society for Microbiology: Washington, DC, USA, 1996; pp. 13–16. [Google Scholar]
- Maser, A.; Peebo, K.; Vilu, R.; Nahku, R. Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate. Res. Microbiol. 2020, 171, 185–193. [Google Scholar] [CrossRef]
- Voet, D.; Voet, J. Biochemistry, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 68. [Google Scholar]
- Santoyo-Garcia, J.H.; Valdivia-Cabrera, M.; Ochoa-Villarreal, M.; Casasola-Zamora, S.; Ripoll, M.; Escrich, A.; Moyano, E.; Betancor, L.; Halliday, K.J.; Loake, G.J. Increased paclitaxel recovery from Taxus baccata vascular stem cells using novel in situ product recovery approaches. Bioresour. Bioprocess. 2023, 10, 68. [Google Scholar] [CrossRef]
- Clerici, F.; Erba, E.; Gelmi, M.L.; Pellegrino, S. Non-standard amino acids and peptides: From self-assembly to nanomaterials. Tetrahedron Lett. 2016, 57, 5540–5550. [Google Scholar] [CrossRef]
- Seebach, D.; Gardiner, J. β-Peptidic peptidomimetics. Acc. Chem. Res. 2008, 41, 1366–1375. [Google Scholar] [CrossRef]
- Kudo, F.; Miyanaga, A.; Eguchi, T. Biosynthesis of natural products containing β-amino acids. Nat. Prod. Rep. 2014, 31, 1056–1073. [Google Scholar] [CrossRef]
- Mannion, A.; Jakeman, P.; Dunnett, M.; Harris, R.; Willan, P. Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 47–50. [Google Scholar] [CrossRef]
- Miltenberger, K. Hydroxycarboxylic acids, aliphatic. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons: Hoboken,, NJ, USA, 2000. [Google Scholar]
- Geneste, H.; Hesse, M. Polyamine und Polyamin-Derivate in der Natur. Chem. Unserer Zeit 1998, 32, 206–218. [Google Scholar] [CrossRef]
- Rowinsky, M.; Eric, K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 1997, 48, 353–374. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, C.K.; Walter, T.; Walker, K.D. Biocatalysis of a paclitaxel analogue: Conversion of baccatin III to N-debenzoyl-N-(2-furoyl) paclitaxel and characterization of an amino phenylpropanoyl CoA transferase. Biochemistry 2017, 56, 5920–5930. [Google Scholar] [CrossRef] [PubMed]
- Tanianskii, D.A.; Jarzebska, N.; Birkenfeld, A.L.; O’Sullivan, J.F.; Rodionov, R.N. Beta-aminoisobutyric acid as a novel regulator of carbohydrate and lipid metabolism. Nutrients 2019, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Spiteller, P.; Von Nussbaum, F. β-Amino Acids in Natural Products. In Enantioselective Synthesis of β-Amino Acids; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 19–91. [Google Scholar]
- Davies, J.; Cannont, M.; Mauer, M.B. Myomycin: Mode of action and mechanism of resistance. J. Antibiot. 1988, 41, 366–372. [Google Scholar] [CrossRef]
- Schwarz, J.; Volmer, J.; Lütz, S. Enzymes in the Chemical and Pharmaceutical Industry. In Introduction to Enzyme Technology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 289–314. [Google Scholar]
- Jaeger, K.-E.; Liese, A.; Syldatk, C. Introduction to Enzyme Technology. In Introduction to Enzyme Technology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–16. [Google Scholar]
- Spiteller, P. β-amino acid biosynthesis. Amino Acids Pept. Proteins Org. Chem. Orig. Synth. Amino Acids 2009, 1, 119–161. [Google Scholar]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew. Chem. 2021, 133, 89–123. [Google Scholar] [CrossRef]
