Control the Working Process of the Rotor System with Tilting Pad Bearing
Abstract
:1. Introduction
2. Objective of Research
3. Mathematics of Tilting Pad Bearing Adaptivity
4. Research Equipment and Methodology
5. Results of Analysis and Discussion
6. Conclusions
- -
- I zone: 0–1938 rpm—zone of stable work.
- -
- II zone: 1938–3923 rpm—rotor rotation critical zone because the rotor is exposed to oil whirl.
- -
- III zone: 3923–5000 rpm—zone of stable work.
Funding
Data Availability Statement
Conflicts of Interest
References
- Allmaier, H.; Priestner, C.; Six, C.; Priebsch, H.H.; Forstner, C.; Novotny-Farkas, F. Predicting friction reliably and accurately in journal bearings-a systematic validation of simulation results with experimental measurements. Tribol. Int. 2011, 44, 1151–1160. [Google Scholar] [CrossRef]
- Dimond, T.; Younan, A.; Allaire, P. A review of tilting pad bearing theory. Int. J. Rotating Mach. 2011, 2011, 908469. [Google Scholar] [CrossRef]
- Vannini, G.; Cangioli, F.; Ciulli, E.; Nuti, M.; Forte, P.; Kim, J.; Livermore-Hardy, R. Experiments on a Large Flexure Pivot Journal Bearing: Summary of Test Results and Comparison With Predictions. J. Eng. Gas Turbines Power 2020, 142, 031004. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, Z.; Yan, Z.; Chen, Z. Vibration characteristics of rotor system with tilting-pad journal bearing of elastic and damped pivots. J. Cent. South Univ. 2015, 22, 134–140. [Google Scholar] [CrossRef]
- Ondrouch, J.; Ferfecki, P.; Poruba, Z. Active vibration reduction of rigid rotor by kinematic excitation of bushes of journal bearings. Metalurgija 2010, 49, 107–110. [Google Scholar]
- Tejas, H.P.; Darpe, A.K. Vibration response of a cracked rotor in presence of rotor–stator rub. J. Sound Vib. 2008, 317, 841–865. [Google Scholar] [CrossRef]
- Garoli, G.Y.; de Castro, H.F. Analysis of a rotor-bearing nonlinear system model considering fluid-induced instability and uncertainties in bearings. J. Sound Vib. 2019, 448, 108–129. [Google Scholar] [CrossRef]
- Bently, D.E. Rotating Machinery Measurements 101. Orbit 1994, 15, 4–6. [Google Scholar]
- San, A.L.; Koo, B.; Hemmi, M. A Flow Starvation Model for Tilting-Pad Journal Bearings and Evaluation of Frequency Response Functions: A Contribution Toward Understanding the Onset of Low Frequency Shaft Motions. J. Eng. Gas Turbines Powder Trans. ASME 2018, 140, 052506. [Google Scholar] [CrossRef]
- Wu, X.L.; Jiao, Y.H.; Chen, Z.B.; Ma, W.S. Establishment of a contact stiffness matrix and its effect on the dynamic behavior of rod-fastening rotor bearing system. Arch. Appl. Mech. 2021, 91, 3247–3271. [Google Scholar] [CrossRef]
- Safizadeh, M.S.; Golmohammadi, A. Prediction of oil whirl initiation in journal bearings using multi-sensors data fusion. Measurement 2020, 151, 107241. [Google Scholar] [CrossRef]
- Ryu, K.; Ashton, Z. Bump-Type Foil Bearings and Flexure Pivot Tilting-Pad Bearings for Oil-Free Automotive Turbochargers: Highlights in Rotordynamic Performance. J. Eng. Gas Turbines Powder Trans. ASME 2016, 138, 042501. [Google Scholar] [CrossRef]
- Tong, X.; Palazzolo, A. Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect. J. Tribol. Trans. ASME 2018, 140, 031702. [Google Scholar] [CrossRef]
- Galvao, M.M.; Menon, G.J.; Schwarz, V.A. Numerical study of the influence of the pivot position on the steady-state behavior of tilting-pad thrust bearings. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 3165–3180. [Google Scholar] [CrossRef]
- Hagemann, T.; Zeh, C.; Proelss, M.; Schwarze, H. The Impact of Convective Fluid Inertia Forces on Operation of Tilting-Pad Journal Bearings. Int. J. Rotating Mach. 2017, 2017, 5683763. [Google Scholar] [CrossRef]
- Wang, L.; Fu, Y.; Pei, S.; Xu, H. Theoretical and Experimental Study on the Axial Oil Film Stiffness of Tilting-Pad Thrust Bearings. Tribol. Trans. 2017, 60, 419–427. [Google Scholar] [CrossRef]
- Fan, C.C.; Syu, J.W.; Pan, M.C.; Tsao, W.C. Study of start-up vibration response for oil whirl, oil whip and dry whip. Mech. Syst. Signal Process. 2011, 25, 3102–3115. [Google Scholar] [CrossRef]
