Rational Fabrication of Polyhedral Oligomeric Silsesquioxane-Based Porous Organic Polymers Sustainably Used for Selective CO2 Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Characterization
2.3. Adsorption Tests
3. Results and Discussion
3.1. Characterization
3.2. Gas Adsorption Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, F.; Song, F.; Luo, Y. Human-induced intensified seasonal cycle of sea surface temperature. Nat. Commun. 2024, 15, 3948. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Zhu, X.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Minamikawa, K.; Martinez-Eixarch, M.; Yan, X.; Zhou, F.; et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 2023, 4, 716–732. [Google Scholar] [CrossRef]
- de Kleijne, K.; Hanssen, S.V.; van Dinteren, L.; Huijbregts, M.A.J.; van Zelm, R.; de Coninck, H. Limits to Paris compatibility of CO2 capture and utilization. One Earth 2022, 5, 168–185. [Google Scholar] [CrossRef]
- Karimi, M.; Shirzad, M.; Silva, J.A.C.; Rodrigues, A.E. Carbon dioxide separation and capture by adsorption: A review. Environ. Chem. Lett. 2023, 21, 2041–2084. [Google Scholar] [CrossRef]
- Song, K.S.; Fritz, P.W.; Coskun, A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 2022, 51, 9831–9852. [Google Scholar] [CrossRef]
- Jørsboe, J.K.; Vinjarapu, S.H.B.; Neerup, R.; Møller, A.C.; Jensen, S.; Abildskov, J.; Fosbøl, P. Mobile pilot plant for CO2 capture in biogas upgrading using 30 wt% MEA. Fuel 2023, 350, 128702–128713. [Google Scholar] [CrossRef]
- Rashidi, H.; Sahraie, S. Enhancing carbon dioxide absorption performance using the hybrid solvent: Diethanolamine-methanol. Energy 2021, 221, 119799. [Google Scholar] [CrossRef]
- Mao, Y.; Yang, X.; Gerven, T.V. Amine-assisted simultaneous CO2 absorption and mineral carbonation: Effect of different categories of amines. Environ. Sci. Technol. 2023, 57, 10816–10827. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Zhan, G.; Xing, L.; Huang, Z.; Chen, Z.; Deng, Y.; Li, J. Integration of physical solution and ionic liquid toward efficient phase splitting for energy-saving CO2 capture. Sep. Purif. Technol. 2024, 343, 127096. [Google Scholar] [CrossRef]
- Xing, W.; Liu, C.; Zhou, Z.; Zhang, L.; Zhou, J.; Zhuo, S.; Yan, Z.; Gao, H.; Wang, G.; Qiao, S.Z. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 2012, 5, 7323–7327. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Ismail, I.; Vaithilingam, B.V.; Polychronopoulou, K.; Singaravel, G.; Morin, S.; Berthod, M.; Al Wahedi, Y. Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture. Microporous Mesoporous Mater. 2020, 303, 110261–110272. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Saliy, O.; Hu, W.; Wang, J. Robust amino-functionalized mesoporous silica hollow spheres templated by CO2 bubbles. Molecules 2021, 27, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Mat, N.; Timmiati, S.N.; Teh, L.P. Recent development in metal oxide-based core-shell material for CO2 capture and utilisation. Appl. Nanosci. 2022, 13, 3797–3817. [Google Scholar] [CrossRef]
- Ben, T.; Li, Y.Q.; Zhu, L.K.; Zhang, D.L.; Cao, D.P.; Xiang, Z.H.; Yao, X.D.; Qiu, S.L. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ. Sci. 2012, 5, 8370–8376. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, G. Porous aromatic frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Wang, Y.; Zhao, Q.; Sun, H. Progress in the separation and purification of carbon hydrocarbon compounds using MOFs and molecular sieves. Separations 2023, 10, 543–562. [Google Scholar] [CrossRef]