- Guo, F.; Berglund, P. Transaminase biocatalysis: Optimization and application. Green Chem. 2017, 19, 333–360. [Google Scholar] [CrossRef]
- Woodley, J.M. Accelerating the implementation of biocatalysis in industry. Appl. Microbiol. Biotechnol. 2019, 103, 4733–4739. [Google Scholar] [CrossRef]
- Pandya, S.; Gupte, A. Transaminases for Green Chemistry: Recent Progress and Future Prospects. Microbiol. Biotechnol. Lett. 2023, 51, 333–352. [Google Scholar] [CrossRef]
- Kwon, S.; Park, H.H. Structural consideration of the working mechanism of fold type I transaminases from eubacteria: Overt and covert movement. Comput. Struct. Biotechnol. J. 2019, 17, 1031–1039. [Google Scholar] [CrossRef]
- Bezsudnova, E.Y.; Boyko, K.; Popov, V. Properties of bacterial and archaeal branched-chain amino acid aminotransferases. Biochemistry 2017, 82, 1572–1591. [Google Scholar] [CrossRef]
- Telzerow, A.; Paris, J.; Håkansson, M.; González-Sabín, J.; Ríos-Lombardía, N.; Gröger, H.; Morís, F.; Schürmann, M.; Schwab, H.; Steiner, K. Expanding the Toolbox of (R)-Selective Amine Transaminases by Identification and Characterization of New Members. ChemBioChem 2021, 22, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Zeifman, Y.S.; Boyko, K.M.; Nikolaeva, A.Y.; Timofeev, V.I.; Rakitina, T.V.; Popov, V.O.; Bezsudnova, E.Y. Functional characterization of PLP fold type IV transaminase with a mixed type of activity from Haliangium ochraceum. Biochim. Et Biophys. Acta (BBA)-Proteins Proteom. 2019, 1867, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Palacios, C.; Wijma, H.J.; Thallmair, S.; Marrink, S.J.; Janssen, D.B. Computational prediction of ω-transaminase specificity by a combination of docking and molecular dynamics simulations. J. Chem. Inf. Model. 2021, 61, 5569–5580. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Ramírez-Palacios, C.; Wijma, H.J.; Janssen, D.B. Protein engineering of amine transaminases. Front. Catal. 2022, 2, 1049179. [Google Scholar] [CrossRef]
- Schneider, G.; Käck, H.; Lindqvist, Y. The manifold of vitamin B6 dependent enzymes. Structure 2000, 8, R1–R6. [Google Scholar] [CrossRef]
- Eliot, A.C.; Kirsch, J.F. Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 2004, 73, 383–415. [Google Scholar] [CrossRef]
- Mehta, P.K.; Hale, T.I.; Christen, P. Aminotransferases: Demonstration of homology and division into evolutionary subgroups. Eur. J. Biochem. 1993, 214, 549–561. [Google Scholar] [CrossRef]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef]
- Grishin, N.V.; Phillips, M.A.; Goldsmith, E.J. Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci. 1995, 4, 1291–1304. [Google Scholar] [CrossRef]
- Braunstein, A.E. 10 Amino Group Transfer. In The Enzymes; Elsevier: Amsterdam, The Netherlands, 1973; Volume 9, pp. 379–481. [Google Scholar]
- Mathew, S.; Yun, H. ω-Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal. 2012, 2, 993–1001. [Google Scholar] [CrossRef]
- Buss, O.; Buchholz, P.C.; Gräff, M.; Klausmann, P.; Rudat, J.; Pleiss, J. The ω-transaminase engineering database (oTAED): A navigation tool in protein sequence and structure space. Proteins Struct. Funct. Bioinform. 2018, 86, 566–580. [Google Scholar] [CrossRef]
