The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite
Abstract
:1. Introduction
2. Materials and Reagents
Sorbent Synthesis
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, D.; Zhang, Q.; Zheng, Y.; Caldeira, K.; Shearer, C.; Hong, C.; Qin, Y.; Davis, S.J. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 2019, 572, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, N.; Bahadori, M.; Marandi, A.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I. Enhancement of CO2 adsorption on natural zeolite, modified clinoptilolite with cations, amines and ionic liquids. Sustain. Chem. Pharm. 2021, 22, 100495. [Google Scholar] [CrossRef]
- Gür, T.M. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Prog. Energy Combust. Sci. 2022, 89, 100965. [Google Scholar] [CrossRef]
- Elena, T.C.; Skinner, J.; David, G.T. CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods. J. Chem. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and adsorp-tion: A comprehensive review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Gunawardene, O.H.P.; Gunathilake, C.A.; Kumar, V.; Amaraweera, S.M. Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. J. Atmos. 2022, 13, 397. [Google Scholar] [CrossRef]
- Ayeleru, O.O.; Modekwe, H.U.; Onisuru, O.R.; Ohoro, C.R.; Akinnawo, C.A.; Olubambi, P.A. Adsorbent technologies and applications for carbon capture, and direct air capture in environmental perspective and sustainable climate action. Sustain. Chem. Clim. Action. 2023, 3, 100029. [Google Scholar] [CrossRef]
- Davarpanah, E.; Armandi, M.; Hernández, S.; Fino, D.; Arletti, R.; Bensaid, S.; Piumetti, M. CO2 capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites. J. Environ. Manag. 2020, 275, 111229. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Biblioteca, I.; Sambucci, M.; Valente, M. Zeolite-Clinoptilolite conditioning for improved heavy metals ions removal: A preliminary assessment. Ceram. Int. 2023, 49, 39649–39656. [Google Scholar] [CrossRef]
- Sharma, P.; Sutar, P.P.; Xiao, H.; Zhang, Q. The untapped potential of zeolites in techno-augmentation of the biomaterials and food industrial processing operations: A review. J. Future Foods 2023, 3, 127–141. [Google Scholar] [CrossRef]
- El Bojaddayni, I.; Emin Küçük, M.; El Ouardi, Y.; Jilal, I.; El Barkany, S.; Moradi, K.; Repo, E.; Laatikainen, K.; Ouammou, A. A review on synthesis of zeolites from natural clay resources and waste ash: Recent approaches and progress. Miner. Eng. 2023, 198, 108086. [Google Scholar] [CrossRef]
- El-Arish, N.A.S.; Zaki, R.S.R.M.; Miskan, S.N.; Setiabudi, H.D.; Jaafar, N.F. Adsorption of Pb (II) from aqueous solution using alkaline-treated natural zeolite: Process optimization analysis. Total Environ. Res. Themes 2022, 3–4, 100015. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Espinoza-Santos, N. Cation Exchange of Natural Zeolites: Worldwide Research. Sustainability 2021, 13, 7751. [Google Scholar] [CrossRef]
- Abdulina, S.A.; Sadenova, M.A.; Sapargaliev, E.M.; Utegenova, M.E. Peculiarities of zeolite mineral composition of Taizhuzgen deposit. Vestnik KazNTU. 2014, 103, 24–31. (In Russian) [Google Scholar]
- Mambetova, M.; Dossumov, K.; Baikhamurova, M.; Yergaziyeva, G. Sorbents Based on Natural Zeolites for Carbon Dioxide Capture and Removal of Heavy Metals from Wastewater: Current Progress and Future Opportunities. Processes 2024, 12, 2071. [Google Scholar] [CrossRef]
- Rakhym, A.B.; Seilkhanova, G.A.; Kurmanbayeva, T.S. Adsorption of Lead (II) Ions from Water Solutions with Natural Zeolite and Chamotte Clay. Mater. Today Proc. 2020, 31, 482–485. [Google Scholar] [CrossRef]
- Vasilyanova, L.S.; Lazareva, E.A. Zeolites in Ecology. News of Science of Kazakhstan. 2016, pp. 61–85. Available online: https://nv.nauka.kz/wp-content/uploads/2016/04/nnk-2016-1.pdf (accessed on 13 September 2024). (In Russian).
