Effects of L-Aspartic Acid on Cr(VI) Adsorption onto the Lepidocrocite with Different Exposed Facets: Batch Experiments and In Situ ATR-FTIR Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Two Morphological Lepidocrocite
2.2. Macroscopic Adsorption Experiments
2.3. In Situ ATR-FTIR Experiments
2.4. Analytical Methods
3. Results and Discussions
3.1. Characterization of the Solid Samples
3.2. Cr(VI) Adsorption Kinetics in the Presence of LA
3.3. Cr(VI) Adsorption Isotherms
3.4. pH-Dependent Cr(VI) Adsorption onto LEP in the Presence of LA
3.5. Interfacial Dynamic Adsorption Process of Cr(VI) Under the Effects of LA
4. Conclusions
- The competitive adsorption processes were found to be facet-dependent. Specifically, the rod-shaped lepidocrocite (R-LEP), which possesses a higher ratio of (001) facet, exhibits greater efficacy in Cr(VI) adsorption and resistance to LA competition compared to plate-shaped lepidocrocite (P-LEP), which is primarily composed of (010) facet.
- Cr(VI) interacts with the LEP surface under the influence of LA through a chemical reaction. The inner-sphere Cr(VI) complexation is more favored with R-LEP compared to P-LEP, demonstrating that more (001) facets provide more monodentate binding sites (-OH) for the competitive adsorption between Cr(VI) and LA.
- In addition, LA adsorbs onto LEP through the coordination of its carboxyl groups, forming inner-sphere and outer-sphere structures. The presence of inner-sphere LA complexes, which are primarily associated with the exposed (001) facet. The ligand exchange reaction with the hydroxyl groups on LEP appears to be the predominant interaction mechanism.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnston, C.P.; Chrysochoou, M. Investigation of chromate coordination on ferrihydrite by in situ ATR-FTIR spectroscopy and theoretical frequency calculations. Environ. Sci. Technol. 2012, 46, 5851–5858. [Google Scholar] [CrossRef]
- Qi, T.Y.; Zhang, S.; Zhang, J.Z.; Li, T.; Xing, L.; Fang, Z.M.; An, S.L.; Xu, Z.F.; Xiao, H.N.; Wang, L.D. In situ reconstruction of active catalysis sites triggered by chromium immobilization for sulfite oxidation. Environ. Sci. Technol. 2023, 57, 3905–3916. [Google Scholar] [CrossRef]
- Kebir, M.; Tahraoui, H.; Chabani, M.; Trari, M.; Noureddine, N.; Assadi, A.A.; Amrane, A.; Ben Hamadi, N.; Khezami, L. Water cleaning by a continuous fixed-bed column for Cr(VI) eco-adsorption with green adsorbent-based biomass: An experimental modeling study. Processes 2023, 11, 363. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Ye, H.; Wen, Z.; Dang, Z.; Lu, G.N. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms. Sci. Total. Environ. 2022, 848, 157863. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yang, B.B.; Ren, H.W.; Chen, S.H.; Luo, C.H.; Li, Q.D.; Yang, W.; Yan, K.P. Removal of Cr(VI) from aqueous systems using Fe-P slag as a reducing agent. Hydrometallurgy 2022, 211, 105875. [Google Scholar] [CrossRef]
- Chattopadhyay, B.; Utpal, S.; Mukhopadhyay, S.K. Mobility and bioavailability of chromium in the environment: Physico-chemical and microbial oxidation of Cr (III) to Cr (VI). J. Appl. Sci. Environ. 2010, 14, 97–101. [Google Scholar] [CrossRef]
- Li, X.F.; Guo, C.L.; Pillai, S.C.; Jin, X.H.; Yao, Q.; Bao, Y.P.; Jiang, X.D.; Lu, G.N.; Wang, H.L.; Dang, Z. Facet-dependent competitive adsorption mechanisms of chromate and oxalic acid on γ-FeO(OH) nanocrystals. Langmuir 2023, 39, 14539–14549. [Google Scholar] [CrossRef]
- Li, X.F.; Guo, C.L.; Jin, X.H.; Yao, Q.; Liu, Q.Q.; Zhang, L.J.; Lu, G.N.; Reinfelder, J.R.; Huang, W.L.; Dang, Z. Molecular-scale study of Cr(VI) adsorption onto lepidocrocite facets by EXAFS, in situ ATR-FTIR, theoretical frequency calculations and DFT+U techniques. Environ. Sci. Nano 2022, 9, 568–581. [Google Scholar] [CrossRef]