- Koszelewski, D.; Tauber, K.; Faber, K.; Kroutil, W. ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol. 2010, 28, 324–332. [Google Scholar] [CrossRef]
- Yun, H.; Hwang, B.-Y.; Lee, J.-H.; Kim, B.-G. Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 ω-transaminase, which is resistant to product inhibition by aliphatic ketones. Appl. Environ. Microbiol. 2005, 71, 4220–4224. [Google Scholar] [CrossRef] [PubMed]
- Truppo, M.D.; Turner, N.J.; Rozzell, J.D. Efficient kinetic resolution of racemic amines using a transaminase in combination with an amino acid oxidase. Chem. Commun. 2009, 40, 2127–2129. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Lim, S.; Cho, B.-K.; Kim, B.-G. ω-Amino acid: Pyruvate transaminase from Alcaligenes denitrificans Y2k-2: A new catalyst for kinetic resolution of β-amino acids and amines. Appl. Environ. Microbiol. 2004, 70, 2529–2534. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Kim, B.G.; Liese, A.; Wandrey, C. Kinetic resolution of chiral amines with ω-transaminase using an enzyme-membrane reactor. Biotechnol. Bioeng. 2001, 73, 179–187. [Google Scholar] [CrossRef]
- Shin, J.-S.; Kim, B.-G.; Shin, D.-H. Kinetic resolution of chiral amines using packed-bed reactor. Enzym. Microb. Technol. 2001, 29, 232–239. [Google Scholar] [CrossRef]
- Satyawali, Y.; Ehimen, E.; Cauwenberghs, L.; Maesen, M.; Vandezande, P.; Dejonghe, W. Asymmetric synthesis of chiral amine in organic solvent and in-situ product recovery for process intensification: A case study. Biochem. Eng. J. 2017, 117, 97–104. [Google Scholar] [CrossRef]
- Koszelewski, D.; Clay, D.; Rozzell, D.; Kroutil, W. Deracemisation of α-chiral primary amines by a one-pot, two-step cascade reaction catalysed by ω-transaminases. EuEuropean J. Org. Chem. 2009, 2009, 2289–2292. [Google Scholar] [CrossRef]
- Shin, G.; Mathew, S.; Shon, M.; Kim, B.-G.; Yun, H. One-pot one-step deracemization of amines using ω-transaminases. Chem. Commun. 2013, 49, 8629–8631. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.A.; Mix, S.; Moody, T.S.; Gilmore, B.F. Transaminases for industrial biocatalysis: Novel enzyme discovery. Appl. Microbiol. Biotechnol. 2020, 104, 4781–4794. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-S.; Kim, B.-G. Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines. Biosci. Biotechnol. Biochem. 2001, 65, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Kim, B.G. Kinetic resolution of α-methylbenzylamine with ω -transaminase screened from soil microorganisms: Application of a biphasic system to overcome product inhibition. Biotechnol. Bioeng. 1997, 55, 348–358. [Google Scholar] [CrossRef]
- Iwasaki, A.; Matsumoto, K.; Hasegawa, J.; Yasohara, Y. A novel transaminase,(R)-amine: Pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): Purification, characterization, and gene cloning. Appl. Microbiol. Biotechnol. 2012, 93, 1563–1573. [Google Scholar] [CrossRef]
- Gord Noshahri, N.; Fooladi, J.; Syldatk, C.; Engel, U.; Heravi, M.M.; Zare Mehrjerdi, M.; Rudat, J. Screening and Comparative Characterization of Microorganisms from Iranian Soil Samples Showing ω-Transaminase Activity toward a Plethora of Substrates. Catalysts 2019, 9, 874. [Google Scholar] [CrossRef]