- Telkhozhayeva, M.; Seilkhanova, G.; Rakhym, A.; Imangaliyeva, A.B.; Akbayeva, D.N. Sorption of lead and cadmium ions from aqueous solutions using modified zeolite. Chem. Bull. Kazakh. Natl. Univ. 2018, 91, 16–22. [Google Scholar] [CrossRef]
- Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Modifying Natural Zeolites to Improve Heavy Metal Adsorption. Water. 2023, 15, 2215. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, C.; Wang, P.; Sun, J.; Li, W.; Zhao, C.; Lu, P. Structure-performance relationships of magnesium-based CO2 adsorbents prepared with different methods. Chem. Eng. J. 2020, 379, 122277. [Google Scholar] [CrossRef]
- Mambetova, M.; Yergaziyeva, G.; Zhoketayeva, A. Physicochemical characteristics and carbon dioxide sorption properties of natural zeolites. Combust. Plasma Chem. 2023, 21, 81–87. [Google Scholar] [CrossRef]
- Nikashina, V.A.; Streletskii, A.N.; Kolbanev, I.V.; Meshkova, I.N.; Grinev, V.G.; Serova, I.B.; Yusupov, T.S.; Shumskaya, L.G. Effect of mechanical activation on the properties of natural zeolites. Inorg. Mater. 2011, 47, 1341–1346. [Google Scholar] [CrossRef]
- Beycioglu, A.; Aruntaş, H.Y.; Gencel, O.; Hagg Lobland, H.E.; Şamandar, A.; Brostow, W. Effect of Elevated Temperatures on Properties of Blended Cements with Clinoptilolite. Mater. Sci. 2016, 22, 548–552. [Google Scholar] [CrossRef]
- Güngör, D.; Özen, S. Development and Characterization of Clinoptilolite-, Mordenite-, and Analcime-Based Geopolymers: A Comparative Study. Case Stud. Constr. Mater. 2021, 15, e00576. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Hernandez, G.I.; Portillo, R.; Rubio, E.; Petranovskii, V.; Alvarez, K.M.; Velasco, M.D.L.A.; Santamaría, J.D.; Tornero, M.; Paniagua, L.A. CO2 Adsorption on Natural Zeolites from Puebla, México, by Inverse Gas Chromatography. Separations 2023, 10, 238. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Huang, E.; Li, Y.H.; Hung, H.T.; Jiang, J.H.; Liu, T.C.; Fang, J.N.; Chen, H.F. Raman Spectroscopic Characteristics of Zeolite Group Minerals. Minerals 2021, 11, 167. [Google Scholar] [CrossRef]
- Dabizha, O.N.; Derbenova, T.V.; Khamova, T.V.; Shilova, O.A. Controlling the Sorption Activity of Clinoptilolites with Mechanical Activation. Inorg. Mater. 2021, 57, 399–408. [Google Scholar] [CrossRef]
- Wu, F.; Li, H.; Yang, K. Effects of Mechanical Activation on Physical and Chemical Characteristics of Coal-Gasification Slag. Coatings 2021, 11, 902. [Google Scholar] [CrossRef]
- Zheng, S.; Heydenrych, H.R.; Jentys, A.; Lercher, J.A. Influence of Surface Modification on the Acid Site Distribution of HZSM-5. J. Phys. Chem. B. 2002, 106, 9552–9558. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, R.; Webley, P.A. Alkali and Alkaline-Earth Cation Exchanged Chabazite Zeolites for Adsorption Based CO2 Capture. Microporous Mesoporous Mater. 2008, 111, 478–487. [Google Scholar] [CrossRef]