- Borowski, S.C.; Biswakarma, J.; Kang, K.; Schenkeveld, W.D.C.; Hering, J.G.; Kubicki, J.D.; Kraemer, S.M.; Hug, S.J. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments. Geochim. Cosmochim. Acta 2018, 226, 244–262. [Google Scholar] [CrossRef]
- Liao, S.; Wang, X.M.; Yin, H.; Post, J.E.; Feng, X.H. Effects of Al substitution on local structure and morphology of lepidocrocite and its phosphate adsorption kinetics. Geochim. Cosmochim. Acta 2020, 276, 109–121. [Google Scholar] [CrossRef]
- Chen, C.M.; Kukkadapu, R.; Sparks, D.L. Influence of coprecipitated organic matter on Fe2+(aq)-catalyzed transformation of ferrihydrite: Implications for carbon dynamics. Environ. Sci. Technol. 2015, 49, 10927–10936. [Google Scholar] [CrossRef] [PubMed]
- Schoepfer, V.A.; Burton, E.D.; Johnston, S.G. Contrasting effects of phosphate on the rapid transformation of schwertmannite to Fe(III) (oxy)hydroxides at near-neutral pH. Geoderma 2019, 340, 115–123. [Google Scholar] [CrossRef]
- Jin, X.H.; Li, X.F.; Guo, C.L.; Jiang, M.G.; Yao, Q.; Lu, G.N.; Dang, Z. Fate of oxalic-acid-intervened arsenic during Fe(II)-induced transformation of As(V)-bearing jarosite. Sci. Total. Environ. 2020, 719, 137311. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.H.; Guo, C.L.; Tao, X.Q.; Li, X.F.; Xie, Y.Y.; Dang, Z.; Lu, G.N. Divergent redistribution behavior of divalent metal cations associated with Fe(II)-mediated jarosite phase transformation. Environ. Pollut. 2024, 350, 124004. [Google Scholar] [CrossRef]
- Cao, Q.Q.; Guo, C.L.; Ren, M.H.; Li, X.F.; Xu, Z.R.; Wang, C.P.; Lu, G.N.; Dang, Z. Influence of tartaric acid on the electron transfer between oxyanions and lepidocrocite. J. Hazard. Mater. 2024, 476, 135082. [Google Scholar] [CrossRef]
- Kozin, P.A.; Salazar-Alvarez, G.; Boily, J.F. Oriented aggregation of lepidocrocite and impact on surface charge development. Langmuir 2014, 30, 9017–9021. [Google Scholar] [CrossRef]
- Paikaray, S.; Schröder, C.; Peiffer, S. Schwertmannite stability in anoxic Fe(II)-rich aqueous solution. Geochim. Cosmochim. Acta 2017, 217, 292–305. [Google Scholar] [CrossRef]
- Ding, X.; Song, X.; Boily, J.F. Identification of fluoride and phosphate binding sites at FeOOH surfaces. J. Phys. Chem. C 2012, 116, 21939–21947. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; Kim, H.; Fujishima, A.; Terashima, C. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications. J. Hazard. Mater. 2021, 419, 126453. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Kim, H. Facile synthesis of multitasking composite of Silver nanoparticle with Zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation. J. Alloys Compd. 2022, 928, 167133. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Majumder, S.; Mourad, A.H.I.; Islam, M.M.; Sakurai, T.; Kang, S.W. Multiplicative rGO/Cu-BDC MOF for 4-nitrophenol reduction and supercapacitor applications. J. Colloid Interface Sci. 2025, 677, 161–170. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J.; Essilfie-Dughan, J.A. Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Appl. Geochem. 2013, 77, 185–193. [Google Scholar] [CrossRef]
- Davantès, A.; Costa, D.; Lefèvre, G. Molybdenum(VI) adsorption onto lepidocrocite (γ-FeOOH): In situ vibrational spectroscopy and DFT+U theoretical study. J. Phys. Chem. C 2016, 120, 11871–11881. [Google Scholar] [CrossRef]
- Otte, K.; Schmahl, W.W.; Pentcheva, R. DFT+U study of arsenate adsorption on FeOOH surfaces: Evidence for competing binding mechanisms. J. Phys. Chem. C 2013, 117, 15571–15582. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wang, S.R.; Xu, Y.S.; Zheng, B.H.; Liu, J.Y. Molecular-scale study of aspartate adsorption on goethite and competition with phosphate. Environ. Sci. Technol. 2016, 50, 2938–2945. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Q.; Wang, X.M.; Zhang, C.M.; Yan, S.; Zheng, G.Y.; Zhou, L.X. Co-adsorption of As(III) and phenanthrene by schwertmannite and Fenton-like regeneration of spent schwertmannite to realize phenanthrene degradation and As(III) oxidation. Environ. Res. 2021, 195, 110855. [Google Scholar] [CrossRef]