- Hanson, R.L.; Davis, B.L.; Goldberg, S.L.; Johnston, R.M.; Parker, W.L.; Tully, T.P.; Montana, M.A.; Patel, R.N. Enzymatic preparation of a d-amino acid from a racemic amino acid or keto acid. Org. Process Res. Dev. 2008, 12, 1119–1129. [Google Scholar] [CrossRef]
- Pavkov-Keller, T.; Strohmeier, G.A.; Diepold, M.; Peeters, W.; Smeets, N.; Schürmann, M.; Gruber, K.; Schwab, H.; Steiner, K. Discovery and structural characterisation of new fold type IV-transaminases exemplify the diversity of this enzyme fold. Sci. Rep. 2016, 6, 38183. [Google Scholar] [CrossRef]
- Buß, O.; Dold, S.-M.; Obermeier, P.; Litty, D.; Muller, D.; Grüninger, J.; Rudat, J. Enantiomer discrimination in β-phenylalanine degradation by a newly isolated Paraburkholderia strain BS115 and type strain PsJN. AMB Express 2018, 8, 149. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kyung, D.-H.; Yun, H.-D.; Cho, B.-K.; Kim, B.-G. Screening and Purification of a Novel Transaminase Catalyzing the Transamination of Aryl β-Amino Acid from Mesorhizobium sp. LUK. J. Microbiol. Biotechnol. 2006, 16, 1832–1836. [Google Scholar]
- Höhne, M.; Schätzle, S.; Jochens, H.; Robins, K.; Bornscheuer, U.T. Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. 2010, 6, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, X.; Zhang, D.; Wu, Q.; Zhu, D. Characterization of (R)-selective amine transaminases identified by in silico motif sequence blast. Appl. Microbiol. Biotechnol. 2015, 99, 2613–2621. [Google Scholar] [CrossRef] [PubMed]
- Temperton, B.; Giovannoni, S.J. Metagenomics: Microbial diversity through a scratched lens. Curr. Opin. Microbiol. 2012, 15, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Baud, D.; Jeffries, J.W.; Moody, T.S.; Ward, J.M.; Hailes, H.C. A metagenomics approach for new biocatalyst discovery: Application to transaminases and the synthesis of allylic amines. Green Chem. 2017, 19, 1134–1143. [Google Scholar] [CrossRef]
- Leipold, L.; Dobrijevic, D.; Jeffries, J.W.; Bawn, M.; Moody, T.S.; Ward, J.M.; Hailes, H.C. The identification and use of robust transaminases from a domestic drain metagenome. Green Chem. 2019, 21, 75–86. [Google Scholar] [CrossRef]
- Pawar, S.V.; Hallam, S.J.; Yadav, V.G. Metagenomic discovery of a novel transaminase for valorization of monoaromatic compounds. RSC Adv. 2018, 8, 22490–22497. [Google Scholar] [CrossRef]
- Hwang, B.-Y.; Kim, B.-G. High-throughput screening method for the identification of active and enantioselective ω-transaminases. Enzym. Microb. Technol. 2004, 34, 429–436. [Google Scholar] [CrossRef]
- Truppo, M.D.; Rozzell, J.D.; Moore, J.C.; Turner, N.J. Rapid screening and scale-up of transaminase catalysed reactions. Org. Biomol. Chem. 2009, 7, 395–398. [Google Scholar] [CrossRef]
- Schätzle, S.; Höhne, M.; Redestad, E.; Robins, K.; Bornscheuer, U.T. Rapid and sensitive kinetic assay for characterization of ω-transaminases. Anal. Chem. 2009, 81, 8244–8248. [Google Scholar] [CrossRef]
- Schätzle, S.; Höhne, M.; Robins, K.; Bornscheuer, U.T. Conductometric method for the rapid characterization of the substrate specificity of amine-transaminases. Anal. Chem. 2010, 82, 2082–2086. [Google Scholar] [CrossRef]