- Pang, H.; Sun, A.; Xu, H.; Xiao, G. Regenerable MgO-Based Sorbents for CO2 Capture at Elevated Temperature and Pressure: Experimental and DFT Study. Chem. Eng. J. 2021, 425, 130675. [Google Scholar] [CrossRef]
- Donat, F.; Müller, C.R. Prospects of MgO-Based Sorbents for CO2 Capture Applications at High Temperatures. Curr. Opin. Green Sustain. Chem. 2022, 36, 100645. [Google Scholar] [CrossRef]
- Yang, D.A.; Cho, H.Y.; Kim, J.; Yang, S.T.; Ahn, W.S. CO2 Capture and Conversion Using Mg-MOF-74 Prepared by a Sonochemical Method. Energy Environ. Sci. 2012, 5, 6465–6473. [Google Scholar] [CrossRef]
- Xiao, G.; Singh, R.; Chaffee, A.; Webley, P. Advanced Adsorbents Based on MgO and K2CO3 for Capture of CO2 at Elevated Temperatures. Int. J. Greenh. Gas Control 2011, 5, 634–639. [Google Scholar] [CrossRef]
- Elvira, G.B.; Francisco, G.C.; Víctor, S.M.; Alberto, M.L.R. MgO-Based Adsorbents for CO2 Adsorption: Influence of Structural and Textural Properties on the CO2 Adsorption Performance. J. Environ. Sci. 2017, 57, 418–428. [Google Scholar] [CrossRef]
- Alkadhem, A.M.; Elgzoly, M.A.A.; Onaizi, S.A. Novel Amine-Functionalized Magnesium Oxide Adsorbents for CO2 Capture at Ambient Conditions. J. Environ. Chem. Eng. 2020, 8, 103968. [Google Scholar] [CrossRef]
- Ouyang, J.; Gu, W.; Zheng, C.; Yang, H.; Zhang, X.; Jin, Y.; Chen, J.; Jiang, J. Polyethyleneimine (PEI) Loaded MgO-SiO 2 Nanofibers from Sepiolite Minerals for Reusable CO2 Capture/Release Applications. Appl. Clay Sci. 2018, 152, 267–275. [Google Scholar] [CrossRef]
- Vu, A.-T.; Park, Y.; Jeon, P.R.; Lee, C.-H. Mesoporous MgO Sorbent Promoted with KNO3 for CO2 Capture at Intermediate Temperatures. Chem. Eng. J. 2014, 258, 254–264. [Google Scholar] [CrossRef]
- Jin, S.; Ko, K.-J.; Lee, C.-H. Direct Formation of Hierarchically Porous MgO-Based Sorbent Bead for Enhanced CO2 Capture at Intermediate Temperatures. Chem. Eng. J. 2019, 371, 64–77. [Google Scholar] [CrossRef]
- Yang, N.; Ning, P.; Li, K.; Wang, J. MgO-Based Adsorbent Achieved from Magnesite for CO 2 Capture in Simulate Wet Flue Gas. J. Taiwan Inst. Chem. Eng. 2018, 86, 73–80. [Google Scholar] [CrossRef]
- Vu, A.T.; Ho, K.; Jin, S.; Lee, C.H. Double Sodium Salt-Promoted Mesoporous MgO Sorbent with High CO2 Sorption Capacity at Intermediate Temperatures under Dry and Wet Conditions. Chem. Eng. J. 2016, 291, 161–173. [Google Scholar] [CrossRef]
- Ho, K.; Jin, S.; Zhong, M.; Vu, A.T.; Lee, C.H. Sorption Capacity and Stability of Mesoporous Magnesium Oxide in Post-Combustion CO2 Capture. Mater. Chem. Phys. 2017, 198, 154–161. [Google Scholar] [CrossRef]
- Liu, Q.; Pham, T.; Porosoff, M.D.; Lobo, R.F. ZK-5: A CO2 Selective Zeolite with High Working Capacity at Ambient Temperature and Pressure. Chem. Sus. Chem. 2012, 5, 2237–2242. [Google Scholar] [CrossRef]
- Olegario-Sanchez, E.; Felizco, J.C.; Mulimbayan, F. Investigation of the Thermal Behavior of Philippine Natural Zeolites. In Proceedings of the AIP Conference, Langkawi, Malaysia, 4 December 2017; p. 070005. [Google Scholar]