- Ramos, D.J.; Daniel, G.B. A new concept of active hydrodynamic bearing for application in rotating systems. Tribol. Int. 2021, 153, 106592. [Google Scholar] [CrossRef]
- Luo, L.Y.; Fan, Y.H.; Tang, J.H.; Chen, T.Y.; Zhong, N.R.; Feng, P.C.; Kao, Y.C. Frequency Enhancement of Oil Whip and Oil Whirl in a Ferrofluid–Lubricated Hydrodynamic Bearing–Rotor System by Magnetic Field with Permanent Magnets. Appl. Sci. 2018, 8, 1687. [Google Scholar] [CrossRef]
- Silva, H.A.P.; Nicoletti, R. Rotor vibration control using tilting-pad journal bearing with active pads — Numerical and experimental results. J. Sound Vib. 2023, 546, 117441. [Google Scholar] [CrossRef]
- Schweizer, B. Oil whirl, oil whip and whirl/whip synchronization occurring in rotor systems with full-floating ring bearings. Nonlinear Dyn. 2009, 57, 509–532. [Google Scholar] [CrossRef]
- Ding, A.; Ren, X.; Li, X.; Gu, C. Numerical Investigation of Turbulence Models for a Superlaminar Journal Bearing. Adv. Tribol. 2018, 2018, 2841303. [Google Scholar] [CrossRef]
- Zywica, G.; Olszewski, A.; Baginski, P.; Andrearczyk, A.; Zochowski, T.; Klonowicz, P. Theoretical analysis and experimental tests of tilting pad journal bearings with shoes made of polymer material and low-boiling liquid lubrication. Tribol. Int. 2023, 189, 108991. [Google Scholar] [CrossRef]
- Hekmat, M.H.; Biukpour, G.A. Numerical study of the oil whirl phenomenon in a hydrodynamic journal bearing. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 218. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Savin, L.; Shutin, D.; Kornaev, A.; Polyakov, R.; Chen, Z. Theoretical and experimental study of motion suppression and friction reduction of rotor systems with active hybrid fluid-film bearings. Mech. Syst. Signal Process 2023, 182, 109548. [Google Scholar] [CrossRef]
- Chasalevris, A.; Sfyris, D. Evaluation of the finite journal bearing characteristics, using the exact analytical solution of the Reynolds equation. Tribol. Int. 2013, 57, 216–234. [Google Scholar] [CrossRef]
- Liu, H.; Xu, H.; Ellison, P.J.; Jin, Z. Application of computational fluid dynamics and fluid-structure interaction method to the lubrication study of a rotor-bearing system. Tribol. Lett. 2010, 38, 325–336. [Google Scholar] [CrossRef]
- Tong, X.A.; Palazzolo, A.; Suh, J. Review of the Rotordynamic Thermally Induced Synchronous Instability (Morton) Effect. ASME Appl. Mech. Rev. 2017, 69, 060801. [Google Scholar] [CrossRef]
- Muszynska, A.; Bently, D.E. Fluid-induced instabilities of rotors: Whirl and whip—Summary of results. Orbit 1996, 17, 7–15. [Google Scholar]
- Muszynska, A. Alford and the destabilizing forces that lead to fluid whirl/whip. Orbit 1998, 19, 29–31. [Google Scholar]
- Muszynska, A.; Hatch, C.T. Oil whip of a rotor supported in a poorly lubricated bearing. Orbit 1998, 19, 4–8. [Google Scholar]
- Wang, W.M.; Liu, B.B.; Zhang, Y.; Shao, X.; Allaire, P.E. Theoretical and experimental study on the static and dynamic characteristics of tilting-pad thrust bearing. Tribol. Int. 2018, 123, 26–36. [Google Scholar] [CrossRef]
- Shen, J.; Xiong, X.; Li, G.; Wang, X.; Hua, Z.; Nie, Z. Experimental Analysis of Dynamic Oil Film Pressure of Tilting-Pad Journal Bearings. Tribol. Lett. 2016, 63, 36. [Google Scholar] [CrossRef]
- Grigor’ev, B.S.; Fedorov, A.E. A New Improved Method for Calculating Dynamic Coefficients of Fluid Film Bearings. J. Mach. Manuf. Reliab. 2016, 45, 59–64. [Google Scholar] [CrossRef]
- Muszynska, A. Vibrational diagnostics of rotating machinery malfunctions. Int. J. Rotating Mach. 1995, 1, 237–266. [Google Scholar] [CrossRef]
- Marcinkevičius, A.H. Automatic regulation of clearance in a tilting pad journal bearing. Mechanika 2012, 18, 192–195. [Google Scholar] [CrossRef]
- Marcinkevičius, A.H.; Jurevičius, M. Automatic Control of Loading Forces in a Tilting Pad Journal Bearing. Hindawi Publ. Corp. Adv. Mech. Eng. 2014, 6, 590695. [Google Scholar] [CrossRef]