- Hopwood, J.; Truppo, M.D.; Turner, N.J.; Lloyd, R.C. A fast and sensitive assay for measuring the activity and enantioselectivity of transaminases. Chem. Commun. 2011, 47, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Green, A.P.; Turner, N.J.; O’Reilly, E. Chiral amine synthesis using ω-transaminases: An amine donor that displaces equilibria and enables high-throughput screening. Angew. Chem. Int. Ed. 2014, 53, 10714–10717. [Google Scholar] [CrossRef] [PubMed]
- Gord Noshahri, N.; Fooladi, J.; Engel, U.; Muller, D.; Kugel, M.; Gorenflo, P.; Syldatk, C.; Rudat, J. Growth optimization and identification of an ω-transaminase by a novel native PAGE activity staining method in a Bacillus sp. strain BaH isolated from Iranian soil. AMB Express 2021, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-D.; Wu, H.-L.; Meng, T.; Zhang, C.-F.; Fan, X.-J.; Chang, H.-H.; Wei, W.-L. A high-throughput microtiter plate assay for the discovery of active and enantioselective amino alcohol-specific transaminases. Anal. Biochem. 2017, 518, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Chen, X.-L.; Xiang, C.; Liu, Z.-Q.; Wang, Y.-J.; Zheng, Y.-G. Fluorescence-based high-throughput screening system for (R)-ω-transaminase engineering and its substrate scope extension. Appl. Microbiol. Biotechnol. 2020, 104, 2999–3009. [Google Scholar] [CrossRef]
- Meng, Q.; Capra, N.; Palacio, C.M.; Lanfranchi, E.; Otzen, M.; Van Schie, L.Z.; Rozeboom, H.t.J.; Thunnissen, A.-M.W.; Wijma, H.J.; Janssen, D.B. Robust ω-transaminases by computational stabilization of the subunit interface. ACS Catal. 2020, 10, 2915–2928. [Google Scholar] [CrossRef]
- Ferrandi, E.E.; Monti, D. Amine transaminases in chiral amines synthesis: Recent advances and challenges. World J. Microbiol. Biotechnol. 2018, 34, 13. [Google Scholar] [CrossRef]
- Mirzaei, M.; Berglund, P. Engineering of ω-Transaminase for Effective Production of Chiral Amines. J. Comput. Theor. Nanosci. 2020, 17, 2827–2832. [Google Scholar] [CrossRef]
- Benítez-Mateos, A.I.; Roura Padrosa, D.; Paradisi, F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat. Chem. 2022, 14, 489–499. [Google Scholar] [CrossRef]
- Schmidt, S.; Schallmey, A.; Kourist, R. Multi-enzymatic cascades in vitro. In Enzyme Cascade Design and Modelling; Springer: Berlin/Heidelberg, Germany, 2021; pp. 31–48. [Google Scholar]
- Ricca, E.; Brucher, B.; Schrittwieser, J.H. Multi-enzymatic cascade reactions: Overview and perspectives. Adv. Synth. Catal. 2011, 353, 2239–2262. [Google Scholar] [CrossRef]
- Siedentop, R.; Claaßen, C.; Rother, D.; Lütz, S.; Rosenthal, K. Getting the most out of enzyme cascades: Strategies to optimize in vitro multi-enzymatic reactions. Catalysts 2021, 11, 1183. [Google Scholar] [CrossRef]
- Cutlan, R.; De Rose, S.; Isupov, M.N.; Littlechild, J.A.; Harmer, N.J. Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases. Biochim. Et Biophys. Acta (BBA)-Proteins Proteom. 2020, 1868, 140322. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, Z. Whole-cell cascade biotransformations for one-pot multistep organic synthesis. ChemCatChem 2018, 10, 2164–2178. [Google Scholar] [CrossRef]
- Stephanopoulos, G.; Aristidou, A.A.; Nielsen, J. Metabolic Engineering: Principles and Methodologies; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Sun, Z.B.; Zhang, Z.J.; Li, F.L.; Nie, Y.; Yu, H.L.; Xu, J.H. One Pot Asymmetric Synthesis of (R)-Phenylglycinol from Racemic Styrene Oxide via Cascade Biocatalysis. ChemCatChem 2019, 11, 3802–3807. [Google Scholar] [CrossRef]