- Joni, I.M.; Nulhakim, L.; Vanitha, M.; Panatarani, C. Characteristics of Crystalline Silica (SiO2) Particles Prepared by Simple Solution Method Using Sodium Silicate (Na2SiO3) Precursor. J. Phys. Conf. Ser. 2018, 1080, 012006. [Google Scholar] [CrossRef]
- Rahmadhani, D.; Yuliani, K.D.; Frida, E.; Taufiq, A. Hydrophobic and Antibacterial Properties of Textiles Using Nanocomposite Chitosan and SiO2 from Rice Husk Ash As-Coating. S. Afr. J. Chem. Eng. 2024, 48, 366–374. [Google Scholar] [CrossRef]
- Guo, X.; Yang, H.; Han, C.; Song, F. Crystallization and Microstructure of Li2O–Al2O3–SiO2 Glass Containing Complex Nucleating Agent. Thermochim. Acta 2006, 444, 201–205. [Google Scholar] [CrossRef]
- Kleebusch, E.; Patzig, C.; Krause, M.; Hu, Y.; Höche, T.; Rüssel, C. The Formation of Nanocrystalline ZrO2 Nuclei in a Li2O-Al2O3-SiO2 Glass—A Combined XANES and TEM. Study Sci. Rep. 2017, 7, 10869. [Google Scholar] [CrossRef]
- Naumov, A.S.; Shakhgildyan, G.Y.; Golubev, N.V.; Lipatiev, A.S.; Fedotov, S.S.; Alekseev, R.O.; Ingat’eva, E.S.; Savinkov, V.I.; Sigaev, V.N. Tuning the Coefficient of Thermal Expansion of Transparent Lithium Aluminosilicate Glass-Ceramics by a Two-Stage Heat Treatment. Ceramics 2023, 7, 1–14. [Google Scholar] [CrossRef]
- Wang, K.; Guo, X.; Zhao, P.; Wang, F.; Zheng, C. High Temperature Capture of CO2 on Lithium-Based Sorbents from Rice Husk Ash. J. Hazard. Mater. 2011, 189, 301–307. [Google Scholar] [CrossRef]
- Sanna, A.; Thompson, S.; Zajac, J.M.; Whitty, K.J. Evaluation of Palm-Oil Fly Ash Derived Lithium Silicate for CO2 Sorption under Simulated Gasification Conditions. J. CO2 Util. 2022, 56, 101826. [Google Scholar] [CrossRef]
- Hernández-Palomares, A.; Alcántar-Vázquez, B.; Ramírez-Zamora, R.M.; Coutino-Gonzalez, E.; Espejel-Ayala, F. CO2 Capture Using Lithium-Based Sorbents Prepared with Construction and Demolition Wastes as Raw Materials. Mater. Today Sustain. 2023, 24, 100491. [Google Scholar] [CrossRef]
- Li, P.; Jiang, Z.; Guo, H.; Zhao, W.; Zheng, F.; Chen, Y.; Yan, B.; Chen, D. Lithium Based High Temperature Sorbent from Copper Slag: Synthesis and CO2 Capture Performance. Ceram. Int. 2023, 49, 37435–37444. [Google Scholar] [CrossRef]
- Chai, Y.E.; Chalouati, S.; Fantucci, H.; Santos, R.M. Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO2 Sequestration. Crystals 2021, 11, 1584. [Google Scholar] [CrossRef]
- Kalinkin, A.M.; Kalinkina, E.V.; Zalkind, O.A.; Makarov, V.N. CO2 Sorption during Mechanical Activation of Sodium and Calcium Aluminosilicates. Inorg. Mater. 2005, 41, 486–491. [Google Scholar] [CrossRef]
- Paustian, K.; Pacala, S.W.; Al-Kaisi, M.; Barteau, M.A.; Belmont, E.; Benson, S.M.; Birdsey, R.; Boysen, D.; Duren, R.M.; Hopkinson, C.; et al. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; National Academies Press: Washington, DC, USA, 2019; p. 25259. ISBN 978-0-309-48452-7. [Google Scholar]
- Hu, Y.; Liu, X.; Zhou, Z.; Liu, W.; Xu, M. Pelletization of MgO-Based Sorbents for Intermediate Temperature CO2 Capture. Fuel 2017, 187, 328–337. [Google Scholar] [CrossRef]