- Tong, X.; Xu, W.; Shi, Y.; Cai, M.; Palazzolo, A. Transient rotordynamic thermal bow (Morton effect) modeling in flexure-pivot tilting pad bearing systems. Tribol. Int. 2023, 177, 107954. [Google Scholar] [CrossRef]
- Rodriguez, L.E.; Childs, D.W. Frequency dependency of measured and predicted rotordynamic coefficients for a load-on-pad flexible-pivot tilting-pad bearing. J. Tribol. 2006, 128, 388–395. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, W.; Chen, S.; Lu, C.; Zhang, Y. Research on trajectory control of rotor systems supported by a combination of rolling and hydrostatic bearings. Precis. Eng. 2024, 88, 475–486. [Google Scholar] [CrossRef]
- Carbonara, A.F.; Duarte, D., Jr.; Bittencourt, M.L. Comparison of journal orbits under hydrodynamic lubrication regime for traditional and Newton-Euler loads in combustion engines. Lat. Am. J. Solids Struct. 2009, 6, 13–33. [Google Scholar]
- Hargreaves, D.J.; Fillon, M. Analysis of a tilting pad journal bearing to avoid pad fluttering. Tribol. Int. 2007, 40, 607–612. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Wang, Y.; Liu, X.; Wang, Y. Influence of squeezing and interface slippage on the performance of water-lubricated tilting-pad thrust bearing during start-up and shutdown. Lubr. Sci. 2018, 30, 137–148. [Google Scholar] [CrossRef]
- Gropper, D.; Harvey, T.J.; Wang, L. Numerical analysis and optimization of surface textures for a tilting pad thrust bearing. Tribol. Int. 2018, 124, 134–144. [Google Scholar] [CrossRef]
- Suh, J.; Palazzolo, A. Numerical modeling and analysis of flexure-pivot tilting-pad bearing. J. Tribol. 2017, 139, 051704. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H.; Zhang, S.; Pei, S. A radial clearance adjustable bearing reduces the vibration response of the rotor system during acceleration. Tribol. Int. 2020, 144, 106112. [Google Scholar] [CrossRef]
- Barzdaitis, V.; Cinikas, G. Condition monitoring data formats used in rotating machinery diagnostics. Mechanika 1997, 2, 40–48. [Google Scholar]
- Vasylius, M.; Didžiokas, R.; Mažeika, P.; Barzdaitis, V. The rotating system vibration and diagnostics. Mechanika 2008, 72, 54–58. [Google Scholar]
- Bently, D.E.; Muszynska, A. Role of Circumferential Flow in the Stability of Fluid-Handling Machine Rotors. In Proceedings of the Fifth Workshop on Rotordynamics Instability Problems in High Performance Turbomachinery, Texas A&M University, College Station, TX, USA, 16–18 May 1988. [Google Scholar]
- Tuma, J.; Biloš, J. Fluid Induced Instability of Rotor Systems with Journal Bearings. Eng. Mech. 2007, 14, 69–80. [Google Scholar]
Parameter | Size, Unit |
---|---|
Rotor diameter, D | 90, mm |
Rotor length, L | 800, mm |
Rotor roundness deviation | 1.0–0.2 μm |
Rotor linearity deviation | 2–3, μm |
Rotor hardness, HV | 850–1050 |
Rotor surface roughness, Ra | 0.04–0.08, μm |
Tilting pad width, L | 70, mm |
Tilting pad half width, L/2 | 35, mm |
Tilting pad thickness, B | 40, mm |
Tilting pad angle, β | 60° |
Tilting pad fastening angle, α | 24°30′ |
Tilting pad roughness, Ra | 0.32, μm |
The length of the elastic element, L | 70, mm |
The hardness of the elastic element, HRC | 42–48 |
Density of the elastic element, ρ | 7680 kg/m3 (20 °C), 7660 kg/m3 (100 °C) |
Modulus of elastic element, E | 2.12 × 10−5 MPa (20 °C), 2.06 × 10−5 MPa (100 °C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čereška, A. Control the Working Process of the Rotor System with Tilting Pad Bearing. Processes 2024, 12, 2583. https://doi.org/10.3390/pr12112583
Čereška A. Control the Working Process of the Rotor System with Tilting Pad Bearing. Processes. 2024; 12(11):2583. https://doi.org/10.3390/pr12112583
Chicago/Turabian StyleČereška, Audrius. 2024. "Control the Working Process of the Rotor System with Tilting Pad Bearing" Processes 12, no. 11: 2583. https://doi.org/10.3390/pr12112583
APA StyleČereška, A. (2024). Control the Working Process of the Rotor System with Tilting Pad Bearing. Processes, 12(11), 2583. https://doi.org/10.3390/pr12112583