- Buß, O.; Voss, M.; Delavault, A.; Gorenflo, P.; Syldatk, C.; Bornscheuer, U.; Rudat, J. β-phenylalanine ester synthesis from stable β-keto ester substrate using engineered ω-transaminases. Molecules 2018, 23, 1211. [Google Scholar] [CrossRef]
- Mathew, S.; Nadarajan, S.P.; Chung, T.; Park, H.H.; Yun, H. Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β-and γ-amino acids. Enzym. Microb. Technol. 2016, 87, 52–60. [Google Scholar] [CrossRef]
- Mathew, S.; Jeong, S.S.; Chung, T.; Lee, S.H.; Yun, H. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids. Biotechnol. J. 2016, 11, 185–190. [Google Scholar] [CrossRef]
- Mathew, S.; Nadarajan, S.P.; Sundaramoorthy, U.; Jeon, H.; Chung, T.; Yun, H. Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase. Biotechnol. Lett. 2017, 39, 535–543. [Google Scholar] [CrossRef]
- Kim, G.H.; Jeon, H.; Khobragade, T.P.; Patil, M.D.; Sung, S.; Yoon, S.; Won, Y.; Sarak, S.; Yun, H. Glutamate as an Efficient Amine Donor for the Synthesis of Chiral β-and γ-Amino Acids Using Transaminase. ChemCatChem 2019, 11, 1437–1440. [Google Scholar] [CrossRef]
- Hou, A.; Deng, Z.; Ma, H.; Liu, T. Substrate screening of amino transaminase for the synthesis of a sitagliptin intermediate. Tetrahedron 2016, 72, 4660–4664. [Google Scholar] [CrossRef]
- Khobragade, T.P.; Sarak, S.; Pagar, A.D.; Jeon, H.; Giri, P.; Yun, H. Synthesis of sitagliptin intermediate by a multi-enzymatic cascade system using lipase and transaminase with benzylamine as an amino donor. Front. Bioeng. Biotechnol. 2021, 9, 757062. [Google Scholar] [CrossRef] [PubMed]
- Khobragade, T.P.; Pagar, A.D.; Giri, P.; Sarak, S.; Jeon, H.; Joo, S.; Goh, Y.; Park, B.-S.; Yun, H. Biocatalytic cascade for synthesis of sitagliptin intermediate employing coupled transaminase. Biotechnol. Bioprocess Eng. 2023, 28, 300–309. [Google Scholar] [CrossRef]
- Roda, S.; Fernandez-Lopez, L.; Benedens, M.; Bollinger, A.; Thies, S.; Schumacher, J.; Coscolín, C.; Kazemi, M.; Santiago, G.; Gertzen, C.G. A plurizyme with transaminase and hydrolase activity catalyzes cascade reactions. Angew. Chem. 2022, 134, e202207344. [Google Scholar] [CrossRef]
- Feng, X.; Guo, J.; Zhang, R.; Liu, W.; Cao, Y.; Xian, M.; Liu, H. An Aminotransferase from Enhydrobacter aerosaccus to Obtain Optically Pure β-Phenylalanine. ACS Omega 2020, 5, 7745–7750. [Google Scholar] [CrossRef] [PubMed]
- Koszelewski, D.; Lavandera, I.; Clay, D.; Rozzell, D.; Kroutil, W. Asymmetric synthesis of optically pure pharmacologically relevant amines employing ω-transaminases. Adv. Synth. Catal. 2008, 350, 2761–2766. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Li, C.; Song, H. Multi-enzyme pyruvate removal system to enhance (R)-selective reductive amination of ketones. RSC Adv. 2020, 10, 28984–28991. [Google Scholar] [CrossRef]
- Mack, K.; Doeker, M.; Grabowski, L.; Jupke, A.; Rother, D. Extractive in situ product removal for the application of naturally produced l-alanine as an amine donor in enzymatic metaraminol production. Green Chem. 2021, 23, 4892–4901. [Google Scholar] [CrossRef]