- Flynn, E.D.; Catalano, J.G. Competitive and cooperative effects during nickel adsorption to iron oxides in the presence of oxalate. Environ. Sci. Technol. 2017, 51, 9792–9799. [Google Scholar] [CrossRef] [PubMed]
- Situm, A.; Rahman, M.A.; Allen, N.; Kabengi, N.; Al-Abadleh, H.A. ATR-FTIR and flow microcalorimetry studies on the initial binding kinetics of arsenicals at the organic–hematite interface. J. Phys. Chem. A 2017, 121, 5569–5579. [Google Scholar] [CrossRef]
- Mesuere, K.; Fish, W. Chromate and oxalate adsorption on goethite. 2. Surface complexation modeling of competitive adsorption. Environ. Sci. Technol. 1992, 26, 2365–2370. [Google Scholar] [CrossRef]
- Yao, W.B.; Huang, L.; Yang, Z.H.; Zhao, F.P. Effects of organic acids on heavy metal release or immobilization in contaminated soil. Trans. Nonferrous Met. Soc. China 2022, 32, 1277–1289. [Google Scholar] [CrossRef]
- Hu, S.W.; Li, H.; Wang, P.; Liu, C.X.; Shi, Z.Q.; Li, F.B.; Liu, T.X. Interfacial photoreactions of Cr(VI) and oxalate on lepidocrocite surface under oxic and acidic conditions: Reaction mechanism and potential implications for contaminant degradation in surface waters. Chem. Geol. 2021, 583, 120481. [Google Scholar] [CrossRef]
- Kitadai, N.; Nishiuchi, K. Thermodynamic impact of mineral surfaces on amino acid polymerization: Aspartate dimerization on goethite. Astrobiology 2019, 19, 1363–1376. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.F. Adsorption and polymerization of amino acids on mineral surfaces: A review. Orig. Life Evol. Biosph. 2008, 38, 211–242. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Sverjensky, D.A.; Hazen, R.M. Cooperative and competitive adsorption of amino acids with Ca2+ on rutile (α-TiO2). Environ. Sci. Technol. 2014, 48, 9358–9365. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, S.; Singh, B.; Kookana, R.S.; Farrell, M.; Sparks, D.L.; Johnston, C.T. Influence of mineral characteristics on the retention of low molecular weight organic compounds: A batch sorption-desorption and ATR-FTIR study. J. Colloid. Interf. Sci. 2014, 432, 246–257. [Google Scholar] [CrossRef]
- Lewis, D.G.; Farmer, V.C. Infrared absorption of surface hydroxyl groups and lattice vibrations in lepidocrocite (γ-FeOOH) and boehmite (γ-AlOOH). Clay. Miner. 1986, 21, 93–100. [Google Scholar] [CrossRef]
- Li, X.F.; Guo, C.L.; Jin, X.H.; He, C.C.; Dang, Z. Mechanisms of Cr(VI) adsorption on schwertmannite under environmental disturbance: Changes in surface complex structures. J. Hazard. Mater. 2021, 416, 125781. [Google Scholar] [CrossRef]
- Jing, L.; Zhu, R.; Liang, X.; Ma, L.; Molinari, M. Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: An in situ ATR-FTIR/2D-COS study. Chem. Geol. 2018, 477, 12–21. [Google Scholar]
- Bartlett, R.; James, B. Behavior of Chromium in Soils: III. Oxidation1. J. Environ. Qual. 1979, 8, 31–35. [Google Scholar] [CrossRef]
- Yan, W.; Jing, C.Y. Molecular insights into glyphosate adsorption to goethite gained from ATR-FTIR, two-dimensional correlation spectroscopy, and DFT study. Environ. Sci. Technol. 2018, 52, 1946. [Google Scholar] [CrossRef]
- Noda, I.; Dowrey, A.E.; Ozaki, Y. Two-Dimensional Correlation Spectroscopy. Applications in Vibrational and Optical Spectroscopy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Christensen, A.N.; Lehmann, M.S.; Convert, P.; Beyer, L.; Cyvin, S.J. Deuteration of crystalline hydroxides. Hydrogen bonds of gamma-AlOO(H,D) and gamma-FeOO(H,D). Acta Chem. Scand 1982, 36, 303–308. [Google Scholar] [CrossRef]
- Song, X.; Boily, J.F. Structural controls on OH site availability and reactivity at iron oxyhydroxide particle surfaces. Phys. Chem. Chem. Phys. 2012, 14, 2579–2586. [Google Scholar] [CrossRef]