- Niu, J.; Li, H.; Tao, L.; Fan, Q.; Liu, W.; Tan, M.C. Defect engineering of low-coordinated metal-organic frameworks (MOFs) for improved CO2 access and capture. ACS Appl. Mater. Interfaces 2023, 15, 31664–31674. [Google Scholar] [CrossRef]
- Zhang, H.L.; Wang, Z.J.; Li, W.C.; Zhang, L.; Wan, L.; Wang, M.H.; Liu, S.Y.; Wei, S.X.; Lu, X.Q. Coordination environment regulated Li-COFs for efficient CO2 capture and separation over N2 and CH4. Appl. Surf. Sci. 2025, 680, 161368. [Google Scholar] [CrossRef]
- Qu, Q.H.; Jiang, Y.Q.; Cheng, L.Y.; Xue, Q.Y.; Li, R.R.; Fang, C.; Li, H.P.; Ding, J.; Wan, H.; Guan, G.F. Screening and preparation of functionalized TpBD-COFs for CO2 capture. Chem. Eng. Sci. 2025, 301, 120702. [Google Scholar] [CrossRef]
- Puthiaraj, P.; Ahn, W.S. CO2 capture by porous hyper-cross-linked aromatic polymers synthesized using tetrahedral precursors. Ind. Eng. Chem. Res. 2015, 55, 7917–7923. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, W.; Zhang, Y.; Wang, L.; Chen, B. Recent advances on metal-organic frameworks for deep purification of olefins. J. Mater. Chem. A 2024, 12, 5563–5580. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, Y.; Xu, M.; Zheng, D.; Jia, S.; Cui, P. Tailoring a MOF-based adsorbent with partitioned aliphatic pore spaces for efficient CH4 purification from natural gas. AIChE J. 2024, 70, e18443. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhan, Z.; Yang, Y.; Liu, M.; Huang, Q.; Tan, B.; Ke, X.; Wu, C. Amine or azo functionalized hypercrosslinked polymers for highly efficient CO2 capture and selective CO2 capture. Mater. Today Commun. 2021, 27, 102338. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Li, Y.; Xu, Y.; Nie, W.; Cheng, Z.; Zhou, Q.; Wang, L.; Fan, Z. Molecular-level regulation strategies toward efficient charge separation in donor-acceptor type conjugated polymers for boosted energy-related photocatalysis. Adv. Energy Mater. 2023, 13, 202303346. [Google Scholar] [CrossRef]
- Danowski, W.; van Leeuwen, T.; Browne, W.R.; Feringa, B.L. Photoresponsive porous materials. Nanoscale Adv. 2021, 3, 24–40. [Google Scholar] [CrossRef]
- Jiang, Y.; Tan, P.; Liu, X.Q.; Sun, L.B. Process-Oriented Smart Adsorbents: Tailoring the Properties Dynamically as Demanded by Adsorption/Desorption. Acc. Chem. Res. 2022, 55, 75–86. [Google Scholar] [CrossRef]
- Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y.; et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141–144. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Yu, H.; Položij, M.; Guo, Y.; Sum, T.C.; Heine, T.; Jiang, D. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 2024, 7, 195–206. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, P.; Xue, Y.-Y.; Xu, J.; Li, H.-P.; Lv, H.-J.; Wang, Y.; Li, S.-N.; Zhai, Q.-G. Design of ultra-stable Yttrium-organic framework adsorbents for efficient methane purification and storage. Sep. Purif. Technol. 2022, 283, 120211. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.F.; Jiang, X.W.; Luo, Y.L.; Lyu, Y.N. POSS-based microporous polymers: Efficient Friedel-Crafts synthesis, CO2 capture and separation properties. Microporous Mesoporous Mater. 2017, 250, 203–209. [Google Scholar] [CrossRef]
- Singh, G.; Lakhi, K.S.; Sil, S.; Bhosale, S.V.; Kim, I.; Albahily, K.; Vinu, A. Biomass derived porous carbon for CO2 capture. Carbon 2019, 148, 164–186. [Google Scholar] [CrossRef]
- Das, N.; Paul, R.; Dao, D.Q.; Chatterjee, R.; Borah, K.; Chandra Shit, S.; Bhaumik, A.; Mondal, J. Nanospace engineering of triazine-thiophene-intertwined porous-organic-polymers via molecular expansion in tweaking CO2 capture. ACS Appl. Nano Mater. 2022, 5, 5302–5315. [Google Scholar] [CrossRef]