- Richter, N.; Farnberger, J.; Pressnitz, D.; Lechner, H.; Zepeck, F.; Kroutil, W. A system for ω-transaminase mediated (R)-amination using l-alanine as an amine donor. Green Chem. 2015, 17, 2952–2958. [Google Scholar] [CrossRef]
- Hwang, E.T.; Lee, S. Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catal. 2019, 9, 4402–4425. [Google Scholar] [CrossRef]
- Losada-Garcia, N.; Cabrera, Z.; Urrutia, P.; Garcia-Sanz, C.; Andreu, A.; Palomo, J.M. Recent advances in enzymatic and chemoenzymatic cascade processes. Catalysts 2020, 10, 1258. [Google Scholar] [CrossRef]
- Heinks, T.; Koopmeiners, S.; Montua, N.; Sewald, N.; Höhne, M.; Bornscheuer, U.T.; Fischer von Mollard, G. Co-Immobilization of a Multi-Enzyme Cascade: (S)-Selective Amine Transaminases, l-Amino Acid Oxidase and Catalase. ChemBioChem 2023, 24, e202300425. [Google Scholar] [CrossRef]
- Williams, V.; Cui, Y.; Jiang, X.; Zhang, C.; Zhao, J.; Zhang, N. Co-Immobilized multienzyme system for the cofactor-driven cascade synthesis of (R)-2-Amino-3-(2-bromophenyl) propanoic acid: A model reaction. Org. Process Res. Dev. 2022, 26, 3024–3033. [Google Scholar] [CrossRef]
- Česnik Katulić, M.; Sudar, M.; Hernández, K.; Qi, Y.; Charnock, S.J.; Vasić-Rački, Đ.; Clapés, P.; Findrik Blažević, Z. Cascade synthesis of l-homoserine catalyzed by lyophilized whole cells containing transaminase and aldolase activities: The mathematical modeling approach. Ind. Eng. Chem. Res. 2021, 60, 13846–13858. [Google Scholar] [CrossRef]
- Walton, C.J.; Parmeggiani, F.; Barber, J.E.; McCann, J.L.; Turner, N.J.; Chica, R.A. Engineered aminotransferase for the production of d-phenylalanine derivatives using biocatalytic cascades. ChemCatChem 2018, 10, 470–474. [Google Scholar] [CrossRef]
- Malik, M.S.; Park, E.-S.; Shin, J.-S. ω-Transaminase-catalyzed kinetic resolution of chiral amines using l-threonine as an amino acceptor precursor. Green Chem. 2012, 14, 2137–2140. [Google Scholar] [CrossRef]
- Chen, Y.; Goldberg, S.L.; Hanson, R.L.; Parker, W.L.; Gill, I.; Tully, T.P.; Montana, M.A.; Goswami, A.; Patel, R.N. Enzymatic preparation of an (S)-amino acid from a racemic amino acid. Org. Process Res. Dev. 2011, 15, 241–248. [Google Scholar] [CrossRef]
- Chaturvedula, P.V.; Chen, L.; Civiello, R.; Degnan, A.P.; Dubowchik, G.M.; Han, X.; Jiang, X.J.J.; Luo, G.; Macor, J.E.; Poindexter, G.S. Anti-Migraine Spirocycles. US Patent US7842808B2, 30 November 2010. [Google Scholar]
- Muschiol, J.; Peters, C.; Oberleitner, N.; Mihovilovic, M.D.; Bornscheuer, U.T.; Rudroff, F. Cascade catalysis–strategies and challenges en route to preparative synthetic biology. Chem. Commun. 2015, 51, 5798–5811. [Google Scholar] [CrossRef]
- Wheeldon, I.; Minteer, S.D.; Banta, S.; Barton, S.C.; Atanassov, P.; Sigman, M. Substrate channelling as an approach to cascade reactions. Nat. Chem. 2016, 8, 299–309. [Google Scholar] [CrossRef]
- Peschke, T.; Bitterwolf, P.; Gallus, S.; Hu, Y.; Oelschlaeger, C.; Willenbacher, N.; Rabe, K.S.; Niemeyer, C.M. Self-assembling all-enzyme hydrogels for flow biocatalysis. Angew. Chem. 2018, 130, 17274–17278. [Google Scholar] [CrossRef]
- Bitterwolf, P.; Gallus, S.; Peschke, T.; Mittmann, E.; Oelschlaeger, C.; Willenbacher, N.; Rabe, K.S.; Niemeyer, C.M. Valency engineering of monomeric enzymes for self-assembling biocatalytic hydrogels. Chem. Sci. 2019, 10, 9752–9757. [Google Scholar] [CrossRef]