- Li, T.F.; Li, X.F.; Shen, C.R.; Chen, D.; Li, F.H.; Xu, W.C.; Wu, X.L.; Bao, Y.P. Nano-hydroxyapatite modified tobacco stalk-based biochar for immobilizing Cd(II): Interfacial adsorption behavior and mechanisms. Processes 2024, 12, 1924. [Google Scholar] [CrossRef]
- Gan, M.; Sun, S.; Zheng, Z.; Tang, H.; Sheng, J.; Zhu, J.; Liu, X. Adsorption of Cr(VI) and Cu(II) by AlPO4 modified biosynthetic Schwertmannite. Appl. Surf. Sci. 2015, 356, 986–997. [Google Scholar] [CrossRef]
- Wang, X.H.; Liu, F.F.; Lu, L.; Yang, S.; Zhao, Y.; Sun, L.B.; Wang, S.G. Individual and competitive adsorption of Cr(VI) and phosphate onto synthetic Fe-Al hydroxides. Colloid. Surf. A 2013, 423, 42–49. [Google Scholar] [CrossRef]
- Liu, B.X.; Chen, C.; Li, W.; Liu, H.Y.; Liu, L.; Deng, S.S.; Li, Y. Effective removal of Cr(VI) from aqueous solution through adsorption and reduction by magnetic S-doped Fe-Cu-La trimetallic oxides. J. Environ. Chem. Eng. 2022, 10, 107433. [Google Scholar] [CrossRef]
- Johnston, C.P.; Chrysochoou, M. Mechanisms of chromate adsorption on hematite. Geochim. Cosmochim. Acta 2014, 138, 146–157. [Google Scholar] [CrossRef]
- Hoffmann, M.M.; Darab, J.G.; Fulton, J.L. An infrared and X-ray absorption study of the structure and equilibrium of chromate, bichromate, and dichromate in high-temperature aqueous solutions. J. Phys. Chem. A 2001, 105, 6876–6885. [Google Scholar] [CrossRef]
- Parikh, S.J.; Kubicki, J.D.; Jonsson, C.M.; Jonsson, C.L.; Hazen, R.M.; Sverjensky, D.A.; Sparks, D.L. Evaluating glutamate and aspartate binding mechanisms to rutile (α-TiO2) via ATR-FTIR spectroscopy and quantum chemical calculations. Langmuir 2011, 27, 1778–1787. [Google Scholar] [CrossRef] [PubMed]
- Hug, S.J.; Bahnemann, D. Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR. J. Electron. Spectrosc. Relat. Phenom. 2006, 150, 208–219. [Google Scholar] [CrossRef]
- Li, X.F.; Li, T.F.; Jeyakumar, P.; Li, J.Y.; Jin, X.H.; Zhang, J.; Guo, C.L.; Jiang, X.D.; Lu, G.N.; Dang, Z.; et al. Effect of biochar-derived DOM on contrasting redistribution of chromate during Schwertmannite dissolution and recrystallization. J. Hazard. Mater. 2024, 476, 134988. [Google Scholar] [CrossRef] [PubMed]
- Simanova, A.A.; Loring, J.S.; Persson, P. Formation of ternary metal-oxalate surface complexes on α-FeOOH particles. J. Phys. Chem. C 2011, 115, 21191–21198. [Google Scholar] [CrossRef]
- Hay, M.B.; Myneni, S.C.B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 3518–3532. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über die adsorption in lösungen Z. Phys. Chem. 1906, 57A, 385–470. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, T.; Jin, X.; Wei, Y.; Bao, Y.; Yao, Q.; Li, F.; Xu, W.; Wu, X. Effects of L-Aspartic Acid on Cr(VI) Adsorption onto the Lepidocrocite with Different Exposed Facets: Batch Experiments and In Situ ATR-FTIR Analysis. Processes 2024, 12, 2598. https://doi.org/10.3390/pr12112598
Li X, Li T, Jin X, Wei Y, Bao Y, Yao Q, Li F, Xu W, Wu X. Effects of L-Aspartic Acid on Cr(VI) Adsorption onto the Lepidocrocite with Different Exposed Facets: Batch Experiments and In Situ ATR-FTIR Analysis. Processes. 2024; 12(11):2598. https://doi.org/10.3390/pr12112598
Chicago/Turabian StyleLi, Xiaofei, Tianfu Li, Xiaohu Jin, Yanfu Wei, Yanping Bao, Qian Yao, Fuhua Li, Weicheng Xu, and Xiaolian Wu. 2024. "Effects of L-Aspartic Acid on Cr(VI) Adsorption onto the Lepidocrocite with Different Exposed Facets: Batch Experiments and In Situ ATR-FTIR Analysis" Processes 12, no. 11: 2598. https://doi.org/10.3390/pr12112598
APA StyleLi, X., Li, T., Jin, X., Wei, Y., Bao, Y., Yao, Q., Li, F., Xu, W., & Wu, X. (2024). Effects of L-Aspartic Acid on Cr(VI) Adsorption onto the Lepidocrocite with Different Exposed Facets: Batch Experiments and In Situ ATR-FTIR Analysis. Processes, 12(11), 2598. https://doi.org/10.3390/pr12112598