- Papalas, T.; Polychronidis, I.; Antzaras, A.N.; Lemonidou, A.A. Enhancing the Intermediate-Temperature CO2 Capture Efficiency of Mineral MgO via Molten Alkali Nitrates and CaCO3: Characterization and Sorption Mechanism. J. CO2 Util. 2021, 50, 101605. [Google Scholar] [CrossRef]
- López-Periago, A.M.; Fraile, J.; López-Aranguren, P.; Vega, L.F.; Domingo, C. CO2 Capture Efficiency and Carbonation/Calcination Kinetics of Micro and Nanosized Particles of Supercritically Precipitated Calcium Carbonate. Chem. Eng. J. 2013, 226, 357–366. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, H.; Zhao, G.; Li, L.; Ji, T.; Mu, L.; Lu, X.; Zhu, J. A Thermodynamic View on the In-Situ Carbon Dioxide Reduction by Biomass-Derived Hydrogen during Calcium Carbonate Decomposition. Chin. J. Chem. Eng. 2024, 68, 231–240. [Google Scholar] [CrossRef]
- Litasov, K.D.; Shatskiy, A.F. MgCO3 + SiO2 Reaction at Pressures to 32 GPa Studied Using in Situ X-Ray Diffraction and Synchrotron Radiation. Geochemistry 2019, 64, 1003–1012. [Google Scholar] [CrossRef]
- Kwon, S.H.; Hiremath, V.; Nanoti, A.; Kang, S.G.; Seo, J.G.; Lee, S.G. MgO-Based Composites for High Pressure CO2 Capture: A First-Principles Theoretical and Experimental Investigation. Korean J. Chem. Eng. 2023, 40, 2990–2996. [Google Scholar] [CrossRef]
- Blanco-García, S.; Aguado, F.; González, J.; Rodriguez, F. A Raman Study of the Pressure-Induced Densification of SiO2 -Based Glass-Ceramics. J. Phys. Condens. Matter. 2018, 30, 304002. [Google Scholar] [CrossRef] [PubMed]
- Cormier, L.; Cuello, G.J. Structural Investigation of Glasses along the MgSiO3–CaSiO3 Join: Diffraction Studies. Geochim. Cosmochim. Acta 2013, 122, 498–510. [Google Scholar] [CrossRef]
- Moulton, B.J.A.; Henderson, G.S.; Fukui, H.; Hiraoka, N.; De Ligny, D.; Sonneville, C.; Kanzaki, M. In Situ Structural Changes of Amorphous Diopside (CaMgSi2O6) up to 20 GPa: A Raman and O K-Edge X-Ray Raman Spectroscopic Study. Geochim. Cosmochim. Acta 2016, 178, 41–61. [Google Scholar] [CrossRef]
- Morizet, Y.; Trcera, N.; Larre, C.; Rivoal, M.; Le Menn, E.; Vantelon, D.; Gaillard, F. X-Ray Absorption Spectroscopic Investigation of the Ca and Mg Environments in CO2-Bearing Silicate Glasses. Chem. Geol. 2019, 510, 91–102. [Google Scholar] [CrossRef]
- Rabia, M.K.; Degioanni, S.; Martinet, C.; Le Brusq, J.; Champagnon, B.; Vouagner, D. A-Thermal Elastic Behavior of Silicate Glasses. J. Phys. Condens. Matter. 2016, 28, 075402. [Google Scholar] [CrossRef]
- Selvamani, T.; Sinhamahapatra, A.; Bhattacharjya, D.; Mukhopadhyay, I. Rectangular MgO microsheets with strong catalytic activity. Mater Chem Phys. 2011, 129, 853–861. [Google Scholar] [CrossRef]
- Thiago Rossi, M.; Campos Juacyara, C.; Souza Mariana, M.V.M. CO2 capture by Mg–Al and Zn–Al hydrotalcite-like compounds. Adsorption 2016, 22, 151–158. [Google Scholar] [CrossRef]