- Bitterwolf, P.; Ott, F.; Rabe, K.S.; Niemeyer, C.M. Imine reductase based all-enzyme hydrogel with intrinsic cofactor regeneration for flow biocatalysis. Micromachines 2019, 10, 783. [Google Scholar] [CrossRef] [PubMed]
- Mittmann, E.; Gallus, S.; Bitterwolf, P.; Oelschlaeger, C.; Willenbacher, N.; Niemeyer, C.M.; Rabe, K.S. A phenolic acid decarboxylase-based all-enzyme hydrogel for flow reactor technology. Micromachines 2019, 10, 795. [Google Scholar] [CrossRef]
- Hertel, J.S.; Bitterwolf, P.; Kröll, S.; Winterhalter, A.; Weber, A.J.; Grösche, M.; Walkowsky, L.B.; Heißler, S.; Schwotzer, M.; Wöll, C. Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes. Adv. Mater. 2023, 35, 2303952. [Google Scholar] [CrossRef] [PubMed]
- Hartley, C.J.; Williams, C.C.; Scoble, J.A.; Churches, Q.I.; North, A.; French, N.G.; Nebl, T.; Coia, G.; Warden, A.C.; Simpson, G. Engineered enzymes that retain and regenerate their cofactors enable continuous-flow biocatalysis. Nat. Catal. 2019, 2, 1006–1015. [Google Scholar] [CrossRef]
- Zhu, J.; Geng, Q.; Liu, Y.-Y.; Pan, J.; Yu, H.L.; Xu, J.-H. Co-Cross-Linked Aggregates of Baeyer–Villiger Monooxygenases and Formate Dehydrogenase for Repeated Use in Asymmetric Biooxidation. Org. Process Res. Dev. 2022, 26, 1978–1983. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, N.; Vernet, G.; Kara, S. Design of fusion enzymes for biocatalytic applications in aqueous and non-aqueous media. Front. Bioeng. Biotechnol. 2022, 10, 944226. [Google Scholar] [CrossRef]
Non-α-Amino Acid | Connection | Function/Application | |
---|---|---|---|
β-tyrosine + isoserine + 2,3-diaminopropanoic acid | Edeine 1 | Antibiotic | |
3-NH2-isobutyric acid | Cryptophycin 2 | Chemotherapeutic agent | |
3-NH2-2-OH-4-phenylbutyric acid | Bestatin 3 | Protease inhibitor | |
2-NH2-cyclohex-3-en-1-carboxylic acid | BAY 10-8888 4 | Fungicide | |
3-NH2-5-methyloctanoic acid | Imagabalin 5 | Candidate for anxiety disorder | |
3-NH2-4,4-dimethylpentanoic acid | PB2 inhibitor 6 | Antiviral |
Fold Type | Example | EC Number |
---|---|---|
I | Aspartate transaminase | 2.6.1.X |
II | Tryptophan synthase | 4.2.1.20 |
III | Alanine racemase | 5.1.1.1 |
IV | d-alanine transaminase | 2.6.1.21 |
V | Glycosyl phosphorylase | 2.4.1.1 |
VI | d-Lysine 5,6-aminomutase | 5.4.3.4 |
VII | Lysine 2,3-aminomutase | 5.4.3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gord Noshahri, N.; Rudat, J. The Promising Role of Amine Transaminase Cascades in the Synthesis of Non-Canonical Amino Acids. Processes 2024, 12, 2566. https://doi.org/10.3390/pr12112566
Gord Noshahri N, Rudat J. The Promising Role of Amine Transaminase Cascades in the Synthesis of Non-Canonical Amino Acids. Processes. 2024; 12(11):2566. https://doi.org/10.3390/pr12112566
Chicago/Turabian StyleGord Noshahri, Najme, and Jens Rudat. 2024. "The Promising Role of Amine Transaminase Cascades in the Synthesis of Non-Canonical Amino Acids" Processes 12, no. 11: 2566. https://doi.org/10.3390/pr12112566
APA StyleGord Noshahri, N., & Rudat, J. (2024). The Promising Role of Amine Transaminase Cascades in the Synthesis of Non-Canonical Amino Acids. Processes, 12(11), 2566. https://doi.org/10.3390/pr12112566