- Gamal Mohamed, M.; Tsai, M.Y.; Wang, C.F.; Huang, C.F.; Danko, M.; Dai, L.; Chen, T.; Kuo, S.W. Multifunctional polyhedral oligomeric silsesquioxane (POSS) based hybrid porous materials for CO2 uptake and iodine adsorption. Polymers 2021, 13, 221. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Patil, N.N.; Patra, A. Porous noria polymer: A cage-to-network approach toward a robust catalyst for CO2 fixation and nitroarene reduction. Chem. Commun. 2021, 57, 4404–4407. [Google Scholar] [CrossRef]
- Sim, J.; Yim, H.; Ko, N.; Choi, S.B.; Oh, Y.; Park, H.J.; Park, S.; Kim, J. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers. Dalton Trans. 2014, 43, 18017–18024. [Google Scholar] [CrossRef]
- Qi, S.C.; Liu, Y.; Peng, A.Z.; Xue, D.M.; Liu, X.; Liu, X.Q.; Sun, L.B. Fabrication of porous carbons from mesitylene for highly efficient CO2 capture: A rational choice improving the carbon loop. Chem. Eng. J. 2019, 361, 945–952. [Google Scholar] [CrossRef]
- Wahono, S.K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasilev, K. Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Microporous Mesoporous Mater. 2020, 294, 109871–109880. [Google Scholar] [CrossRef]
- Cui, P.; Li, J.J.; Dong, J.; Zhao, B. Modulating CO2 adsorption in metal-organic frameworks via metal-ion doping. Inorg. Chem. 2018, 57, 6135–6141. [Google Scholar] [CrossRef]
- Rozyyev, V.; Yavuz, M.S.; Thirion, D.; Nguyen, T.S.; Nguyen, T.P.N.; Emwas, A.-H.; Yavuz, C.T. Optimizing bromide anchors for easy tethering of amines, nitriles and thiols in porous organic polymers towards enhanced CO2 capture. Microporous Mesoporous Mater. 2021, 328, 111450. [Google Scholar] [CrossRef]
- Giri, A.; Hussain, M.D.W.; Sk, B.; Patra, A. Connecting the dots: Knitting C-phenylresorcin[4]arenes with aromatic linkers for task-specific porous organic polymers. Chem. Mater. 2019, 31, 8440–8450. [Google Scholar] [CrossRef]
- Pedrini, A.; Perego, J.; Bracco, S.; Bezuidenhout, C.X.; Sozzani, P.; Comotti, A. Calixarene-based porous 3D polymers and copolymers with high capacity and binding energy for CO2, CH4 and Xe capture. J. Mater. Chem. A 2021, 9, 27353–27360. [Google Scholar] [CrossRef]
- Xu, S.; He, J.; Jin, S.; Tan, B. Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. J. Colloid Interface Sci. 2018, 509, 457–462. [Google Scholar] [CrossRef] [PubMed]
Sample | SBET (m2·g−1) | Vtotal (cm3·g−1) | Vmicro (cm3·g−1) | Vmeso (cm3·g−1) |
---|---|---|---|---|
PBPOP-2 | 593 | 0.45 | 0.27 | 0.28 |
PBPOP-3 | 406 | 0.37 | 0.22 | 0.15 |
PBPOP-1 | 279 | 0.27 | 0.14 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Kang, G.; Liu, M.; Sun, C.; Li, J.; Meng, Y.; Xue, D. Rational Fabrication of Polyhedral Oligomeric Silsesquioxane-Based Porous Organic Polymers Sustainably Used for Selective CO2 Adsorption. Processes 2024, 12, 2604. https://doi.org/10.3390/pr12112604
Li T, Kang G, Liu M, Sun C, Li J, Meng Y, Xue D. Rational Fabrication of Polyhedral Oligomeric Silsesquioxane-Based Porous Organic Polymers Sustainably Used for Selective CO2 Adsorption. Processes. 2024; 12(11):2604. https://doi.org/10.3390/pr12112604
Chicago/Turabian StyleLi, Tiantian, Guodong Kang, Mengqi Liu, Congcong Sun, Jie Li, Yang Meng, and Dingming Xue. 2024. "Rational Fabrication of Polyhedral Oligomeric Silsesquioxane-Based Porous Organic Polymers Sustainably Used for Selective CO2 Adsorption" Processes 12, no. 11: 2604. https://doi.org/10.3390/pr12112604
APA StyleLi, T., Kang, G., Liu, M., Sun, C., Li, J., Meng, Y., & Xue, D. (2024). Rational Fabrication of Polyhedral Oligomeric Silsesquioxane-Based Porous Organic Polymers Sustainably Used for Selective CO2 Adsorption. Processes, 12(11), 2604. https://doi.org/10.3390/pr12112604