- Kulawong, S.; Youngjan, S.; Khemthong, P.; Chanlek, N.; Wittayakun, J.; Osakoo, N. Magnesium Impregnated on NaX Zeolite Synthesized from Cogon Grass Silica for Fast Production of Fructose via Microwave-Assisted Catalytic Glucose Isomerization. Catalysts 2021, 11, 981. [Google Scholar] [CrossRef]
- Kusumastuti, R.; Pancoko, M.; Butar-Butar, S.L.; Putra, G.E.; Tjahjono, H. Study on the mechanism of CO2 adsorption process on zeolite 5A as a molecular sieve in RDE system: An infrared investigation. J. Phys. Conf. Ser. 2019, 1198, 032009. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. Modification and Functionalization of Zeolites to Improve the Efficiency of CO2 Adsorption: A Review. Chem. Environ. Eng. 2024, 9, 100564. [Google Scholar] [CrossRef]
Samples | Abbreviation |
---|---|
Zeolite Shankanay | Sh |
Zeolite Tayzhuzgen | Tg |
Zeolite Tayzhuzgen mechanically activated at 6:1 | Tg 6:1 |
Composition, wt.% | Al2O3 | SiO2 | CaO | ZnO | In2O3 | Fe2O3 | K2O |
---|---|---|---|---|---|---|---|
Tg | 12.9 | 72.2 | 5.6 | 1.2 | 7.7 | 0.4 | - |
Sh | 16.9 | 49.5 | 15.2 | - | - | 14.7 | 3.7 |
Samples | Surface Area, m2/g |
---|---|
Sh | 5.61 |
Tg | 11.12 |
Tg 6:1 | 16.0 |
Composition of Sorbents | Preparation Methods | CO2 Adsorption Temperature/°C | Adsorption Time (min) | Adsorption Capacity (wt. %)/mmol/g | Ref./This Work |
---|---|---|---|---|---|
Mg-MOF-74 | sonochemical method | 25 | - | 35% | [34] |
MgO/K2CO3 | recipitation method | 375 | 120 | 8.7 | [35] |
MgO-BM2.5h | solution–combustion | 25 and 1 atm | 30 | 1.611 mmol/g | [36] |
MgO | sol–gel | 30 | - | 0.68 | [37] |
PEI-MgO | sol–gel and impregnation | 30 | - | 0.54 mmol/g | |
MgO-SiO2 | acid leaching | 75 | - | 0.41 mmol/g | [38] |
MgOꞏKNO3 | aerogel method | 325 | 120 | 13.9% | [39] |
MgO/Tg 6/1 | capillary impregnation | 500 | 30 | 8.46 mmol/g | [This work] |
MgO-CeO2 | sol–gel combustion | 325 | 240 | 45% | [40] |
Calcinated magnesite MgO | - | 60 °C, 0.4 MПa | - | 1.82 mmol/g | [41] |
MgOꞏNa2CO3 | aerogel method | 325 | 240 | 4.3% | [42] |
MgO | aerogel method | 30 | 5 | 10% | [43] |
MgO-SR | solid-state chemical reaction method | 60 | - | 2.39 mmol/g | [22] |
Mg-ZK-5 | ion exchanges | 30, 0.15 bar | - | 1.9 mmol/g | [44] |
Mg-CHA | ion exchanges | −0.15–60 0.15 bar | - | 3.4 mmol/g | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mambetova, M.; Dossumov, K.; Yergaziyeva, G. The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite. Processes 2024, 12, 2592. https://doi.org/10.3390/pr12112592
Mambetova M, Dossumov K, Yergaziyeva G. The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite. Processes. 2024; 12(11):2592. https://doi.org/10.3390/pr12112592
Chicago/Turabian StyleMambetova, Manshuk, Kusman Dossumov, and Gaukhar Yergaziyeva. 2024. "The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite" Processes 12, no. 11: 2592. https://doi.org/10.3390/pr12112592
APA StyleMambetova, M., Dossumov, K., & Yergaziyeva, G. (2024). The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite. Processes, 12(11), 2592. https://doi.org/10.3390/pr12112592